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Abstract— Fault analysis based on high-resolution data 

acquisition is growing in use as it offers a more complete picture 

of faults which provides an opportunity to deal with failures more 

effectively. However, with increased volume of data collected, it 

becomes impossible for engineers to interpret every fault 

instance. A machine learning approach to classification should be 

the solution to this, but it is time-consuming to manually label 

faults for training and validation making data-driven approaches 

impossible to transfer into practical implementation. A solution 

to this is to unify fault analysis with maintenance report analysis 

to automate the generation of training labels. This paper outlines 

how a fully automatic fault detection and diagnostic approach 

based around power quality waveform analysis can be used to 

improve situational awareness on distribution networks. The 

methodology is illustrated using operational case study data and 

realistic simulations to demonstrate the diagnostic functionality 

as well as the practical benefit. In particular, classification 

accuracy is shown to approach that of expert labelled fault data.   

Index Terms—Power Quality, Automatic Fault Analysis, 

Increasing Situational Awareness, High-resolution Monitoring, 

Fault Labelling 

I. INTRODUCTION  

Maintenance procedures on distribution networks can suffer 
from inefficient fault and outage management due to lack of 
observability. In distribution networks, many faults can only be 
detected through operational alerts from Intelligent Electronic 
Devices (IED) or Supervisory Control and Data Acquisition 
(SCADA) systems, or through customer calls when supply is 
lost. The data captured on these devices is based on low-
resolution monitoring; however, many anomalies are transient 
and intermittent, and might only last for couple or even less than 
one cycle. This results in low-resolution fault recording missing 
many important signatures in the pre-failure period. Thus, many 
utilities’ awareness of the distribution system is either “normal 
operation” or “failure”. [1] and [2] proposed a new approach to 
obtain high-resolution data to find the early signatures of 
failures and analyse the resulting waveforms to increase 
situational awareness, which provides more context for 
remedial decision support. The system utilized a rule-based 

technique with expert knowledge to analyse faults. However, 
developing rule-based systems to cover every eventuality can 
be time-consuming, and a comprehensive validation of the 
method is a challenge because the volume of detected 
anomalies is excessive [2]. A solution is to utilize an automatic 
labelling function to obtain more exemplars for training and 
validating classifiers. Pertinent maintenance reports are an ideal 
source for this. Maintenance reports have been widely used for 
utilities to schedule and validate remedial works. Previous 
research [3] has utilized historical maintenance reports to 
predict feeder failure and limit the cascading impact of 
problems, which has validated the use of handwritten records in 
decision support for the maintenance  of the  network in New 
York City.  

Furthermore, many distribution network components, such as 
cables, overhead lines and capacitors, are invisible to utilities 
so far as it is expensive to install individual sensors for them; 
however, these make up the majority of network assets. 
According to the 2015 British blackout annual report [4], many 
outages can be attributed to low observability components. 
Consequently, monitoring systems such as those proposed in 
[1][2] were built on a single point at the substation level, which 
provides a means to efficiently observe the health state of all 
the network components downstream.  

This paper demonstrates a new fault analysis system 
architecture developed through combining high-resolution 
waveform analysis at substation level with automated context 
extraction from historical maintenance reports to provide 
situational awareness of downstream network operation. This 
can be built around placement of intensively sampled Current 
Transformers (CT) which have seen a number of practical 
deployments at distribution level [5]. Accordingly, this paper 
contributes 1) a new fault analysis system based on high-
resolution monitoring for improving situational awareness 2) It 
is a fully automatic fault diagnosis approach using both 
waveform and free-text data. This demonstration utilizes 
operational data along with simulation of faults on the IEEE 13 
bus test network to validate the functionality of the approach.  
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II. INTELLIGENT FAULT PROCESSING WITH POWER 

QUALITY WAVEFORM DATA 

Power Quality monitoring involves capturing voltage and 

current measurements at waveform level resolution, then 

looking for evidence of developing faults through the 

recognition of artefacts superimposed on the AC waveform. 

