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a b s t r a c t 

In this experiment, optimum experimental conditions for the enzymatic hydrolysis of 

grass at different stages of growth were obtained by using the Taguchi methodology. Rye 

grass silage and three growth stages of Italian rye grass samples were used to determine 

optimum hydrolysis conditions. Five factors (pretreatment, enzyme composition, incuba- 

tion temperature, pretreatment time, pH) influencing the hydrolysis process were studied 

at the individual and interactive levels. All selected experimental factors influenced the 

hydrolysis of grass. At the individual level, pretreatment of grass with NaOH and enzyme 

composition had the greatest influence (75% and 14.7% of the variance respectively) on 

enzymatic hydrolysis. Incubation temperature, pretreatment time and pH had influences 

of 8.1%, 2.2% and 0.055%, respectively. pH and incubation temperature had the most 

significant interaction effect (65.6%) on enzymatic hydrolysis. The factors with the least 

individual influence had the most significant interaction effect on enzymatic hydrolysis. 

Hydrolysis was improved when optimised conditions were applied to different growth 

stages of Italian rye grass. 

© 2019 The Authors. Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

Introduction 

The negative impact of fossil fuels combustion has led to an intensive search for plant-based biofuel. Energy stored in the

form of polymers as a result of photosynthetic activities in plants, can be converted to soluble fuels. The use of arable crops

however adversely affects the food supply chain: hence the need for non-arable crops. Non-food plants such as short rotation

coppice (SRC), rye grass, Miscanthus and reed canary grass have been used directly as fuels or processed into biofuels [1,2] .

Such plants can be grown on relatively low nutrient lands, which require less conditioning as would normally be required

for food crops. The chemical and structural nature of the different grasses determines how effectively it can be converted or

processed into biofuels through various hydrolytic techniques [3] . 
∗ Correspondence to: Department of Plant Biology and Biotechnology, University of Benin, PMB 1154, Benin City, Nigeria 
∗∗ Correrspondence to: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1RD, UK. 

E-mail address: h.oamen@qmul.ac.uk (H.P. Oamen). 

https://doi.org/10.1016/j.sciaf.2019.e0 0 077 

2468-2276/© 2019 The Authors. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an 

open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.sciaf.2019.e00077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sciaf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sciaf.2019.e00077&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:h.oamen@qmul.ac.uk
https://doi.org/10.1016/j.sciaf.2019.e00077
http://creativecommons.org/licenses/by/4.0/


2 H.P. Oamen, E.O. Ojo and P.J. Hobbs et al. / Scientific African 3 (2019) e0 0 077 

Table 1 

Physical characteristics of substrates used during the experiment. 

Substrates Plot no. Mean height (mm) Harvest yield (kg/m 

2 ) MC (% w/w) TS (% w/w) VS (% w/w) 

Early cut 1 39.46 ± 0.85 0.16 66.72 33.28 93.50 

Regrowth 1 17.33 ± 2.02 0.02 66.17 33.84 91.00 

Late cut 2 82.00 ± 1.68 1.69 64.34 35.66 95.50 

Abbreviations: T S , total solids; M C , moisture content; V S , volatile solids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structural integrity of most plant biomass is maintained by polymers such as cellulose (25–40%), hemicellulose (25–

50%) and lignin (10–30%) [4] . The chemical composition of plants changes as the plant grows. Sugar content is higher at

the onset of growth with less fibre [5] , however, fibre and lignin content increases as the grass matures [6,7] . The complex

nature of lignin makes the enzymatic decomposition of grass difficult. Harvest period and frequency of cutting are therefore

important considerations for optimised biofuel production to be obtained from the plant biomass [8] . Different methods

such as mechanical, physical and chemical pretreatments have been reported to increase the plant biomass surface area and

susceptibility to hydrolytic processes [2,9,10] . 

