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Abstract 

A zero-interfacial-force condition is derived and implemented to improve the wetting boundary scheme 

for a lattice Boltzmann color-gradient model. This new wetting boundary scheme is validated by two 

static problems, i.e. a droplet resting on a flat surface and a cylindrical surface, and one dynamic 

problem, i.e. the capillary filling in a 2 dimensional (2D) channel. In these simulations, we observe that 

non-physical mass transfer is suppressed and spurious velocities become smaller. Meanwhile, accurate 

results including dynamic contact line movement are achieved on a broad range of contact angles. The 

model is then applied to study displacement of immiscible fluids in a 2D channel. Both the displacement 

velocity and the change rate of finger length are found to exhibit a linear dependence on the contact 

angle at the viscosity ratio of unity. The displacement velocity decreases but the change rate of finger 

length increases with increasing capillary number, while the displacement velocity tends to be constant, 

i.e. two-third of the maximum inlet velocity, at high viscosity ratios or low capillary numbers. In 

contrast to the displacement velocity, the change rate of finger length is negligible at high viscosity 

ratios or low capillary numbers, where the finger length is in an equilibrium state, while the equilibrium 

finger length itself is smaller at a higher viscosity ratio or a lower capillary number. 
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Introduction 

Multiphase flows are ubiquitous in nature and industrial processes. In recent decades, the lattice 

Boltzmann (LB) models have been developed to simulate the multiphase flows. These models mostly 

fall into one of the following categories1, 2: the color-gradient model3, 4, the pseudopotential model5-8, the 

free-energy model9-14 and the mean-field theory model15. The fluid-structure interaction16-21 and 

wettability treatment4, 6, 22-24 based on the LB community are the key research hotspots.  Numerical 

studies of these interfacial dynamics usually use diffuse interface models25-28 or sharp interface models29, 

30. It is known that the diffuse interface models26, 28 have advantages in describing near-critical 

interfacial phenomena, dynamic contact line, contact angle hysteresis, breakup or coalescence of 

droplets or bubbles. In a diffuse interface model, there are usually two ways to impose the appropriate 

wetting condition, i.e. the surface-energy formulation27, 31, 32 based on Young’s equation of constant 

surface tension and the so-called geometric formulation for a prescribed contact angle 𝜃𝑠
26.  

The surface-energy formulation scheme differs from the geometric formulation for a prescribed 

contact angle26, 33, where the non-physical mass transfer (NPMT) effect, which is defined as a fictive 

mass transfer beyond the theoretical phase interface, is very obvious especially when the contact angle is 

less than 90 degrees6, 24. Physically, the precursor film is an effect beyond the hydrodynamic scale, so no 

spreading beyond the nominal contact line region should be observed in the surface-energy formulation. 

The root cause of evident NPMT effect in surface-energy formulation scheme is the conflict between 

two assumptions. In the surface-energy formulation, fluid property 𝜑𝑠(𝒙), e.g. density, is imposed on the 

virtual fluid nodes, the surface tension between fluid and solid can then be expressed. Substituting the 

surface tension into the Young’s equation, we obtain a relationship between the fluid property 𝜑𝑠(𝒙) and 

contact angle 𝜃. Noting that the Young’s equation assumes a sharp interface and works only in contact 

line region. If we impose the virtual fluid property 𝜑𝑠(𝒙) on all the solid surface nodes in a diffuse 

interface model, these two assumptions, i.e. sharp interface and diffuse interface, conflict each other.  

The geometric formulation can avoid this conflict and eliminate the NPMT effect for the surface-

energy formulation even in the single-phase region. For example, in the first geometric formulation 

model, Ding et al.26 chose the tangential component |𝝉 ∙ 𝜵𝜌𝑁| as the reference, which is used to 

introduce the prescribed contact angle by only adjusting the normal component 𝒏 ∙ 𝜵𝜌𝑁 = −|𝝉 ∙
𝜵𝜌𝑁| cot 𝜃 at each time step. As a result, the NPMT effect no longer appears in single-phase region, but 

the reference |𝝉 ∙ 𝜵𝜌𝑁| is under the severe restriction of the isotropic order of DnQb lattice stencil 

especially in a contact line region. When the contact angle is very small or very large, the reference 

|𝝉 ∙ 𝜵𝜌𝑁| and isotropic truncation error have the same order of magnitude, which leads to failure of 

accuracy. Improving the isotropic order or adopting eccentric isotropic difference can mitigate this 

problem. To impose this geometric formulation for curved boundaries, Leclaire et al.24 used the modulus 

|𝜵𝜌𝑁| as the reference instead of the tangential component |𝝉 ∙ 𝜵𝜌𝑁|, the reference |𝜵𝜌𝑁| is now always 

large enough for the isotropic truncation error even in small or large contact angle cases.  
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However, there are still some issues to be resolved. Firstly, an effective way for a dynamic 

problem to estimate the unit normal vector 𝒏𝑓 of 𝜵𝜌𝑁 on the outermost fluid nodes is needed. The linear 

least squares method is adopted in Leclaire’s method24, which works well for static contact angle 

problems, but it fails for dynamic problems because the vector 𝒏𝑓 changes dramatically in the contact 

line region, the linear or bilinear interpolation cannot be used to fit the spatial function of vector 𝒏𝑓. 

Secondly, the NPMT effect in the contact line region is needed to be minimized, which profoundly 

affects the stability and accuracy.  

Here, a new wetting boundary scheme is proposed based on the LB color-gradient model of Liu 

et al.4, which can effectively control the NPMT effect in both the single-phase and contact line regions, 

and manifest accurate contact line movement. A zero-interfacial-force condition is derived based on the 

diffuse interface assumption in contact line region, which is essential for calculation of the interface 

curvature. This wetting boundary scheme is first validated by two static problems, i.e.  a droplet resting 

on a flat surface and a cylindrical surface, and one dynamical problem, i.e. the capillary filling in a 2D 

channel. The displacement of immiscible fluids in a 2D channel is then studied, and the effects of the 

surface wettability, capillary number and the viscosity ratio on the displacement process are 

systematically examined. 