Fig 1 shows an example of how a fault may manifest in 

waveform data. This fault is caused by weather – heavy snow 

on the lines. During the fault, distortion of one-cycle of voltage 

on phase A and neutral overcurrent can be observed. This can 

be because the snow causes a short-circuit which conducts 

from the overhead line to ground.  

 
 

Fig 1 PQ waveform representation 

 

This section will describe a high-resolution monitoring based 

intelligent fault analysis approach to automatically extract 

contexts of the distribution network, then provide the context 

for utilities to increase situational awareness. Fig 2 

demonstrates the end-to-end process of the proposed system. 

Fundamentally, this system utilizes historical anomalous 

waveforms along with the maintenance reports that 

accompanied faults emanating from their occurrence to form a 

fault event exemplar repository that can support training of 

fault classifiers. When high-frequency continuous waveform 

signals are streamed into the system, abnormal events will be 

automatically segmented out, then can be put in the fault 

analysis system to interpret the anomalous waveform. While 

fault data may naturally partition itself according to cause, this 

is not immediately understandable by a non-expert. To assign 

a human readable description to faults, the semantics of the 

associated maintenance record are analysed to obtain 

representative keywords which can then serve as a label for the 

fault [3]. The specifics of this functionality will now be 

elaborated upon. We consider two use cases for the concept; 

retrospective analysis of archived operational fault data and 

simulated operational extremes. 

A. Signal Segmentation 

The approach only uses fault current signals to detect the 
abnormal events, because current is more sensitive to events. 
After detection, this event can be segmented and stored in a 
cache for later processing. Conventional high-resolution 
anomaly detection schemes, such as using the RMS value of 
three-phase current to determine abnormal events can result in 
high false positive rates [6][7]. This could be resolved  through 
tracking the shape of abnormal components decoupled from 
sinusoidal components [7] rather than the localized 
thresholding of statistics approach. Here, sequential hypothesis 
testing is utilized [8] to characterise then identify abnormal 
events; this is because the shape descriptors of abnormal 
components obey a Gaussian distribution which has been 
validated in [7]. Then it can track abnormal events through 
observing whether new observations can be assumed to be 
drawn from the distribution of the predicted shape based on the 
sequential estimate of the mean and variance of the prior 
waveform. 

B. Fault Event Exemplar Generation 

Through common time and location records, historical 
waveforms can be associated with maintenance reports which 
correspond to a remedial work order. Fault labelling could be 
automated by using maintenance reports to create labels for 
training and validating intelligent classifiers. These reports are 
not pro-forma based, which results in free-form and sometimes 
abbreviated text. Topic models are generally based around co-
occurring word count and their resulting statistics that 
facilitates generalising their content into clusters that can be 
considered as hypothetical topics. The labelling model utilizes 
a topic model to generate a word occurrence distribution over 
each document, then the semantic relevance between 
documents and topics can be used to categorize the 
maintenance reports; the most relevant word from a selection 
of terms (tree, equipment, vehicle, animal, lightning) is used for 
labelling faults. These terms could be changed according to the 
specific faults of interest. Latent Dirichlet Allocation (LDA) [9] 
and Cosine distance are utilized for demonstration of this here. 
LDA models the distribution of words within topics, which 

 
Fig 2 Proposed automation of fault processing through waveform analysis  

 



means it can produce a readable list of most likely terms for a 
given combination of topics associated with a fault maintenance 
record, removing the need for explicit labelling. 

C. Fault Recognition 

Fault recognition amounts to a supervised learning problem: the 
proposed method utilizes the segmented fault data with a label 
generated from maintenance reports to identify the cause of the 
faults. If a fault has already occurred, the root cause of the fault 
can be identified through combining the context with the 
waveform characteristic of a new event. The features selected 
are referenced to the ones in [10][11] which uses weather 
observations from public stations and pertinent waveform 
characteristics. For demonstration purposes, one of the simplest 
classifiers, K-Nearest Neighbors (KNN), is used here to 
identify fault causes from the waveform shapes; benchmarking 
against a number of state of the art classifiers revealed this to 
be the superior performer although a formal model selection is 
left to future work, with this model pursued for completeness 
of demonstration purposes.   