Reports have shown that the combination of pretreatment methods makes lignocellulose more susceptible to enzyme

hydrolysis [11,12] . Enzyme derived from Trichoderma reesei have been utilised for lignocellulosic biomass hydrolysis. However,

such enzymes are unable to efficiently hydrolyse hemicelluloses and lignin components in lignocelluloses [13] . The optimum

pH range for hydrolysis is considered to be within the range of 5.0–6.5 [10] . Hydrolysis of the pretreated lignocellulose to

simple sugars typically can use a complex of secreted enzymes derived from filamentous fungi, particularly Trichoderma

sp . Such enzyme complexes contain high levels of cellulases (endoglucanases and cellobiohydrolases), together with lower

amounts of enzymes that attack non-cellulosic polysaccharides such as hemicellulose and pectin. 

Efficient enzymatic hydrolysis of pretreated lignocellulosic substrates is often limited by the different process conditions

such as substrate loads, pH, temperature, high amount of lignin and product recovery strategy [14] . The hydrolysis may also

depend on the enzymes physiochemical properties, thermal stability and specific activities [15] . For enhanced bioconversion

of plant biomass, the use of enzyme cocktails have been reported [16] . However, process optimisation, using the statistical

analysis of the data that can be gathered from the design of the experiment, will further enhance the bioconversion yield

[15] and understanding of process requirements. 

In this work, the design of experiment (DoE) approach adopted was based on the Taguchi methodology [17] . The method

determines the optimum experimental conditions for the hydrolytic reaction steps while determining maximum estimate of

the significant factors. The experimental effort for a full factorial design is minimised and information about the interactions

between defined experimental factors can be obtained [17] . This approach has been applied in a number of hydrolysis

experiments [18,19] . The current study is aimed at optimising the hydrolysis of rye grass silage and Italian rye grass samples

harvested at different growth stages. 

Materials and methods 

Substrate preparation 

The substrates used during the experiment included: rye grass silage and different growth stages of Italian rye grass (see

Table 1 ). All harvested grass samples were planted at the same time on the North Wyke farms with ammonium nitrate

fertilizer. Italian rye grass samples were obtained from two plots as follows. The first plot was harvested in May (early

harvest) and again in June (regrowth) while the second plot was harvested only once in June (late harvest). These three

different sam ples of Italian rye grass were dried and kept under cold storage at −19 °C. Rye grass silage (92.8% V s %) was

also obtained from North Wyke clamps. All enzymes and reagents used in the experiments were obtained from Novozymes

(Bagsvaerd, Denmark) and Sigma respectively. 

Determination of yield, moisture content ( M C ) total solid ( T S ) and volatile solids ( V S ) of substrates 

Biomass yield was determined by dividing the weight of each sample obtained from a field by the area of harvest.

Moisture content ( M C ) and total solids ( T S ) determination was performed as described by [20] . A known weight ( W k ) of

each sample was oven dried at 85 °C for 16 h, after which the weight of the dried sample ( W D ) was determined. M C (%)

was calculated using the Eq. (1) below: 

M C ( % ) = 

W k − W a 

W k − 100 

(1) 

T S (%) values were obtained by subtracting the value of M C from 100% (see Table 1 ). The volatile solids ( V S ) (%) in each

substrate was determined by weighing a portion of the dry sample ( W c ) into a beaker and heated at a temperature of 550

°C for 16 h in a Gallenkamp series 2 muffle furnace (Fistreem, UK). The weight difference between the remaining ash sample



H.P. Oamen, E.O. Ojo and P.J. Hobbs et al. / Scientific African 3 (2019) e0 0 077 3 

Table 2 

Selected experimental factors and assigned levels for enzymatic hydrolysis of grass. 

Serial no. Factors Level 1 Level 2 Level 3 Level 4 

1 Enzyme A1 A2 B1 B2 

2 Pretreatment (% NaOH) Steam 0.5 1.0 –

3 Prettime ∗ (min) 15 30 – –

4 pH Low (5.0) High (6.5) – –

5 Incubation (min) 40 50 60 –

∗ Defines the shortened pretreatment time. 

Table 3 

Enzyme compositions and combinations for hydrolysis of grass. 