Numerical method 

Lattice Boltzmann multiple-relaxation-time color-gradient model 

A color-gradient LB model34, 35, which was developed from the works of Lishchuk et al.36 and Halliday 

et al.37, 38, is adopted in this study. The color-gradient model consists of three steps, i.e. the collision 

step, the recoloring step and the streaming step. Two distribution functions 𝑓𝛼,𝑅 and 𝑓𝛼,𝐵 are introduced 

to represent two immiscible fluids, i.e. red fluid and blue fluid, and the subscript 𝛼 denotes the 𝛼th 

direction of the lattice velocity. The total distribution function is defined by 𝑓𝛼 = 𝑓𝛼,𝑅 + 𝑓𝛼,𝐵, which 

undergoes a collision step as 

 𝑓𝛼
′(𝒙, 𝑡) = 𝑓𝛼(𝒙, 𝑡) + Ω𝛼(𝒙, 𝑡) + 𝐹̅𝛼(𝒙, 𝑡)   (1) 

where 𝒙 and 𝑡 are the position and time respectively, 𝑓𝛼
′ is the post-collision distribution function, Ω𝛼 is 

the collision operator, and 𝐹̅𝛼 is the forcing term. In the multiple-relaxation-time (MRT) framework, the 

collision operator is given by 

 Ω𝛼(𝒙, 𝑡) = −(𝑴
−1𝑺𝑴)𝛼𝛽 [𝑓𝛽(𝒙, 𝑡) − 𝑓𝛽

𝑒𝑞(𝒙, 𝑡)]  (2) 

where 𝑓𝛽
𝑒𝑞

is the equilibrium distribution functions of 𝑓𝛽, 𝑴 is a transformation matrix and 𝑺 is a 

diagonal relaxation matrix. The equilibrium distribution function is defined in a polynomial form with 

respect to the local velocity 𝒖, which is obtained from the Maxwell-Boltzmann distribution: 

 𝑓𝛼
𝑒𝑞(𝜌, 𝒖) = 𝜌𝑤𝛼 [1 +

𝒆𝛼∙𝒖

𝑐𝑠
2 +

(𝒆𝛼∙𝒖)
2

2𝑐𝑠
4 −

𝒖2

2𝑐𝑠
2]  (3) 
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where 𝜌 = 𝜌𝑅 + 𝜌𝐵 is the total density with 𝜌𝑅 and 𝜌𝐵 being the densities of red and blue fluids, 

respectively; 𝑐𝑠 is the speed of sound; 𝒆𝛼 is the lattice velocity in the 𝛼th direction, and 𝑤𝛼 is the weight 

coefficient. For a two-dimensional nine-velocity (D2Q9) model used in this work, the speed of sound is 

defined as 𝑐𝑠 =
c

√3
 with 𝑐 =

𝛿𝑡

𝛿𝑥
, where 𝛿𝑥 is the lattice spacing and 𝛿𝑡 is the time step (𝛿𝑥 = 𝛿𝑡 is used 

hereafter); 𝒆𝛼 is defined as 𝒆0 = (0,0), 𝒆1,3 = (±1,0), 𝒆2,4 = (0,±1), 𝒆5,6 = (±1,1), 𝒆7,8 = (∓1,−1), 

and the weight factor is given by 𝑤0 =
4

9
, 𝑤1,2,3,4 =

1

9
, 𝑤5,6,7,8 =

1

36
. 

The transform matrix 𝑴 in Eq.(2) is explicitly given by39 

 𝑴 =

[
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 1 1 −1]

 
 
 
 
 
 
 
 

  (4) 

and the corresponding relaxation matrix is 

 𝑺 = 𝑑𝑖𝑎𝑔 (
1

𝜏𝜌
,
1

𝜏𝑒
,
1

𝜏𝜀
,
1

𝜏𝑗
,
1

𝜏𝑞
,
1

𝜏𝑗
,
1

𝜏𝑞
,
1

𝜏𝜐
,
1

𝜏𝜐
)  (5) 

where 𝜏𝜌 and 𝜏𝑗 are related to the conserved moments (i.e. mass and momentum), and can take any 

values. 𝜏𝜐 is related to the kinematic viscosity 𝜐 by 

 𝜏𝜐(𝒙, 𝑡) =
𝜐(𝒙,𝑡)

𝑐𝑠
2𝛿𝑡

+ 0.5  (6) 

The other relaxation times are related to the non-conserved moments and their values can be freely 

adjusted to enhance the stability of MRT model. In this paper, we choose, unless otherwise stated, the 

relaxation matrix as 

 𝑺 = 𝑑𝑖𝑎𝑔 (1.0,1.64,1.54,1.0,1.9,1.0,1.9,
1

𝜏𝜐
,
1

𝜏𝜐
) (7) 

The forcing term 𝐹̅𝑖 in Eq. (1) contributes to the mixed interfacial region and creates an interfacial 

tension. In the MRT framework, the forcing term is given by 

 𝑭̅ = 𝑴−1(𝑰 − 0.5𝑺)𝑴𝑭̃ (8) 

where 𝑰 is a 9 × 9 unit matrix,  𝑭̅ = [𝐹̅0, 𝐹̅1, 𝐹̅2, ⋯ , 𝐹̅8]
𝑇, and 𝑭̃ = [𝐹̃0, 𝐹̃1, 𝐹̃2, ⋯ , 𝐹̃8]

𝑇. According to Guo 

et al.40,  𝑭̃𝛼 reads as 
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 𝐹̃𝛼 = 𝑤𝛼 [
𝒆𝛼−𝒖

𝑐𝑠
2 +

(𝒆𝛼∙𝒖)𝒆𝛼

𝑐𝑠
4 ] ∙ 𝑭𝛿𝑡  (9) 

where the interfacial force 𝑭 is introduced based on the continuum surface force (CSF) method41, and is 

expressed as 

 𝑭 =
1

2
𝜎𝜅𝜵𝜌𝑁  (10) 

In Eq. (10), 𝜎 is an interfacial tension coefficient, 𝜌𝑁(𝒙, 𝑡) is an indicator function, which is defined by 

the local densities of the red and blue fluids as 

 𝜌𝑁(𝒙, 𝑡) =
𝜌𝑅(𝒙,𝑡)−𝜌𝐵(𝒙,𝑡)

𝜌𝑅(𝒙,𝑡)+𝜌𝐵(𝒙,𝑡)
  (11) 

and 𝜅 is the local interface curvature, which is calculated by 

 𝜅 = −𝛁𝑠 ∙ 𝒏  (12) 

where 𝛁𝑠 = (𝑰 − 𝒏𝒏) ∙ 𝛁 is the surface gradient operator, 𝒏 =
𝛁𝜌𝑁

|𝛁𝜌𝑁|
 is the interfacial unit normal vector 

pointing into the red fluid, and the local interface curvature in 2D can be written as 

 𝜅 = −𝑛𝑥
2𝜕𝑦𝑛𝑦 − 𝑛𝑦

2𝜕𝑥𝑛𝑥 + 𝑛𝑥𝑛𝑦(𝜕𝑦𝑛𝑥 + 𝜕𝑥𝑛𝑦) (13) 

where 𝑛𝑥 and 𝑛𝑦 are the x- and y-component of the vector 𝒏. 