The root cause is essential information for utilities to take 
effective maintenance action. Fault cause determines the 
resulting maintenance response: if equipment is damaged by a 
3rd party, it may need to be replaced or repaired urgently; if the 
fault is caused by a lightning strike three different outcomes 
may result depending on whether the lightning protection 
scheme was defective, the lightning arrester was damaged, or a 
re-closer is activated, a resulting maintenance scheme needs to 
be undertaken for the former two situations; animal or tree 
contact faults may be known occurrences with low priority or 
longer term remedial action. Thus, the fault cause and its event 

context can provide more observability for utilities to make an 
optimal maintenance response which can minimize 
interruptions to supply. 

III. CASE STUDIES: FAULT DETECTION AND DIAGNOSIS 

To demonstrate the effectiveness of the proposed fault 

processing method, two approaches are taken: retrospective 

analysis of archived operational fault data and simulated 

operational extremes. For the latter, the IEEE 13-Bus Test 

Network is a typical unbalanced US distribution network 

which comprises both overhead lines and underground cables, 

which is simulated using the Simulink network shown in Fig.3. 

The injected faults provide the ground truth for abnormal 

events which can evaluate whether a detector with high-

frequency data acquisition is capable of finding anomalies and 

how early it can detect the event. The fault category and 

parameters are modified based on the work of [12]. This 

simulation creates high-impedance arcing faults with variable 

duration and fault impedance which are hard to detect using 

conventional schemes [12].  
The US Department of Energy PQ Event Repository [13] 
provides an opportunity to test the classification capability on 
operational faults; the library includes the waveform, time, 
weather, fault cause and corresponding field crew fault records. 
The sampling frequency of waveforms is 1.92 kHz and 3.84 
kHz which produces a high-resolution representation as shown 
in Fig 1. It also provides the fault waveform start time and end 
time down to millisecond level. Table I shows the additional 
fault details that accompany each record. 

Table I shows the free text report associated with the fault 

indicating its context. Furthermore, Table I demonstrates the 

associated weather data used as an input for fault diagnosis as 

shown on Fig 2. To validate fault labelling and recognition, 
 

Fig 3 IEEE 13 bus distribution system for fault simulation 

 

Table I Maintenance records, fault cause labels and associated weather 
EventId Cause Weather Details (free text) 

0001 Tree Clear Weather 
Fault caused line recloser lockout. Tree Outside 

Right of Way (Fall/Lean On Primary) 

0004 Tree Clear Weather 
Fault caused line recloser lockout. Tree Outside 

Right of Way (Fall/Lean On Primary) 

0005 Tree Clear Weather 
Fault caused line recloser lockout. Tree Outside 

Right of Way (Fall/Lean On Primary) 

0007 Tree Clear Weather 
Fault caused line recloser lockout. Tree Outside 

Right of Way (Fall/Lean On Primary) 

3042 Equipment Unknown Equipment, Device UG, Damaged. 

0021 Equipment Clear Weather 
Overhead Insulator Failure. BROKEN 

INSULATOR 

0022 Equipment Clear Weather 
Overhead Insulator Failure. BROKEN 

INSULATOR 

0062 Undetermined Raining Storm 

0064 Undetermined Raining Storm 

0067 Tree Thunderstorm Tree/Limb Growth 

0065 Tree Thunderstorm Tree/Limb Growth 

0068 Tree Clear Weather VINES ON TRANSFORMER 

2760 Unknown Unknown 
Short duration variation. No outage information 

found. 

3048  
Equipment Unknown Equipment, Capacitor Station, Damaged. 
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appropriate exemplars should be selected. Firstly, the 

repository has 12 fault cause labels for the fault as Fig 4 shows. 