Enzymes Set A Set B Enzymes compositions 

A1 A2 B1 B2 

NS50013 (mL) 2.4 2.4 3.6 3.6 Cellulase (major), small amounts of beta-glucosidase, xylanase 

NS50010 (μL) 480 480 720 720 Beta-glucosidase (major), small amounts of xylanase 

NS2202 (μL) – 225 – 375 Beta-glucanase, xylanase, cellulase, pentosanase, hemicellulase 

NS50012 (μL) – 225 – 375 Multienzyme complex of hemicellulase and pectinase 

NS50030 (μL) – 225 – 375 Endoxylanase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( W a ) and oven-dried sample was determined, and the V s were calculated using the equation: 

V s ( % ) = 

W c − W a 

W c − 100 OBJ 

(2)

Preparation of citrate buffer and antibiotics 

0.1 M sodium citrate buffer was prepared by dissolving each of 14.7 g of sodium citrate and 9.6 g of citric acid in 500 mL

of water separately. 400 mL of the sodium citrate solution was added to a beaker and the pH gradually adjusted to 5.0 and

then 6.5 respectively with the addition of the citric acid solution. An antibiotic was also prepared by dissolving 0.1 g of

tetracycline in 10 mL of 70% ethanol and stored at 4 °C. The antibiotic was necessary to prevent contaminations during the

enzymatic hydrolytic step. 

Design of experiments (DoE) 

DoE approach (L 16 – orthogonal array) was adopted in this work and these five steps were followed—experimental plan-

ning, laboratory investigations and data acquisition, data analysis using modelling tools, and validation based on experimen-

tal and modelled results. The overall DoE experiments were performed in two stages—the first was on the rye grass silage

and the second was on the cut grass samples. 

Experimental planning 

For the hydrolytic step, five process parameters (factors) were chosen and ascribed to different levels ranging from level

1–4 as shown in Table 2 . Enzyme cocktail with the highest number of level was assigned four, and the cocktail comprised

of different combinations of hydrolytic enzymes (see Table 3 ). Other factors with their corresponding levels are also shown

in Table 2 . Using the Taguchi approach, experimental design matrix was developed using the L 16 orthogonal array. The L 16

( Table 4 ) shows a total of sixteen experimental trials investigating the degree of interactions among the selected parameters

and the overall effects on the outputs. In the design the column represents the factors and the rows the levels attributed to

the factors. The degree of freedom was estimated as fifteen (number of experiment ( n ) − 1). 

Data analytics and model development 

The experimental design and experimental data shown in Table 4 were transferred to Qualitek-4 software (Nutek Inc.,

MI) for further processing. The software is a predictive tool for efficient evaluation of the different interactions between the

input factors and their overall effects on the process outputs. The software further helps to identify the optimum conditions

and equally predicts process outcomes at other chosen conditions. The statistical capabilities also help establish ANOVA

correlation indicating significant factors and process robustness. 

Steam and alkali pretreatment of samples 

5% (w/v) feedstock samples in water were prepared to a working volume of 800 mL in two flasks. The first flask was

autoclaved at 121 °C for 15 min and the second for 30 min. The autoclaved suspensions were filtered, and the grass residues

were oven-dried at 60 °C for 16 h. For the pretreatment step with NaOH, two flasks each of 5% (w/v) feedstock samples in

0.5% (w/v) and 1% (w/v) NaOH solution were prepared to a working volume of 600 mL. Two of the flasks each containing
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Table 4 

Experimental layout (L-16) for optimising hydrolysis conditions of grass. 

Sample no. Factor levels Sugar concentration (g/5 g) 

1 2 3 4 5 Glucose Xylose 

1 1 1 1 1 1 1.14 0.54 

2 1 2 1 2 2 0.98 0.4 

3 1 3 2 1 3 1.47 1.13 

4 1 1 2 2 1 0.71 0.42 

5 3 1 1 2 3 0.66 0.26 

6 3 2 1 1 1 1.13 1.16 

7 3 3 2 2 1 1.75 0.94 

8 3 1 2 1 2 1.03 0.6 

9 2 1 2 1 1 0.69 0.38 

10 2 2 2 2 3 0.42 0.21 

11 2 3 1 1 2 2.26 1.56 

12 2 1 1 2 1 0.45 0.15 

13 4 1 2 2 2 1.04 0.78 

14 4 2 2 1 1 1.56 1.56 

15 4 3 1 2 1 1.79 1.18 

16 4 1 1 1 3 1.32 0.89 

Table 5 

Enzymatic hydrolysis optimum conditions and performance. 

