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Abstract Assessment of system availability usually uses

either an analytical (e.g., Markov/semi-Markov) or a sim-

ulation approach (e.g., Monte Carlo simulation-based).

However, the former cannot handle complicated state

changes and the latter is computationally expensive. Tra-

ditional Bayesian approaches may solve these problems;

however, because of their computational difficulties, they

are not widely applied. The recent proliferation of Markov

Chain Monte Carlo (MCMC) approaches have led to the

use of the Bayesian inference in a wide variety of fields.

This study proposes a new approach to system availability

assessment: a parametric Bayesian approach using MCMC,

an approach that takes advantages of the analytical and

simulation methods. By using this approach, mean time to

failure (MTTF) and mean time to repair (MTTR) are

treated as distributions instead of being ‘‘averaged’’, which

better reflects reality and compensates for the limitations of

simulation data sample size. To demonstrate the approach,

the paper considers a case study of a balling drum system

in a mining company. In this system, MTTF and MTTR are

determined in a Bayesian Weibull model and a Bayesian

lognormal model respectively. The results show that the

proposed approach can integrate the analytical and simu-

lation methods to assess system availability and could be

applied to other technical problems in asset management

(e.g., other industries, other systems).

Keywords Asset management � System availability �
Reliability � Maintainability � Bayesian statistics � Markov

Chain Monte Carlo (MCMC) � Mining industry

1 Introduction

Availability represents the proportion of a system’s uptime

out of the total time in service and is one of the most

critical aspects of performance evaluation. Availability is

commonly measured as Mean Time to Failure (MTTF) and

Mean Time to Repair (MTTR). However, those ‘‘mean’’

values are normally ‘‘averaged’’; thus, some useful infor-

mation (e.g., trends, system complexity) may be neglected,

and some problems may even be hidden.

Assessment of system availability has been studied from

the design stage to the operational stage in various system

configurations (e.g., in series, parallel, k-out-of-n, stand-by,

multi-state, or mixed architectures). Approaches to

assessing system availability mainly use either analytic or

simulation techniques.

In general, analytic techniques represent the system

using direct mathematical solutions from applied proba-

bility theory to make statements on various performance

measures, such as the steady-state availability or the

interval availability (Dekker and Groenendijk 1995;

Ocnasu 2007). Researchers tend to use Markov models to

assess dynamic availability or semi-Markov models using

Laplace transforms to determine average performance

measures (Dekker and Groenendijk 1995; Faghih-Roohi

et al. 2014). However, such approaches have been criti-

cised as too restrictive to tackle practical problems; they
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assume constant failure and repair rates which is not likely

to be the case in the real world (Raje et al. 2000; Marquez

et al. 2005). Furthermore, the time dependent availability

obtained by a Markovian assumption is actually not valid

for non-Markovian processes (Raje et al. 2000).

Simulation techniques estimate availability by simulat-

ing the actual process and random behaviour of the system.

The advantage is that non-Markov failures and repair

processes can be modelled easily (Raje et al. 2000). Recent

research is working on developing Monte Carlo techniques

to model the behaviour of complex systems under realistic

time-dependent operational conditions (Marquez et al.

2005; Marquez and Iung 2007; Yasseri and Bahai 2018) or

to model multi-state systems with operational dependen-

cies (Zio et al. 2007). Although simulation is more flexible,

it is computationally expensive.

Traditionally, Bayesian approaches have been used to

assess system availability as they can solve the problem of

complicated system state changes and computationally

expensive simulation data; however, their development and

application were stalled by the strict assumptions on prior

forms and by computational difficulties. Research is more

concerned with the prior’s selection or the posterior’s

computation than the reality (Brender 1968a, b; Kuo 1985;

Sharma and Bhutani 1993; Khan and Islam 2012).

The recent proliferation of Markov Chain Monte Carlo

(MCMC) simulation techniques has led to the use of the

Bayesian inference in a wide variety of fields. Because of

MCMC’s high dimensional numerical integral calculation

(Lin 2014), the selection of prior information and

descriptions of reliability/maintainability can be more

flexible and more realistic.

This study proposes a new approach to system avail-

ability assessment: a parametric Bayesian approach with

MCMC, with a focus on the operational stage, using both

analytical and simulation methods. MTTF or MTTR are

treated as distributions instead of being ‘‘averaged’’ by

point estimation, and this is closer to reality; in addition,

the limitations of simulation data sample size are addressed

by using MCMC techniques.

The rest of this paper is organized as follows. Section 2

describes the problem statement, the balling drum system,

the data preparation, and the preliminary analysis of failure

and repair data. Section 3 proposes a Bayesian Weibull

model for MTTF and a Bayesian lognormal model for

MTTR and explains how to use an MCMC computational

scheme to obtain the parameters’ posterior distributions.