However, some of the fault causes are unknown which are 

labelled as ‘Unknown’, ‘Undetermined’, ‘Other’ or without 

any labels which should be removed. These amount to nearly 

a third of the archive, which implies present recording systems 

will still fail to identify the fault cause for some events. 

Therefore, a fault cause classifier with low false positive rate 

is required. Furthermore, the prevalence of fault cause, as 

shown in Fig 4, is unbalanced which can be challenging for 

automated classification – it will be difficult to learn general 

representations of seldom seen events. Five fault categories 

have sufficient prevalence to be considered: Equipment 

Caused Faults (ECF), Lightning Striking Faults (LSF), Vehicle 

Hitting Faults (VHF), Animal Contact Faults (ACF) and Tree 

Contact Faults (TCF). Then these five categories will be used 

to test the classification with automatic labelling. 

IV. RESULTS 

This section uses simulated and operational data from a US 
distribution network to validate the signal segmentation and 
labelling function, then test classification with automated 
labelling which is benchmarked against the classification with 
expert labelled data. To achieve this, the signal segmentation 
function is first validated on the simulated data; after that, the 
operational data will be used to test the whole system end to end 
including signal segmentation, fault recognition and fault 
labelling. The associated fault reports will be utilized to 
generate labels for faults. Then the faults associated with the 
generated labels will be presented to the classification model, 
meanwhile, the faults manually labelled by experts will be 
individually used to train another classification. Ultimately, the 
actual labels will be used to test both models to see how they 
agree with expert classification. The performance of both 
models will be measured using the classification accuracy: 

Accuracy=
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 +∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

In the operational environment, the fault signals would be 
collected from a substation CT and combined with related 
maintenance reports stored in a digital format.   

4878 simulated anomalies are used to test the effectiveness of 
signal segmentation using the sequential hypothesis testing 
model. About 94% of anomalies were identified and segmented 

correctly under simulated operational conditions which 
included nonlinear load and realistic noise levels.  

166 labelled faults are used to go through the system from end 
to end to test the capacity of the whole system. Firstly, the faults 
need to be filtered out by signal segmentation. Then 25% of the 
remaining data is held out as streamed new fault to test the 
capability of the automatic classification, and the others are 
used to train it.  After that, the topic model described in Section 
IIB is utilized to generate a repository of historical exemplars. 
Topic models usually capture the proportions of topics present 
in a document rather than just assigning a single label. As Fig 2 
shows, the historical maintenance reports are linked with 
pertinent fault waveform records using timestamp. And the 
relevance between every maintenance report in training set with 
the defined labels, such as ‘tree’ (this represents tree contact 
faults), can be calculated using a pre-trained topic model. The 
most strongly relevant will be selected as the label of the fault. 
Ultimately, the training set with generated labels will be put into 
the fault cause classifier, which is KNN in this paper, to 
calculate the performance and benchmark it against the ground 
truth. 

After the signal segmentation, none of the signals are missed by 
the proposed detector. Therefore, all faults can be used to split 
into the training set and test set. The first 14 examples of 
relevance calculation are demonstrated in Table II: 1 represents 
perfectly relevant and 0 means completely irrelevant. Most 
events are strongly relevant to one topic. However, event 3024, 

Table II The relevance between maintenance reports and labels for first 14 
cases (Relevance), T – Tree, A – Animal, L – Lightning, V – Vehicle, E – 

Equipment 

Event 

id Details (free text) T A L V E 

0001 

Fault caused line recloser lockout. 

Tree Outside Right of Way 

(Fall/Lean On Primary) 

0.97 0.15 0.20 0.09 0.08 

0004 

Fault caused line recloser lockout. 

Tree Outside Right of Way 

(Fall/Lean On Primary) 

0.97 0.15 0.20 0.09 0.08 

0005 

Fault caused line recloser lockout. 

Tree Outside Right of Way 

(Fall/Lean On Primary) 

0.97 0.15 0.20 0.09 0.08 

0007 

Fault caused line recloser lockout. 