Serial no. Factor Level description Level Contribution 

1 Enzyme B2 4 0.275 

2 Pretreatment 1.0% NaOH 3 0.668 

3 Prettime (min) 15 1 0.066 

4 pH 6.5 2 0.010 

5 Incubation 50 2 0.178 

Total contribution from all factors 1.197 

Current grand average of performance 1.146 

Expected result at optimum condition 2.343 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5% (w/v) and 1% (w/v) NaOH were autoclaved at 121 °C for 15 min while the remaining two flasks also containing 0.5%

(w/v) and 1% (w/v) NaOH were autoclaved at 121 °C for 30 min. The autoclaved suspensions were filtered, and the grass

residues were oven-dried at 60 °C for 16 h. The pretreatment procedures above were also conducted for each of the Italian

rye grass samples. The weights of all the pretreated substrates obtained after drying is presented in Fig. 1 . 

Enzymatic hydrolysis step 

The enzyme cocktails shown in Table 3 (A1, A2, B1 and B2) were prepared by adding different volumes of enzymes mixes

(NS50 013, NS50 010, NS2202, NS50012 and NS50030). To make A1 and B1, certain mixes (NS2202, NS50012 and NS50030)

were not included whereas these mixes were added in different volumes in preparing A2 and B2. Rye grass silage was used

to configure the experimental conditions, which was later applied to the cut grass samples. Enzymatic hydrolysis was carried

out in a 60 mL labelled syringe. Each setup contained 5% (w/v) pretreated rye grass silage in 0.1 M sodium citrate buffer and

180 μL of tetracycline solution inoculated with the various enzyme mixtures. Each syringe was fitted with rubber tubing and

clip for ease of collection of hydrolysates. The syringes were placed in incubators operated at various temperatures as shown

in Table 1 . The syringes were placed in an inverted position so as to avoid leakage of the contents. 2 mL of hydrolysate was

collected after 16, 24, 40, 48 and 72 h of experiment start time and analysed. The data obtained was utilised to determine

the optimum experimental conditions for hydrolysis ( Table 5 ). 

Validation of results 

To validate the result obtained in the optimisation step, the procedure above was performed for the cut grass samples

using the optimum condition determined from using rye grass silage. Only the pretreatment (steam, 0.5% or 1% NaOH) was

altered in the experiment with the growth stages (see Table 6 ). The results were compared for process robustness. 

Analytical procedure 

The Thermo Electron High Performance Liquid Chromatography (HPLC) was used for sugar analysis using a Bio Rad

Aminex Fermentation Monitor column (150 mm × 7.8 mm Cat. #125–0115). The mobile phase used consisted of 70 μL of

H 2 SO 4 in 1 L of water, with a flow rate of 0.5 mL/min. Data analysis and the optimum conditions for hydrolysis were deter-

mined using the Qualitek-4 software (Nutek Inc., MI) with ‘bigger is better’ quality characteristic. The Qualitek-4 software

analysis also revealed individual factor influences and factor interactions on hydrolysis. 
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Fig. 1. Percentage weight reduction of samples after pretreatment (a) rye grass silage (b) growth stages. (Conditions of experiment—samples were pre- 

treated with steam and NaOH as depicted in (a) after which they were dried and weighed. The pretreatment for the growth stages (b) was done for 

15 min as this was confirmed as the optimum pretreatment time using rye grass silage). 

Table 6 

Experimental layout for Italian rye grass samples. 