Section 4 presents a case study, results, and discussion.

Section 5 offers conclusions and suggestions for further

study.

2 Problem statement

This section presents the study problem statement, the

balling drum system and its configuration, the system

availability framework, and data preparation; it performs a

preliminary analysis of failure and repair data based on

which parametric Bayesian models are constructed

subsequently.

2.1 Balling drum systems in the mining industry

Our study is motivated by a balling drum system in the

mining industry. The case study mine consists of five

balling drums, labelled 1–5 (see Fig. 1). All five balling

drums receive their feed for production in the same man-

ner. Each balling drum is expected to produce the same

amount of pellets at its maximum. According to the

working mechanism and an i.i.d test, they are regarded as

independent; if one of the balling drums breaks down, it

does not affect the rest of the balling drums, except that

total production will be reduced. One assumption is made

here that the system will fail only if all subsystems fail;

therefore, it is treated as a parallel system.

The availability of a single balling drum, denoted as A,

can be computed by

A ¼ MTTF

MTTF þMTTR
ð1Þ

According to Fig. 1, the five balling drums are in par-

allel. The total system availability, Asystem, can be calcu-

lated as

Asystem ¼ 1�
Y5

i¼1

ð1� AiÞ ð2Þ

2.2 Data preparation and preliminary analysis

The study uses the failure and repair data of the five balling

drums from January 2013 to December 2018. There are

1782 records. In the first step, the null values are removed,

and the data are reduced to 1774 records.

The next step reveals there are different reasons for the

TTF and TTR of individual balling drums. It is noticed

that, for TTR data, if 150 shutdowns are considered normal

(denoted as a threshold, see Fig. 2), then those exceeding

150 should be treated as abnormal and investigated using

Root Cause Analysis (RCA).

After checking the work order types of such kind of

abnormal data, it is found that most of them are caused by

‘‘preventive maintenance’’ which may due to lack of

maintenance resources. To simplify the study, we assume

all maintenance resources are sufficient for ‘‘preventive
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maintenance’’; thus, the abnormally data might be caused

by shortage of spare parts or skilled personnel will not be

treated specially in this paper.

To determine the baseline distribution of Time to Fail-

ure (TTF) and Time to Repair (TTR), we conduct a pre-

liminary study of failure data and repair data using

traditional analysis. In this preliminary study, several dis-

tributions are considered: exponential distribution, Weibull

distribution, normal distribution, log-logistic distribution,

lognormal distribution, and extreme value distribution.

Table 1 lists the results.

Based on the results, the Weibull distribution and log-

normal distribution are selected for the TTF and TTR for

balling drums 1–5; these are applied to the parametric

Bayesian models in the next section.

3 Parametric Bayesian Models

This section proposes a Bayesian Weibull model for TTF

and a Bayesian lognormal model for TTR in the proposed

parametric Bayesian models and explains the procedure of

MCMC computational scheme to obtain the posterior

distributions.

3.1 Markov Chain Monte Carlo with Gibbs

sampling

The recent proliferation of Markov Chain Monte Carlo

(MCMC) approaches has led to the use of the Bayesian

inference in a wide variety of fields. MCMC is essentially

Monte Carlo integration using Markov chains. Monte Carlo

Balling drum 1

Balling drum 2

Balling drum 3

Balling drum 4

Balling drum 5

Fig. 1 Description of a balling

drum and the system sketch

Fig. 2 Example of TTR data

for balling drum 1
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integration draws samples from the required distribution

and then forms sample averages to approximate expecta-

tions. MCMC draws out these samples by running a clev-

erly constructed Markov chain for a long time. There are

many ways of constructing these chains. The Gibbs sam-

pler is one of the best known MCMC sampling algorithms

in the Bayesian computational literature. It adopts the

thinking of ‘‘divide and conquer’’: i.e., when a set of

parameters must be evaluated, the other parameters are

assumed to be fixed and known. Let hi be an i-dimensional

vector of parameters, and let f hj
� �

denote the marginal

distribution for the jth parameter. The basic scheme of the

Gibbs sampler for sampling from p hð Þ is given as follows:

• Step 1. Choose an arbitrary starting point

h 0ð Þ ¼ h 0ð Þ
1 ; . . .; h 0ð Þ

k

� �
;

• Step 2. Generate h 1ð Þ
1 from the conditional distribution

f h1jh 0ð Þ
2 ; . . .; h 0ð Þ

k

� �
, and generate h 1ð Þ

2 from the condi-

tional distribution distribution f h2jh 1ð Þ
1 ; h 0ð Þ

3 ; . . .; h 0ð Þ
k

� �
;

