3d single-ion magnets

Craig, Gavin A. and Murrie, Mark (2015) 3d single-ion magnets. Chemical Society Reviews, 44 (8). pp. 2135-2147. ISSN 0306-0012 (https://doi.org/10.1039/C4CS00439F)

[thumbnail of Craig-Murrie-CSR-2015-3d-single-ion-magnets]
Preview
Text. Filename: Craig_Murrie_CSR_2015_3d_single_ion_magnets.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (3MB)| Preview

Abstract

One of the determining factors in whether single-molecule magnets (SMMs) may be used as the smallest component of data storage, is the size of the barrier to reversal of the magnetisation, Ueff. This physical quantity depends on the magnitude of the magnetic anisotropy of a complex and the size of its spin ground state. In recent years, there has been a growing focus on maximising the anisotropy generated for a single 3d transition metal (TM) ion, by an appropriate ligand field, as a means of achieving higher barriers. Because the magnetic properties of these compounds arise from a single ion in a ligand field, they are often referred to as single-ion magnets (SIMs). Here, the synthetic chemist has a significant role to play, both in the design of ligands to enforce propitious splitting of the 3d orbitals and in the judicious choice of TM ion. Since the publication of the first 3d-based SIM, which was based on Fe(ii), many other contributions have been made to this field, using different first row TM ions, and exploring varied coordination environments for the paramagnetic ions.