Sample no. Substrate Factors Sugar concentration (g/5 g) 

1 2 3 4 5 Glucose Xylose 

1 Regrowth 3 2 1 2 2 2.3 1.17 

2 Early cut 3 2 1 2 2 1.27 0.63 

3 Late cut 3 2 1 2 2 1.29 0.71 

4 Regrowth 3 3 1 2 2 2.3 1.08 

5 Early cut 3 3 1 2 2 1.11 0.56 

6 Late cut 3 3 1 2 2 1.19 0.62 

7 Regrowth 3 1 1 2 2 1.37 1.06 

8 Early cut 3 1 1 2 2 0.79 0.67 

9 Late cut 3 1 1 2 2 0.57 0.59 

 

 

 

 

 

Results and discussion 

Effect of pretreatment methods on substrates physical properties 

The physical properties of the harvested biomass of Italian rye grass were quantified as shown in Table 1 , which also

includes the measured mean heights for the early and late harvest doubled over a period of eighteen days between harvests

respectively. The total height of the regrowth from the stumps of early cut was 60% less than the mean height between

the early and late cut. However, comparison of the harvest yield for the early and late cut resulted in ten-fold increase

respectively. The regrowth had significantly low hydrolysate yield of approximately hundred fold lower compared to the
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Table 7 

ANOVA table. 

Factor DOF (f) Sum of squares (S) Variance (V) F-ratio Pure sum (S’) Percentage P (%) 

Enzyme 3 0.476 0.158 9520.00 0.475 14.665 

Pretreatment (min) 2 2.433 1.216 72,990.61 2.432 74.965 

Prettime (min) 1 0.071 0.071 4293.18 0.071 2.204 

pH 1 0.001 0.001 108.31 0.001 0.055 

Incubation 2 0.262 0.131 7889.07 262.0 0 0 8.101 

Other/error 6 0.001 – – – 0.010 

Total 15 3.245 – – – 10 0.0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

late cut. Based on the time of cut, total solids, moisture content and the volatile solids contents of the biomass can be

estimated. An overall trend shows similar percentage w/w of M c , T s and V s for the early cut and regrowth. However, late cut

was slightly higher for the three properties investigated (see Table 1 ). For the pretreatment of biomass prior to hydrolytic

steps, the percentage loss in weight of samples were estimated as shown in Fig. 1 (a and b). 

For both rye grass silage and the Italian rye grass samples, the highest dosage of NaOH (1% w/v) resulted in the highest

percentage mass reduction while steam-pretreated samples were generally low at 15 min reaction time. For the rye grass

silage ( Fig. 1 a) in particular, steaming for an extended time resulted in significant rise in sample weight reduction. Compar-

ing the cut biomass samples pretreated with different amount of NaOH for 15 min demonstrated no significant difference

between the effect of increasing concentration from 0.5 to 1% w/v NaOH. Nonetheless, weight of steam-treated samples was

significantly lower. In general, the Italian rye growth samples had greater percentage weight loss when compared with rye

grass silage samples having the same pretreatment. This may have been because the rye grass silage fermentation involves

hydrolysis of the grasses at an acidic pH. Similar observations have been reported for NaOH hydrolysis of switch grass [21] .

Hemicelluloses, lignin and cellulose are efficiently reduced by NaOH pretreatment [22] . 

Quantification of hydrolysates 

Based on the L 16 orthogonal array experimental design layout, each factor was attributed to a number 1–5, and the fac-

tor levels also varied from level 1 to 4 as shown in Table 2 . An experimental layout was generated, and the corresponding

concentration of glucose and xylose measured (in g/5 g of original substrate) in the hydrolysates collected after 72 h and

recorded for the rye grass silage (see Table 4 ). The lowest glucose and xylose concentrations (0.42 g/5 g and 0.21 g/5 g re-

spectively) were observed in sample number 10 (enzyme level 2, pretreatment level 2, pretreatment time level 2, incubation

temperature level 3, and pH level 2). The glucose concentration ranged from 0.42 g/5 g to 2.26 g/5 g while xylose concen-

tration ranged from 0.15 g/5 g to 1.56 g/5 g. Overall, the recorded glucose: xylose ratio was approximately 2:1. This probably

suggests that the rye grass silage had higher concentration of cellulose compared to the hemicellulose. This was expected

considering that all the enzyme compositions used contains cellulase and beta-glucosidase as major components. These

enzymes are particularly suited to release of glucose from lignocellulose. 