• Step 3. Generate h 1ð Þ
j from f hjjh 1ð Þ

1 ; . . .; h 1ð Þ
j�1; h

1ð Þ
jþ1. . .;

�

h 0ð Þ
k Þ;

• Step 4. Generate h 1ð Þ
k from f hkjh 1ð Þ

1 ; h 1ð Þ
2 ; . . .; h 1ð Þ

k�1

� �
; the

one-step transition from h 0ð Þ to h 1ð Þ ¼ h 1ð Þ
1 ; . . .; h 1ð Þ

k

� �

has been completed, where h 1ð Þ is a one-time accom-

plishment of a Markov chain.

• Step 5. Go to Step2.

After t iterations, h tð Þ ¼ h tð Þ
1 ; . . .; h tð Þ

k

� �
can be obtained.

Each component of h can also be obtained. Starting from

different h 0ð Þ, as t ! 1, the marginal distribution of h tð Þ

can be viewed as a stationary distribution based on the

theory of the ergodic average. Then, the chain is seen as

converging, and the sampling points are seen as observa-

tions of the sample.

3.2 Bayesian Weibull model for TTF

Suppose the time to failure (TTF) data t ¼ t1; t2; . . .; tnð Þ0
for n individuals are i.i.d, and each corresponds to a 2-

parameter Weibull distribution W a; cð Þ, where a[ 0 and

c[ 0. Then, the p.d.f. is f tija; cð Þ ¼ acta�1
i exp �ctai

� �
,

while the c.d.f. is F tija; cð Þ ¼ 1� exp �ctai
� �

. The relia-

bility function is R tija; cð Þ ¼ exp �ctai
� �

.

Denote the observed data set as D0 ¼ n; tð Þ: Therefore,
the likelihood function for a and c is

L a; cjD0ð Þ ¼
Yn

i¼1

f tija; cð Þ ¼
Yn

i¼1

acta�1
i exp �ctai

� �
ð3Þ

In this study, we assume a to be a gamma distribution

(Kuo 1985), denoted by G a0; b0ð Þ as its prior distribution,
written as p aja0; b0ð Þ; we assume c to be a gamma distri-

bution denoted by G c0; d0ð Þ as its prior distribution, written
as p cjc0; d0ð Þ: This means

p aja0; b0ð Þ / aa0�1exp �b0að Þ ð4Þ

p cjc0; d0ð Þ / cc0�1exp �d0cð Þ ð5Þ

Therefore, the joint posterior distribution can be

obtained according to Eqs. (3)–(5) as

p a; cjD0ð Þ / L a; cjD0ð Þ � p aja0; b0ð Þ � p cjc0; d0ð Þ; ð6Þ

and the parameters’ full conditional distribution with Gibbs

sampling can be written as

p ajja �jð Þ; c;D0

� �
/ L a; cjD0ð Þ � aa0�1exp �b0að Þ ð7Þ

p cjja; c �jð Þ;D0

� �
/ L a; cjD0ð Þ � cc0�1exp �d0cð Þ ð8Þ

3.3 Bayesian Lognormal model for TTR

Suppose the time to repair (TTF) data t ¼ t1; t2; . . .; tnð Þ0 for
n individuals are i.i.d., and each ln tð Þ corresponds to a

normal distribution, N l;r2ð Þ. We can get ti’s lognormal

distribution with parameters l and r2. Then, the p.d.f. and

c.d.f. are given by Eqs. (9) and (10):

Table 1 Preliminary study of

failure data and repair data
Balling drum TTF fitness TTR fitness

1st 2nd 3rd 1st 2nd 3rd

1 Weibull Log-logistic Lognormal Lognormal Weibull Logistic

2 Weibull Log-logistic Lognormal Lognormal Weibull Logistic

3 Weibull Log-logistic Lognormal Lognormal Weibull Logistic

4 Weibull Log-logistic Lognormal Lognormal Weibull Logistic

5 Weibull Log-logistic Lognormal Lognormal Weibull Logistic
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f tijl; r2
� �

¼ 1ffiffiffiffiffiffi
2p

p
rti

exp � 1

2r2
ln tið Þ � l½ �2

� �
ð9Þ

F tijl; r2
� �

¼ U
ln tið Þ � l

r

	 

ð10Þ

Denote the observed data set as D0 ¼ n; tð Þ. Therefore,
according to Eq. (9), the likelihood function for l and r
becomes