It can be shown using the Chapman-Enskog multi-scale analysis that, Eq. (1) along with Eqs. (2), 

(3), (8) and (9), can lead to the Navier-Stokes equations under the low Mach number limitation, and the 

pressure 𝑝 and the fluid velocity are defined by 

 𝑝(𝒙, 𝑡) = 𝜌(𝒙, 𝑡)𝑐𝑠
2, 𝜌𝒖(𝑥, 𝑡) = ∑ 𝑓𝛼(𝒙, 𝑡)𝒆𝛼𝛼 +

1

2
𝑭(𝒙, 𝑡)𝛿𝑡  (14) 

To promote phase segregation and maintain a reasonable interface, the recoloring algorithm 

proposed by Latva-Kokko and Rothman23 is then applied. It is beneficial to further reduce spurious 

velocities at the interface and overcome the lattice pinning problem. Following this algorithm, the 

recolored distribution functions of red and blue fluids, i.e. 𝑓𝛼,𝑅
′′  and 𝑓𝛼,𝐵

′′ , are given as 

 

𝑓𝛼,𝑅
′′ (𝒙, 𝑡) =

𝜌𝑅

𝜌
𝑓𝛼
′(𝒙, 𝑡) + 𝛽

𝜌𝑅𝜌𝐵

𝜌
𝑤𝑖

𝒆𝛼∙𝜵𝜌
𝑁

|𝜵𝜌𝑁|

𝑓𝛼,𝐵
′′ (𝒙, 𝑡) =

𝜌𝐵

𝜌
𝑓𝛼
′(𝒙, 𝑡) − 𝛽

𝜌𝑅𝜌𝐵

𝜌
𝑤𝛼

𝒆𝛼∙𝜵𝜌
𝑁

|𝜵𝜌𝑁|

  (15) 
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where 𝛽 is a segregation parameter related to the interface thickness and is set to be 0.7 for numerical 

stability and model accuracy35. 

After the recoloring step, the streaming step for both the red and blue distribution functions is performed, 

i.e. 

 𝑓𝛼,𝑘(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝛼,𝑘
′′ (𝒙, 𝑡), 𝑘 = 𝑅 𝑜𝑟 𝐵 (16) 

With the post-streaming distribution functions, the density of each fluid is calculated by 

 𝜌𝑘 = ∑ 𝑓𝛼,𝑘𝛼 , 𝑘 = 𝑅 𝑜𝑟 𝐵  (17) 

In this work, both immiscible fluids are assumed to have equal densities for the sake of simplicity. To 

account for unequal viscosities of both fluids, a harmonic mean42 is adopted in the interfacial region to 

determine the viscosity 𝜇 of the fluid mixture, i.e. 

 
1

𝜇(𝜌𝑁)
=

1+𝜌𝑁

2𝜇𝑅
+
1−𝜌𝑁

2𝜇𝐵
  (18) 

where 𝜇𝑅 and 𝜇𝐵 are the dynamic viscosities of the red and blue fluids, respectively. 

Interfacial force condition in contact line region 

A zero-interfacial-force condition in contact line region is first demonstrated based on the diffuse 

interface model. We then describe how such a condition is appropriately implemented in the present 

color-gradient LBM, where the interface is typical of diffuse nature. Without loss of generality, we 

consider two immiscible fluids adhering to a horizontal surface, which is illustrated in Figure 1. For the 

point 𝑃 in the contact line region, the unit normal vector of the solid surface is 𝒏𝑠, and the color gradient 

function is 𝛁𝜌𝑁, which points into the red fluid. To achieve the desired contact angle 𝜃, it is required 

that the angle between the vectors 𝒏𝑠 and 𝛁𝜌𝑁is equal to 𝜃 (which is known as the contact angle 

condition). As shown in the right panel of Figure 1, there are two states of the interface to meet this 

requirement, which correspond to two different directions of 𝛁𝜌𝑁. To distinguish the directions of 𝛁𝜌𝑁, 

we define the intersection angles as follows: 𝜃 = 𝜃+ if the vector 𝛁𝜌𝑁 is in the clockwise direction of 𝒏𝑠; 
otherwise, 𝜃 = 𝜃−. Therefore, one can obtain the relationship between 𝜕𝑥𝜌

𝑁 and 𝜕𝑦𝜌
𝑁in the contact line 

region, which reads 

 𝜕𝑦𝜌
𝑁 = 𝑓( 𝜃)𝜕𝑥𝜌

𝑁  (19) 

where 

 𝑓(𝜃) = {
cot  𝜃 ,  𝜃 =  𝜃+
−cot  𝜃 ,  𝜃 =  𝜃−

 (20) 



7 

 

Note that in Eq. (19) the sign of 𝜕𝑥𝜌
𝑁 is determined by the direction of the intersection angle 𝜃 (i.e. 

clockwise or counter-clockwise ): 

 {
𝜕𝑥𝜌

𝑁 < 0,  𝜃 =  𝜃+
𝜕𝑥𝜌

𝑁 > 0,  𝜃 =  𝜃−
 (21) 

In a 2D case, the interfacial unit normal vector can be written as 

 𝒏 =
𝛁𝜌𝑁

|𝛁𝜌𝑁|
= 𝑃(𝑥, 𝑦)𝜕𝑥𝜌

𝑁𝒊 + 𝑃(𝑥, 𝑦)𝜕𝑦𝜌
𝑁𝒋 = 𝑛𝑥𝒊 + 𝑛𝑦𝒋 (22) 

where 𝑃(𝑥, 𝑦) =
1

√(𝜕𝑥𝜌𝑁)2+(𝜕𝑦𝜌𝑁)
2
, and 𝒊 and 𝒋 are the unit vectors in the x- and y-direction, respectively. 

Considering the first state  𝜃 =  𝜃+ in the contact line region, we have 

 𝑃(𝑥, 𝑦) = −
1

𝜕𝑥𝜌𝑁
1

√1+(cot  𝜃)2
= −

sin  𝜃

𝜕𝑥𝜌𝑁
 (23) 

where Eq. (19) is used. Furthermore, the derivatives of 𝑃(𝑥, 𝑦) can be calculated, i.e. 