Table 6 shows the glucose and xylose concentrations observed in hydrolysates collected from the various growth stages

after 72 h of experiment. Regrowth at 0.5% (w/v) and 1% (w/v) NaOH pretreatment and 15 min pretreatment time had the

highest values (2.304 g/5 g, 2.297 g/5 g; 1.174 g/5 g, 1.083 g/5 g) of glucose and xylose concentrations respectively. 

The lowest concentration of glucose (0.569 g/5 g) was observed in June cut, while the lowest concentration of xylose

(0.555 g/5 g) was observed in May cut, both pretreated with steam and 1% (w/v) NaOH respectively for 15 min. Nearly all

samples pretreated with steam had lower concentrations of glucose and xylose compared with samples pretreated with

NaOH solution for each growth stage sample considered. This observation is in agreement with [21] . This result further

confirms the observation from the sample weight measured after pretreatment ( Fig. 1 a and b), suggesting steam as less

efficient at delignification at shorter reaction times compared to NaOH [23] . The ratio of glucose to xylose in the growth

samples was mostly 2:1 except in steam pretreated samples. 

The higher degree of lignin degradation (see Fig. 1 ) may have been responsible for the higher glucose and xylose concen-

trations observed in hydrolysates obtained from samples pretreated with 1% (w/v) NaOH solution (see Table 4 and Table 6 ).

Similar result has been reported by [23] . Lignin increases in content with age of the grass. Lignin degradation therefore

enhances enzyme access to cellulose in grass [7,24] . NaOH pretreatment can reduce cellulose crystallinity and lignocellulose

recalcitrance [25] by up to 86% at optimum conditions of pretreatment and 100% lignin removal at 1% concentration for

30 min [26] . The regrowth and the second cut samples contain younger leaves and stem and perhaps less lignin. These

samples are therefore likely to have higher degradation with NaOH pretreatment [27] when compared with late cut sam-

ples. Mild alkali treatment can reduce inhibitory product formation (Pretreatment of lignocellulose: formation of inhibitory

by-products and strategies for minimising their effects [28] ). 

Statistical analysis 

The effect of factor variability on enzymatic hydrolysis of grasses was studied using ANOVA. The variability attributed to

each factor is shown in column seven of Table 7 . Statistical analysis revealed that pretreatment had the highest percentage

impact (74.9%) on enzymatic hydrolysis, followed by enzyme mixture (14.7%). The pH levels of the buffer had the least

impact (0.055%) on enzymatic hydrolysis during the experiment. pH has also been shown to have significantly reduced
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Fig. 2. Impact of factors on enzymatic hydrolysis of rye grass silage. The Figs. (A–E) shows the impact of each factor on enzymatic hydrolysis of italian rye 

grass and (F) the impact of factors interaction on hydrolysis. 
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impact on xylanase production in Aspergillus terrus [29] . Overall, the percentage impact of enzyme set and pretreatment type

together represent approximately 85% of total impact of all the factors under consideration. This indicates the significance

of these two factors to optimisation of enzymatic hydrolysis of grass. 

The influence of individual factors on enzymatic hydrolysis of grass 

Fig. 2 provides an understanding of the main influence of each factor on the enzymatic hydrolysis of grasses. To study

this, glucose concentration in hydrolysates was used in the analysis. Variation in enzyme set from level 1 (A1) to 2 (A2)

had little effect on hydrolysis, however, variation from level 3 (B1) to 4 (B2) had significant influence on hydrolysis ( Fig. 2 a).