L l; rjD0ð Þ ¼
Yn

i¼1

f tijl; r2
� �

ð11Þ

In this study, we assume l to be a normal distribution

denoted by N e0; f0ð Þ as its prior distribution, written as

p lje0; f0ð Þ; we assume r to be a gamma distribution

denoted by G g0; h0ð Þ as its prior distribution, written as

p rjg0; h0ð Þ: This means

p lje0; f0ð Þ / f
1
2

0exp � f0

2
l� e0ð Þ2

	 

ð12Þ

p rjg0; h0ð Þ / rg0�1exp �h0rð Þ ð13Þ

Therefore, the joint posterior distribution can be

obtained according to Eqs. (11)–(13) as

p l; rjD0ð Þ / L l; rjD0ð Þ � p lje0; f0ð Þ � p rjg0; h0ð Þ ð14Þ

Then, the parameters’ full conditional distribution with

Gibbs sampling can be written as

p ljjl �jð Þ; r;D0

� �
/ L l; rjD0ð Þ � f

1
2

0exp � f0

2
l� e0ð Þ2

	 


ð15Þ

p rjjl; r �jð Þ;D0

� �
/ L l; rjD0ð Þ � rg0�1exp �h0rð Þ ð16Þ

4 Case study

This section presents a case study; it explains the proce-

dure, gives the results, and offers a discussion.

4.1 The procedure

The procedure applied in this case study to assess the

system availability of the mine’s five balling drums has a

total of seven steps, as described in Table 2.

4.2 Results

In this case study, the calculations are implemented with

WINBUGS. A three-chain Markov chain is constructed for

each MCMC simulation. A burn-in of 1000 samples is

used, with an additional 10,000 Gibbs samples for each

Markov chain.

Vague prior distributions are adopted as follows:

• For Bayesian Weibull model using TTF data:

a�G 0:0001; 0:0001ð Þ; c�G 0:0001; 0:0001ð Þ

• For Bayesian lognormal model using TTR data:

l�N 0; 0:0001ð Þ; r�G 0:0001; 0:0001ð Þ:

Using the convergence diagnostics [i.e. checking

dynamic traces in Markov chains, determining time series

and Gelman–Rubin–Brooks (GRB) statistics, and compar-

ing MC error with standard deviation (SD)] (Lin 2014), we

consider the following posterior distribution summaries for

our models (see Tables 3, 4), including the parameters’

posterior distribution mean, SD, Monte Carlo error (MC

error), and 95% highest posterior distribution density

(HPD) interval.

Using the results from Tables 3 and 4, we calculate the

availability of individual balling drums in Table 5, where

MTTF = E f tija; cð Þ½ �, and MTTR = E f tijl;r2ð Þ½ �.
According to Eq. (2), the system availability of the five

balling drums is

Asystem ¼ 1�
Y5

i¼1

ð1� AiÞ � 0:99:

4.3 Discussion

Compared to the traditional method of assessing avail-

ability in Eq. (1), the proposed approach extends the

method to Eq. (17), where

A ¼ E f TTFð Þ½ �
E f TTFð Þ½ � þ E f TTRð Þ½ � ¼

E f tija; cð Þ½ �
E f tija; cð Þ½ � þ E f tijl; r2ð Þ½ �:

ð17Þ

Equation (17) shows the flexibility of assessing avail-

ability according to reality. For one thing, the parametric

Bayesian models using MCMC make the calculation of

posteriors more feasible. More importantly, however,

parametric Bayesian models can be applied to predict TTF,

TTR, and system availability in the future.

In this study, since the five balling drums are relatively

new, the gamma distributions and normal distributions are

selected as vague priors due to lack of prior information.

This could be improved with more historical

data/experience.

The system configurations could be extended to other

more complex architectures (series, k-out-of-n, stand-by,

multi-state, or mixed) by modifying Eq. (2).
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The data analysis reveals that for TTF data, the shape

parameter for the Weibull distribution is less than 1. The

TTFs have a decreasing trend (as in an early stage of the

bathtub curve) which is not suitable for the experience of

mechanical equipment. The TTF data include not only

corrective maintenance but also preventive maintenance. In

Table 2 Steps in the system availability assessment

Steps Name Purpose Outputs in this case

1 Configuration

definition

System configuration and dependencies determined to calculate

system availability

Five balling drum system parallel and

independent (see Sect. 2.1)

2 Data collection Reliability and maintenance data (and information) collected 1774 records for failure and repair data of the

five balling drums collected from 2013 to 2018

(see Sect. 2.2)

3 Data preparation Data cleaned and outliers removed as needed Null values removed and abnormal data checked

(see Sect. 2.2)