 
𝜕𝑥𝑃 =

sin  𝜃

(𝜕𝑥𝜌𝑁)2
𝜕𝑥
2𝜌𝑁

𝜕𝑦𝑃 =
sin  𝜃

(𝜌𝑁)2
𝜕𝑦𝜕𝑥𝜌

𝑁
 (24) 

Combination of Eqs. (24) and (22) leads to  

 

𝜕𝑥𝑛𝑥 = −
sin  𝜃

𝜕𝑥𝜌𝑁
∙ 𝜕𝑥

2𝜌𝑁 +
sin  𝜃

(𝜕𝑥𝜌𝑁)2
𝜕𝑥

2𝜌𝑁 ∙ 𝜕𝑥𝜌
𝑁 = 0

𝜕𝑦𝑛𝑥 = −
sin  𝜃

𝜕𝑥𝜌𝑁
∙ 𝜕𝑦𝜕𝑥𝜌

𝑁 +
sin  𝜃

(𝜕𝑥𝜌𝑁)2
𝜕𝑦𝜕𝑥𝜌

𝑁 ∙ 𝜕𝑥𝜌
𝑁 = 0

𝜕𝑥𝑛𝑦 = −
sin  𝜃

𝜕𝑥𝜌𝑁
∙ 𝜕𝑥(𝜕𝑥𝜌

𝑁 cot  𝜃) +
sin  𝜃

(𝜕𝑥𝜌𝑁)2
𝜕𝑥

2𝜌𝑁 ∙ (𝜕𝑥𝜌
𝑁 cot  𝜃) = 0

𝜕𝑦𝑛𝑦 = −
sin  𝜃

𝜕𝑥𝜌𝑁
∙ 𝜕𝑥

2(𝜌𝑁(cot  𝜃)2) +
sin  𝜃

(𝜕𝑥𝜌𝑁)2
𝜕𝑥(𝜕𝑥𝜌

𝑁 cot  𝜃) ∙ (𝜕𝑥𝜌
𝑁 cot  𝜃) = 0

 (25) 

Similarly, considering the other state  𝜃 =  𝜃− in a similar manner, we also obtain 

 𝜕𝑥𝑛𝑥 = 𝜕𝑦𝑛𝑥 = 𝜕𝑥𝑛𝑦 = 𝜕𝑦𝑛𝑦 = 0 (26) 

Substituting Eqs. (25) and (26) into Eq. (10), we can obtain 

 𝑭(𝒙) = 𝟎 (27) 
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for 𝒙 in the contact line region. This is known as zero-interfacial-force condition which is inherent to 

diffuse interface models and should be properly enforced in our wetting boundary treatment.  

[insert Figure 1.] 

Figure 1.  Illustration of the relationship between the normal of solid surface and the color gradient in 

contact line region. 

Generalized wetting boundary treatment 

Here, we present a generalized wetting boundary treatment, which is applicable to arbitrarily complex 

solid surfaces. In the present model, the gradients 𝛁𝜌𝑁 and 𝛁𝑛𝑖 need to be evaluated, where the 

subscript 𝑖 = 𝑥 𝑜𝑟 𝑦 in a 2D case. To facilitate the description of wetting boundary treatment, the lattice 

nodes are divided into several different categories, i.e. 

Ω𝐹: a list of the fluid nodes; 

Ω𝑆: a list of the solid nodes; 

Ω𝐹𝐵: a list of the fluid nodes that are in contact with at least one solid node; 

Ω𝐹𝐼: a list of the fluid nodes that are not in contact with any solid nodes; 

Ω𝑆𝐵: a list of the solid nodes that are in contact with at least one fluid node; 

Ω𝑆𝐼: a list of the solid nodes that are not in contact with any fluid nodes. 

 For the lattice nodes in Ω𝐹𝐼, we use a fourth-order isotropic finite difference to evaluate the 

gradient of a variable 𝜑, which is given by 

 𝜕𝑖𝜑(𝒙) =
1

𝑐𝑠
2𝛿𝑡
∑ 𝑤𝛼𝜑(𝒙 + 𝒆𝛼𝛿𝑡)𝒆𝛼𝑖𝛼   (28) 

where 𝜑(𝒙) refers to 𝜌𝑁, 𝑛𝑥, and 𝑛𝑦. However, for the lattice nodes  𝒙 in Ω𝐹𝐵, Eq. (28) cannot be 

directly applied to the gradient calculations since the values of  𝜌𝑁, 𝑛𝑥 and 𝑛𝑦 are unknown on the 

neighboring solid nodes (i.e. 𝒙 + 𝒆𝛼𝛿𝑡 ∈ Ω𝑆𝐵). To extend the use of Eq. (28) to the lattice nodes in Ω𝐹𝐵, 

one needs to first evaluate 𝜌𝑁, 𝑛𝑥 and 𝑛𝑦 on the lattice nodes in Ω𝑆𝐵  so that both the contact angle 

condition and the zero-interfacial-force condition 𝛁𝑛𝑖 = 0, are appropriately imposed in the contact line 

region. 

Contact angle condition 
We follow Xu et al.42 to impose the contact angle condition, in which the key is to construct the color 

gradient ∇𝜌𝑁 at the contact lines so that it matches the desired contact angle 𝜃. As mentioned above, the 

value of 𝜌𝑁in Ω𝑆𝐵 is unknown but required in order to compute 𝛁𝜌𝑁 in Ω𝐹𝐵 using Eq. (28). Thus, we 

first evaluate the value of 𝜌𝑁 in Ω𝑆𝐵 through a weighted average of its nearest 𝜌𝑁 in Ω𝐹𝐵, which is given 

by 

 𝜌𝑁(𝒙) =
∑ 𝑤𝛼1𝛼1 𝜌𝑁(𝒙+𝒆𝛼1δ𝑡)

∑ 𝑤𝛼1𝛼1

,  𝒙 ∈ Ω𝑆𝐵 (29) 

where the subscript 𝛼1 is the 𝛼1th lattice velocity direction which satisfies 𝒙 + 𝑒𝛼1𝛿𝑡 ∈ Ω𝐹𝐵. With the 

values of 𝜌𝑁obtained from Eq. (29), we are able to compute  the color gradient in Ω𝐹𝐵, which, however, 

does not necessarily match the desired contact angle (actually, it will be shown shortly that Eq. (29) 

leads to 𝒏𝑠 ∙ ∇𝜌
𝑁 = 0, which gives a constant contact angle of 90°). Thus, such a color gradient is only 
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considered as a predicted one (denoted by 𝛁𝜌𝑁∗, and the corresponding direction is 𝒏∗ =
𝛁𝜌𝑁∗

|𝛁𝜌𝑁∗|
), which 

needs to be modified. The principle of the modification is to adjust the direction of the color gradient 