Tree Outside Right of Way 

(Fall/Lean On Primary) 

0.97 0.15 0.20 0.09 0.08 

3042 
Equipment, Device UG, 

Damaged. 
0.22 0.15 0.22 0.93 0.94 

0021 
Overhead Insulator Failure. 

BROKEN INSULATOR 
0.21 0.14 0.21 0.93 0.94 

0022 
Overhead Insulator Failure. 

BROKEN INSULATOR 
0.21 0.14 0.21 0.93 0.94 

0062 Storm 0.37 0.94 1 0.56 0.27 

0064 Storm 0.37 0.94 1 0.56 0.27 

0067 Tree/Limb Growth 0.98 0.17 0.25 0.15 0.12 

0065 Tree/Limb Growth 0.98 0.17 0.25 0.15 0.12 

0068 VINES ON TRANSFORMER 0.81 0.27 0.37 0.24 0.38 

2760 
Short duration variation. No 

outage information found. 
0.20 0.89 0.97 0.44 0.08 

3048 
Equipment, Capacitor Station, 

Damaged. 
0.28 0.18 0.28 0.90 0.98 

 

 
Fig 4 DoE repository fault prevalence 
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0021, 0022 and 3048 are attributed to both VHF and ECF, and 
more strongly associated to ECF. This is because many VHF 
events in the operational dataset usually damages the poles and 
overhead line. The most relevant label for faults is used to train 
the cause classifiers. Through this way, historical anomaly 

waveform can be labelled by different fault causes, then these 
automated labelled data can be used to test the fault causes 
classification. The confusion matrix of the classification using 
ground truth and generated labels on the DoE data for training 
are shown in Table III and Table IV respectively. Although 
trained on faults labelled by different means (automated and 
manual), both classifiers are tested against the actual labels 
provided by an expert. The overall classification accuracy 
against ground truth labels is around 83%. The overall 
classification accuracy of generated labels is 78% - this is only 
a 5% reduction in classification accuracy to achieve fully 
automated fault labelling using KNN with US Department of 
Energy data. 

V. CONCLUSION AND FUTURE DIRECTION 

Distribution networks can be challenging to monitor effectively 
given their heterogeneity and historic lack of observation. The 
contribution of this paper has been to demonstrate an automatic 
waveform-based fault analytic approach built on single point 
high-frequency monitoring to increase situational awareness of 
distribution network disturbances. This takes advantage of 
more comprehensive signal extraction in the form of shape 
information to recognize complex faults as well as an 
automated labelling function based on the semantics of 
historical maintenance reports. The use of automatically 
generated labels only reduces classification accuracy by 
approximately 5% in comparison to manually labelled data on 
an operationally obtained data set. If deployed in practice, this 
could promote the use of intelligent classifiers without the 
burden of having to provide them with labelled fault exemplars. 
Further development will entail optimisation of segmentation 
and classification functionality, through selection of additional 

features, as well as labelling improvement through the inclusion 
of additional fault semantic data such as maintenance manuals. 
Operationally it is envisaged that the proposed system would be 
integrated into conventional monitoring systems informing 
location, protection order and power flow, to provide additional 
context for comprehensive post-fault analysis. 
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Table III Confusion matrix of fault diagnosis with expert generated labels 

(83% overall accuracy), T – Tree, A – Animal,  
L – Lightning, V – Vehicle, E – Equipment 

Actual 

Fault  
T E A V L 

T 8 1 1 1 0 

E 2 10 1 0 1 

A 0 0 11 0 0 

V 0 0 0 0 0 

L 0 0 0 0 5 

 

Table IV Confusion matrix of fault diagnosis with automatically generated 

labels (78% overall accuracy), T – Tree, A – Animal,  
L – Lightning, V – Vehicle, E – Equipment 

Actual 

Fault  
T E A V L 

T 9 0 1 1 0 

E 6 7 1 0 0 

A 0 0 11 0 0 

V 0 0 0 0 0 

L 0 0 0 0 5 

 

 



 