4 Preliminary

Analysis

Pre-studies for TTF and TTR data performed to decide the

baseline distributions

MTTF fits a Weibull distribution; MTTR fits a

lognormal distribution (see Sect. 2.2)

5 Parametric

Bayesian

model building

Prior distribution defined, and analytic models developed Bayesian Weibull model for MTTF with gamma

priors and Bayesian lognormal model with

gamma and normal priors constructed (see

Sect. 3)

6 MCMC

simulation

Burn-in defined and MCMC simulation implemented;

convergence diagnostics and Monte Carlo error checked to

confirm the effectiveness of the results

Burn-in of 1000 samples used with an additional

10,000 Gibbs samples for each Markov chain

(see Sects. 3 and 4.2)

7 Results and

analysis

Results, calculation, and discussion Results for parameters of interest in system

availability assessment (see Sects. 4.2 and 4.3)

Table 3 Posterior statistics in

Bayesian Weibull model for

TTF

Balling drum Parameter Mean SD MC error 95% HPD interval

1 a 0.5409 0.0231 4.288E-4 (0.4964, 0.5867)

c 0.0928 0.0120 2.235E-4 (0.0712, 0.1178)

2 a 0.5747 0.0288 6.289E-4 (0.5195, 0.6324)

c 0.0642 0.0109 2.334E-4 (0.0451, 0.0876)

3 a 0.5975 0.0251 5.004E-4 (0.5974, 0.6481)

c 0.0712 0.0098 1.942E-4 (0.0707, 0.0922)

4 a 0.5745 0.0245 4.885E-4 (0.5272, 0.6236)

c 0.0750 0.0104 2.028E-4 (0.0564, 0.0970)

5 a 0.5560 0.0216 4.135E-4 (0.5558, 0.5988)

c 0.0958 0.0112 2.158E-4 (0.0952, 0.1196)

Table 4 Posterior statistics in

Bayesian lognormal model for

TTR

Balling drum Parameter Mean SD MC error 95% HPD interval

1 l - 0.1842 0.1107 6.730E-4 (- 0.4015, 0.0342)

r 0.2270 0.0169 9.565E-5 (0.1951,0.2615)

2 l - 0.0075 0.1424 8.504E-4 (- 0.2845,0.2697)

r 0.1861 0.0161 9.140E-5 (0.1556, 0.2193)

3 l - 0.4574 0.1134 6.540E-4 (- 0.4578, - 0.2354)

r 0.2196 0.0164 9.621E-5 (0.2191, 0.2533)

4 l - 0.3540 0.1145 7.052E-4 (- 0.5787, - 0.1297)

r 0.2184 0.0166 9.845E-5 (0.1871, 0.2523)

5 l - 0.3484 0.1023 6.265E-4 (- 0.3486, - 0.1488)

r 0.2195 0.0148 8.614E-5 (0.2189, 0.2495)
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this case study, a high percentage of TTF work orders are

for preventive maintenance. The decreasing trends also

indicate that a possible way to improve TTF is to improve

the preventive maintenance plan.

Among those three stages, Step 1 to Step 4 can be

treated as Plan stage; Step 5 and Step 6 as Do and Check

stage, while Step 7 as Action stage. The outputs from Step

7 could become input for Step 2 for the next calculation

period. It means these eight steps are following the

‘‘PDCA’’ cycle and the results could be continuously

improved.

5 Conclusions

This study proposes a parametric Bayesian approach for

system availability assessment on the operational stage.

MCMC is adopted to take advantages of the analytical and

simulation methods.

In this approach, MTTF and MTTR are treated as dis-

tributions instead of being ‘‘averaged’’ by a point estima-

tion. This better reflects the reality; in addition, the

limitations of simulation data sample size are compensated

for by MCMC techniques.

In the case study, TTF and TTR are determined using a

Bayesian Weibull model and a Bayesian lognormal model.

The results show that the proposed approach can integrate

the analytical and simulation methods for system avail-

ability assessment and could be applied to other technical

problems in asset management (e.g., other industries, other

systems).
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1 145.0 (118.1, 178.0) 7.779 (5.284, 11.58) 0.9487 (0.9229, 0.9665)

2 196.4 (157.7, 256.0) 15.48 (8.927, 26.60) 0.9265 (0.8766, 0.9582)

3 128.7 (127.9, 155.0) 6.381 (6.194, 9.622) 0.9525 (0.9538, 0.9693)

4 148.5 (122.5, 180.3) 7.178 (4.755, 10.86) 0.9536 (0.9291, 0.9702)

5 115.8 (115.1, 139.0) 7.083 (6.926, 10.22) 0.9420 (0.9433, 0.9610)
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