𝛁𝜌𝑁∗ in Ω𝐹𝐵 while keeping its modulus |𝛁𝜌𝑁∗|unchanged. Assuming at contact lines that the unit 

normal vector of the interface is properly determined and is given by 𝒏𝑓, the modified color gradient 𝜌𝑁 

is obtained by 

 𝛁𝜌𝑁 = |𝛁𝜌𝑁∗|𝒏𝑓 (30) 

When complex geometries such as porous media are considered, the properties of pixels or nodes 

are generally given instead of the shape and the curvature of solid surfaces. With the given properties of 

nodes (either solid or fluid), the unit normal vector 𝒏s of solid surface can be calculated by an eighth-

order isotropic finite difference, which is given by42 

 𝒏𝑠(𝒙) =
∑ 𝑤(|𝒄𝑘|

2)𝑠(𝒙+𝒄𝑘𝛿𝑡)𝒄𝑘𝑘

|∑ 𝑤(|𝒄𝑘|
2)𝑠(𝒙+𝒄𝑘𝛿𝑡)𝒄𝑘𝑘 |

,   𝒙 ∈ Ω𝐹𝐵 (31) 

where 𝒄𝑘 is the 𝑘th mesoscopic velocity of the eighth-order isotropic discretization as presented in the 

work of Sbragaglia et al.43, 𝑠(𝒙) is an indicator function which equals 0 for 𝒙 ∈ Ω𝐹 and 1 for 𝒙 ∈ Ω𝑆 , 

and 𝑤(|𝒄𝑘|
2) is the eighth-order weight coefficient given43 by 

 𝑤(|𝒄𝑘|
2) =

{
 
 
 

 
 
 

4

21
|𝒄𝑘|

2 = 1

4

45
|𝒄𝑘|

2 = 2

1

60
|𝒄𝑘|

2 = 4

2

315
|𝒄𝑘|

2 = 5

1

5040
|𝒄𝑘|

2 = 8

 (32) 

As stated before, there are two possible theoretical directions of 𝛁𝜌𝑁 (i.e. unit normal vectors of the 

interface) at the contact lines for a given contact angle 𝜃. These two directions, denoted as 𝒏𝑓1  and 𝒏𝑓2, 

are obtained by rotating 𝒏𝑠 with an angle 𝜃 in the clockwise and counterclockwise directions, 

respectively (see Figure 1). The resulting 𝒏𝑓1 and 𝒏𝑓2 are 

 
𝒏𝑓1 = (𝑛𝑠𝑥 cos 𝜃 − 𝑛𝑠𝑦 sin 𝜃 , 𝑛𝑠𝑦 cos 𝜃 + 𝑛𝑠𝑥 sin 𝜃)

𝒏𝑓2 = (𝑛𝑠𝑥 cos 𝜃 + 𝑛𝑠𝑦 sin 𝜃 , 𝑛𝑠𝑦 cos 𝜃 − 𝑛𝑠𝑥 sin 𝜃)
 (33) 

where 𝑛𝑠𝑥 and 𝑛𝑠𝑦 are the x- and y-component of 𝒏𝑠. As previously done by Leclaire et al.24, the 

Euclidean distances 𝐷1 and 𝐷2 are used to choose an appropriate theoretical direction, which are defined 

by 

 𝐷1 = |𝒏𝑓1 − 𝒏
∗|,   𝐷2 = |𝒏𝑓2 − 𝒏

∗| (34) 

and the unit normal vector of the interface 𝒏𝑓 is then selected by 
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 𝒏𝑓 = {
𝒏𝑓1 𝐷1 ≤ 𝐷2
𝒏𝑓2 𝐷1 > 𝐷2

 (35) 

Zero-interfacial-force condition 
As derived before, the zero-interface-force condition, i.e. 𝛁𝑛𝑖 = 0, should be satisfied in the contact line 

region. In the curvature evaluation, we propose to first introduce the virtual values of 𝑛𝑖 on the lattice 

nodes 𝒙 ∈ Ω𝑆𝐵 through Eq. (29), and then calculate 𝛁𝑛𝑖 in 𝒙 ∈ Ω𝐹𝐵 through Eq. (28). It is shown below 

that the zero-interfacial-force condition can be exactly achieved by such a simple implementation.  

The weighted-average virtual scheme given by Eq. (29) can be rewritten as 

 ∑ 𝑤𝛼1[𝜑(𝒙 + 𝒆𝛼1) − 𝜑(𝒙)]𝛼1 = 0 (36) 

where 𝜑 = 𝑛𝑖. Using the Taylor expansion and discarding the second- and higher-order residual terms, 

we have 

 ∑ 𝑤𝛼1𝑒𝛼1𝑖 ∂𝑖𝜑(𝒙)𝛼1 = 0 (37) 

Let 

 𝒂 = ∑ 𝑤𝛼1𝛼1 𝑒𝛼1𝑖 (38) 

 𝒃 = ∂𝑖𝜑(𝒙) (39) 

Obviously 𝒂 ≠ 𝟎, so Eq. (37) gives 

 𝒃 = 𝟎 𝑜𝑟 𝒃 ⊥ 𝒂 (40) 

where 𝒂 is simply regarded as the normal vector of the solid surface, so 𝒃 = ∂𝑖𝜑(𝒙) should be in the 

tangential direction of the solid surface when 𝒃 ≠ 𝟎. In either case, we have 

 𝒏𝑠 ∙ ∇𝜑(𝒙) = 0 (41) 

which leads to 𝜕𝑦𝜑(𝑥) = 0 for the horizontal surface shown as in Figure 1. From Eqs. (19) and (22), 

one can easily derive the relationship between two components of the gradient ∇𝑛𝑖, which is given by 

 𝜕𝑦𝑛𝑖 = 𝑓(𝛽)𝜕𝑥𝑛𝑖 (42) 

Combining 𝜕𝑦𝜑(𝑥) = 0 and Eq. (42), we get to 

 𝛁𝑛𝑖 = 0 (43) 

Numerical simulations 

To validate the present color-gradient model, four typical cases are to be considered, including two static 

problems, i.e. a static droplet on a flat surface and a cylindrical surface, as well as two dynamic 

problems, i.e. capillary filling and immiscible displacement in a channel. In our simulations of the static 

problems, the convergence criterion is selected as 
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 𝐸1 = 𝑚𝑎 𝑥(|𝑢𝑥
𝑡+500 − 𝑢𝑥

𝑡 |, |𝑢𝑦
𝑡+500 − 𝑢𝑦

𝑡 |) < 10−7 (44) 

and we calculate the maximum value of spurious velocities by 

 |𝒖|𝑚𝑎𝑥 = 𝑚𝑎𝑥(√𝑢𝑥2 + 𝑢𝑦2) (45) 

Meanwhile, the NPMT effect in static problems is quantified by24  

 𝐸𝑁𝑃𝑀𝑇 = √(
𝑚𝑅
𝑖𝑛𝑐

𝑚𝑅
𝑎𝑙𝑙)

2

+ (
𝑚𝐵
𝑜𝑢𝑡𝑐

𝑚𝐵
𝑎𝑙𝑙 )

2

 (46) 

where 𝑚𝑅 (𝑚𝐵) is the nominal mass of the red (blue) fluid, calculated by the summation of 𝜌𝑅 (𝜌𝐵) in a 

certain region; the superscripts 𝑖𝑛𝑐, 𝑜𝑢𝑡𝑐, 𝑎𝑙𝑙 denote the regions inside the circle C (note that C is a 

theoretical phase interface), outside the circle C, and in the entire computational domain respectively. 

A static droplet on a flat surface 

In this part, simulations are performed in a 160 × 100 lattice domain. Initially, a circle segment-shaped 

droplet with the radius 𝑅 = 45 is placed on the bottom wall. The center of the droplet is (𝑥𝑐, 𝑦𝑐) =

(
160

2
,
3

2
− 𝑅 cos 𝜃), which depends on the contact angle 𝜃 at the bottom wall. The interfacial tension 

parameter is 𝜎 = 0.02, and two different viscosity ratios (𝑀 =
𝜐𝑅

𝜐𝐵
)  are investigated with 𝜐𝑅 = 0.35. 

Although the periodic boundary conditions can offset the NPMT effect to some extent24, this offset does 

not exist in most practical applications. We therefore choose a closed computational domain with all the 

boundaries being no-slip walls. Table 1 shows the simulated angles at both M=1 and M=100, which are 

calculated by the droplet height h and the wet length l between the droplet and the bottom wall as44:  

tan(𝜃) = 𝑙 (𝑙2 4ℎ⁄ − ℎ)⁄ . All the simulated results agree well with the theoretical ones, but the 

simulated results at M=100 are closer to the theoretical values. In addition, it is observed in Table 2 that 

the spurious velocities are suppressed to a significantly low level. Specifically, the maximum spurious 

velocities are on the order of O(10−4) or smaller at M=1, and on the order of O(10−3) or smaller at 

M=100. Larger spurious velocities at M=100 can be explained as follows. The appearance of spurious 

velocities is to generate viscous forces that compensate the imbalanced pressure and interfacial tension 

force. According to the definition of viscous force, i.e. ∇ ∙ [𝜇(∇𝒖 + ∇𝒖T)], a smaller fluid viscosity 

always requires larger velocities to achieve the same viscous forces. A larger viscosity ratio corresponds 

to a smaller viscosity of the blue fluid, so the spurious velocities are larger at M=100 than at M=1. 

Table 1. Simulated contact angles at both M=1 and M=100 for a droplet on a flat surface.  

𝑀 30° 60° 90° 120° 150° 

1 30.96 60.20 90.05 120.18 151.77 

100 29.99 60.01 90.00 120.09 151.02 

Table 2. Maximum spurious velocities at both M=1 and M =100 for various contact angles. All the 

values of the velocity are magnified by 10−4 times.  

𝑀 30° 60° 90° 120° 150° 

1 1.79 0.51 0.18 0.59 1.47 
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100 33.4 11.9 1.86 6.29 10.3 

 

In the color-gradient model, several strategies have been developed to implement the wetting 

boundary condition, e.g. the commonly-used “virtual color method” which imposes the virtual color 

value 𝜌𝑁 = cos 𝜃 on the lattice nodes 𝒙 ∈ Ω𝑆𝐵 in order to obtain the desired contact angle 𝜃45, and the 

geometric formulation method, which first evaluates the tangential component of the color gradient at 

wall surfaces and then computes the normal component using the contact angle geometric formulation 

proposed by Ding and Spelt26. It should be noted that the original geometric formulation method suffers 

from the difficulty of dealing with curved solid boundaries. We run the simulations with the wetting 

boundary condition imposed by the present method, the virtual color method, and the original geometric 

formulation method. The viscosity ratio is fixed as 𝑀 = 1, and the contact angle is set as 

30°, 60°, 90°, 120°, 150°. Figure 2 shows the time evolution of 𝐸𝑁𝑃𝑀𝑇 obtained by different methods at 

various contact angles. It is clearly seen that, for each of contact angles considered, 𝐸𝑁𝑃𝑀𝑇 obtained by 

the present method is always the smallest, and it quickly reaches a constant value after an initial increase. 

This suggests that the present method can effectively suppress the NPMT, thereby leading to more 

convincing results. 

[insert Figure 2.] 

Figure 2. The evolution of 𝐸𝑁𝑃𝑀𝑇 obtained with the present method (solid lines), the original geometric 

formulation method (dashed lines) and the virtual color method (dash-dot lines) at different contact 

angles. 

A static droplet on a cylindrical surface 

To test the present model’s capability in handing curved boundary problems, we simulate a droplet 

resting on a cylindrical surface in a 200 × 200 lattice domain. The solid cylinder and the droplet are 

centered at (100, 60) and (100,2𝑅 sin 𝜃 + 60) respectively, and their radii are both set as R = 40. The 

viscosity ratio of both fluids is fixed at 1, and a broad range of contact angles, i.e. 

10°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 170° are considered. The simulations are run until the system 

reaches the steady state, and the results are displayed in Figure 3. For each of the contact angles 

considered, the simulated result overall agrees well with the theoretical prediction which is represented 

by the dash-dot circle. However, it is worth noting that, when the contact angle is not less than 150°, the 

simulated droplet is positioned slightly above the theoretical profile. It is caused by the insufficient grid 

resolution in the contact region between the solid surface and the red fluid, which is even smaller than 

the interface thickness. The maximum spurious velocities for all the contact angles are shown in Table 3, 

which are on the orders of 10−5 to 10−4. These results indicate that the proposed wetting boundary 

treatment is appropriate for complex solid surfaces, producing good numerical accuracy for various 

contact angles and low spurious velocities. 
[insert Figure 3.] 

 

Figure 3. A droplet resting on a cylindrical surface with different contact angles. Note that the red and 

blue fluids are shown in light gray and dark gray, respectively. 

Table 3. The maximum spurious velocities at various contact angles for a droplet resting on a 

cylindrical surface. 

𝜃 10° 30° 45° 60° 90° 120° 135° 150° 170° 
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|𝒖|𝑚𝑎𝑥 × 10
5 1.51 1.19 1.40 2.26 6.10 16.5 22.4 30.6 26.5 

 

It was suggested by Xu et al.42 to use the eighth-order isotropic discretization to estimate the unit 

normal vector 𝒏𝑠 of solid surface. For the present problem, the unit normal vector of the solid surface is 

calculated by the eighth-order isotropic discretization (see Eq. (31)) or directly designated as the 

theoretical unit normal vector of the cylindrical surface, which are referred to as “8th-order 

discretization” and “theoretical designation”, respectively. Here we conduct the simulations to study 

how the eighth-order isotropic discretization influences the numerical results. Five different contact 

angles, i.e. 30°, 60°, 90°, 120°, 150°, are considered, and all the other parameters are kept the same as 

those in Figure 3. Table 4 shows the maximum spurious velocities and 𝐸𝑁𝑃𝑀𝑇  obtained by the 8th-oder 

discretization and the theoretical designation. Compared with the 8th-oder discretization, the theoretical 

designation usually has smaller spurious velocities, especially when the contact angle is relatively small. 

On the other hand, both treatments produce almost the same values of 𝐸𝑁𝑃𝑀𝑇 , suggesting that the 

eighth-order isotropic discretization is accurate enough for the calculation of  𝒏𝑠. 

Table 4. The maximum spurious velocities and 𝐸𝑁𝑃𝑀𝑇 obtained by two different treatments for the unit 

normal vector of the solid surface, i.e. the 8th-order discretization and the theoretical designation. 

𝜃 

|𝒖|𝑚𝑎𝑥 × 10
4 𝐸𝑁𝑃𝑀𝑇 × 10

2 

8th-order discretizaiton Theoretical designation 8th-order discretizaiton Theoretical designation 

30° 3.56 0.12 3.55 4.44 

60° 1.36 0.23 2.72 2.70 

90° 0.65 0.61 2.36 2.23 

120° 2.21 1.65 2.32 2.32 

150° 4.89 3.07 2.93 2.76 

Capillary filling 

Capillary filling is a typical benchmark case for assessing whether a two-phase model is able to simulate 

moving contact line problems4. The velocity of a wetting fluid column filling a capillary tube of length 𝐿 

and width 𝑊, as shown in Figure 4, is determined by the capillary pressure and the viscous pressure 

drop. When the gravity and inertial effects can be neglected, this force balance can be expressed as4, 46 

 𝜎 cos 𝜃 =
6

𝑑
[𝜇𝑅𝑥 + 𝜇𝐵(𝐿 − 𝑥)]

𝑑𝑥

𝑑𝑡
 (47) 

where σ is fixed at 5 × 10−3, 𝜃 is the contact angle which is 10°, 30°, 45°, 60° for the wetting (red) fluid, 

and 𝑥 is the position of the moving interface with 𝑥 = 0 at the inlet of capillary tube. The system 

consists of a 400 × 35 lattice domain with periodic boundary conditions used in the x-direction. The 

capillary tube is positioned in the middle, i.e. 100 ≤ 𝑥 ≤ 300 (which gives the length of capillary tube 

𝐿 = 200), with a thickness of 7 lattice grids. Outside of the middle portion, the boundary conditions are 

periodic in the y-direction, mimicking an “infinite reservoir”. In the fluid domain, the blue fluid is 

initialized at the positions 120 ≤ 𝑥 ≤ 375, and the remaining lattice sites are filled with the red fluid. 

Two different viscosity ratios 𝑀 = 1 and 𝑀 = 100 are simulated, which are obtained by adjusting 𝜐𝐵 =
𝜐𝑅

𝑀
 whilst keeping 𝜐𝑅 = 0.35. Figure 5 shows the time evolution of the interface position 𝑥 for different 

contact angles at (a) 𝑀 = 1 and (b) 𝑀 = 100, which is compared with the results from the method of 
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Leclaire et al.24 and the theoretical prediction from Eq. (47). It is clear that our simulated results agree 

better with the theoretical predictions than those obtained by the method of Leclaire et al.24. 
[insert Figure 4.] 

Figure 4.  Geometry and initialization of the capillary filling problem. The portion in the center of the 

domain is a capillary tube of length 𝐿 and width 𝑊. The red fluid is wetting with respect to the tube 

while the blue fluid is non-wettting.  

[insert Figure 5.] 

 

Figure 5.  Time evolution of the interface position 𝑥(𝑡), for different contact angles at the viscosity 

ratios of (a) 𝑀 = 1 and (b) 𝑀 = 100. The black solid lines are the theoretical predictions from Eq. (47); 

the red squares represent the simulated results of the present method, while the blue triangles represent 

the simulated results from the method of Leclaire et al.24. 

Displacement of immiscible fluids in a channel 

The displacement of immiscible fluids in a 2D channel is able to offer the first-hand knowledge 

regarding preferential flow through porous media that plays a tremendously important role in 

environmental science and reservoir engineering. It has been previously studied by Chin et al.47, Kang et 

al.48, Dong et al.49 and Shi et al.50 using different multiphase LBM models. Among these works, the 

pseudopotential model was used except the work of Shi et al.50. However, for the pseudopotential 

model, the interfacial tension parameter cannot be tuned flexibly since it is related to the miscibility, and 

the viscosity and density ratios of both fluids. In addition, the viscosity ratio is usually limited to less 

than 10 in the pseudopotential model because of numerical instability. By exploiting the present color-

gradient model, we can systematically investigate the effects of capillary number, viscosity ratio, and 

surface wettability on the two-phase displacement in a 2D channel, complementary to the previous 

studies based on a strictly verified wetting boundary scheme. 
[insert Figure 6.] 

Figure 6. Schematic illustration of simulation geometry. 

The simulations are performed in a 430 × 60 lattice domain, and the initial interface is located at 

𝑥 = 30 so that the curved interface remains in the computational domain during all the simulations. The 

displacing (red) fluid is injected continuously from the left inlet, where a Poiseuille velocity profile with 

the maximum velocity 𝑢0 = 0.01 is specified following Zou and He51; on the right outlet, a constant 

pressure boundary condition is employed. The top and bottom walls are no-slip with the proposed 

wetting boundary condition imposed on them. Three parameters are used to quantify the interface 

movement: 𝑆(𝑡) is the moving distance of the contact line relative to the initial position, i.e. 𝑆(𝑡0) = 0,  

𝐿(𝑡) is the finger length which is measured at the horizontal center line of the channel, and 𝐿𝑒𝑞 is the 

equilibrium finger length. The displacement behavior in a channel is governed by several important 

parameters, including the contact angle 𝜃 of the displacing fluid, the capillary number 𝐶𝑎 =
𝜐𝐵𝑢0

𝜎
, and 

the viscosity ratio of the displaced fluid to the displacing fluid (𝑀 =
𝜐𝐵

𝜐𝑅
). 

Effects of capillary number and viscosity ratio 

The effects of capillary number 𝐶𝑎 and viscosity ratio 𝑀 are investigated here. Figure 7 shows the 

evolution of interface morphologies at the viscosity ratio of unity for different capillary numbers: (a) 
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𝐶𝑎 = 0.1, (b) 𝐶𝑎 = 0.2, (c) 𝐶𝑎 = 0.4, and (d) 𝐶𝑎 = 0.8. It is clear that the simulated results basically 

match with those from the previous studies in morphologies. 
[insert Figure 7.] 

Figure 7. The evolution of interface morphologies for 𝑀 = 1, 𝜐𝐵 = 0.48, 𝑢0 = 0.01, 𝛥𝑡 = 5 × 103, 

𝜃 = 90° with (a) 𝐶𝑎 = 0.1, (b) 𝐶𝑎 = 0.2, (c) 𝐶𝑎 = 0.4 and (d) 𝐶𝑎 = 0.8. 

To quantitatively analyze the behavior of viscous displacement, 𝐶𝑎 is taken as 0.1, 0.2, 0.4 and 

0.8; 𝑀 is varied from 1 to 200 whilst keeping 𝜐𝐵 = 0.48; 𝑢0 fixed at 0.01, and the contact angle 𝜃 = 90°. 

When the interface movement reaches the steady state, we compute 
𝑑𝑆

𝑑𝑡
 , 
𝑑𝐿

𝑑𝑡
 and 𝐿𝑒𝑞, which are plotted in 

Figure 8.  

[insert Figure 8.] 

Figure 8. (a) 
𝑑𝑆

𝑑𝑡
, (b) 

𝑑𝐿

𝑑𝑡
 and (c) 𝐿𝑒𝑞 as a function of the viscosity ratio 𝑀 for different capillary numbers 

at 𝑢0 = 0.01, 𝜃 = 90° and 𝜐𝐵 = 0.48. 

The displacement velocity 
𝑑𝑆

𝑑𝑡
 decreases but the change rate of finger length 

𝑑𝐿

𝑑𝑡
 increases with 

increasing capillary number; the displacement velocity is around 0.00667 at the high viscosity ratios and 

low capillary numbers, which is 2/3 of the maximum inlet velocity 𝑢0; the change rate of finger length is 

around 0 at high viscosity ratios and low capillary numbers, which means the finger length 𝐿 tends to an 

equilibrium value 𝐿𝑒𝑞; and the equilibrium finger length 𝐿𝑒𝑞 decreases with increasing viscosity ratio or 

decreasing capillary number.  

Effects of surface wettability 

Here, the effects of surface wettability are investigated for the contact angles ranging from 20° to 160°. 
The other parameters are fixed as 𝑀 = 1 with 𝜐𝐵 = 0.48 and 𝐶𝑎 = 0.8. 𝑆(𝑡) and 𝐿(𝑡) at different times 

are recorded, and 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝐿

𝑑𝑡
 can be computed during the displacement. It is found that both 

𝑑𝑆

𝑑𝑡
 and 

𝑑𝐿

𝑑𝑡
 

remain constant during the displacement for each contact angle. The variations of 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝐿

𝑑𝑡
 with the 

contact angle are plotted in Figure 9, which follow the linear relations as  

 
𝑑𝑆

𝑑𝑡
(𝜃) = 4.133 × 10−3 − 1.693 × 10−5 × 𝜃 (48) 

 
𝑑𝐿

𝑑𝑡
(𝜃) = 4.946 × 10−3 + 1.583 × 10−5 × 𝜃 (49) 

[insert Figure 9.] 

Figure 9. 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝐿

𝑑𝑡
 as a function of the contact angle 𝜃 for 𝐶𝑎 = 0.8, 𝑀 = 1 and 𝜐𝐵 = 0.48. Both 

𝑑𝑆

𝑑𝑡
 

and 
𝑑𝐿

𝑑𝑡
 exhibit a linear dependence on the contact angle with the slope 𝑘 = −1.693 × 10−5 and 1.583 ×

10−5, respectively. 

Conclusion 

A new wetting boundary scheme is proposed based on the LB color-gradient model of Liu et al.4, in 

which a forcing term proportional to the interface curvature is incorporated to realize the interfacial 
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tension effect.  A zero-interfacial-force condition is derived based on the diffuse interface assumption in 

the contact line region, which is essential for calculation of the interface curvature. We have discussed in 

details on how the contact angle condition and the zero-interfacial-force condition are properly 

implemented in the contact line region. This wetting boundary scheme is first validated by two static 

problems, i.e. a droplet resting on a flat surface and a cylindrical surface, and one dynamical problem, 

i.e. the capillary filling in a 2D channel. The present scheme is found to suppress the non-physical mass 

transfer effectively, and produce smaller spurious velocities. In the static cylindrical surface problem, 

the present scheme with the eighth-order isotropic discretization for unit normal vector of the solid 

surface can accurately simulate flows with a broad range of contact angles. In the capillary filling 

problem, our results agree well with the theoretical solutions for various contact angles and viscosity 

ratios, and our scheme behaves better than the method proposed by Leclaire et al.24. The displacement of 

immiscible fluids in a 2D channel is then simulated, to study the effect of the surface wettability, 

capillary number and the viscosity ratio on the displacement process. The displacement velocity and the 

change rate of finger length both exhibit a linear dependence on the contact angle at the viscosity ratio of 

unity. The displacement velocity decreases but the change rate of finger length increases with increasing 

capillary number; the displacement velocity becomes constant at high viscosity ratios and low capillary 

numbers, which is exactly two-third of the maximum inlet velocity. In contrast to the displacement 

velocity, the change rate of finger length is around zero for high viscosity ratios and low capillary 

numbers, which means the finger length tends to an equilibrium value and the equilibrium finger length 

decreases with increasing viscosity ratio or reducing capillary number. Finally, we interestingly note that 

the zero-interfacial-force condition can be also derived in the contact line region in 3D. With the zero-

interfacial-force condition in contact line region, we have extended the present method to simulation of 

multiphase flows in 3D geometries, and some convincing results have been obtained, which hopefully 

will be published in the near future. 
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