The result suggests that the wider variability ( Table 3 ) in enzyme composition of B2 may be responsible for differences

in the degree of hydrolysis observed between treated substrates. Pectinases and hemicellulases (present in enzyme set B)

are known to increase the access of cellulases to cellulose [9] and therefore may have had an additional effect on the

degree of hydrolysis. Pretreatment with 1.0% w/v NaOH (level 3) greatly influenced enzymatic hydrolysis [26,30] while steam

pretreatment (level 1) had the least effect on enzymatic hydrolysis ( Fig. 2 b). Pretreatment for 15 min (level 1) had the

greatest influence on enzymatic hydrolysis ( Fig. 2 c) while a change in pH from 5.0 (level 1) to 6.5 (level 2) had no significant

influence ( Fig. 2 d). The incubation temperature with the highest influence on enzymatic hydrolysis was 50 °C (level 2) while

60 °C (level 3) had the least influence ( Fig. 2 e). 

The interactions of factors on enzymatic hydrolysis 

An understanding of the interaction of factors is important in the design of optimum hydrolytic conditions for an ex-

periment. Fig. 2 f shows the interactions among the individual factors selected during the experiment and the effect of such

interactions i.e. the severity index (SI) on enzymatic hydrolysis. SI is normally presented on a scale of 0–100%. The greatest

interaction SI (65.6%) on enzymatic hydrolysis was observed between the pH and incubation temperature followed by inter-

action between pretreatment time and pH (60.37%). Interaction between pretreatment time and incubation had SI index of

47.05%. Pretreatment and pretreatment time had the least observed SI (2.16%) of all the SI observed. An interesting obser-

vation was that the factors with the least individual percentage impact pH (0.06%) and incubation (8.10%) had the greatest

SI. Overall highest SI was mostly observed when the factors with the least individual percentage impact on hydrolysis in-

teracted with other experimental factors. This probably suggests that these factors are also critical for optimising enzymatic

hydrolysis and as such were indispensable factors. Similar effect was observed when various factors were combined to op-

timise anaerobic digestion using the same methodology [19] . 

Optimum conditions for enzymatic hydrolysis of grass biomass 

The optimum conditions for enzymatic hydrolysis and their respective performance as determined by the Taguchi design

of the experiment is shown in Table 5 . The predicted optimum conditions for enzymatic hydrolysis were: enzyme set B2,

1.0% NaOH pretreatment for duration of 15 min with a pH 6.5 and at an incubation temperature of 50 °C. In terms of contri-

bution of each factor at optimum conditions and performance, 1.0% (w/v) NaOH pretreatment had the highest contribution

(0.668%) followed by enzyme set B2 (0.275%). The lowest contribution was from pH (0.010%). The expected result at opti-

mum conditions was 2.34 g/5 g, the total contribution from all factors was 1.20 g/5 g and the current grand average of perfor-

mance was 1.15 g/5 g. The highest yield of glucose (2.26 g/5 g) obtained during the optimisation step with rye grass silage as

shown in Table 3 was obtained when three of the predicted optimum conditions above (pretreatment level 3, pretreatment

time level 1, and incubation level 2) were combined. When three of the predicted optimum conditions (pretreatment time

level 1, incubation level 2 and pH level 2) and enzyme set (B1) were combined but with variation in pretreatment, a higher

concentration of glucose (2.3 g/5 g) was observed for both the growth stage samples no 1 and 4 corresponding to regrowth

sample ( Table 6 ). This suggests that a combination of all the predicted optimum conditions improved hydrolysis. Hydrolysis

is a critical stage in lignocellulosic biofuel production process; therefore, the optimum conditions we have determined here

will improve the final product output if applied on an industrial scale. 

Conclusion 

Hydrolysis is a crucial stage for grass biomass bioconversion. Therefore, the focus of this work was to identify the best

combination of process conditions to ensure optimum sugar yield. The optimum experimental conditions for grass biomass

hydrolysis were determined. Pretreatment with 1% (w/v) NaOH and enzyme set B2 (comprising majorly cellulase, beta-

glucosidase and some amounts of xylanase, pentosanase, hemicellulase and endoxylanase) were identified as the most sig-

nificant process factors in enzymatic hydrolysis of grass. The combination of some key factors at the optimum levels yielded

glucose concentrations from silage (2.263 g/5 g) and growth stages (2.304 g/5 g and 2.343 g/5 g) near predicted optimum val-

ues. pH and incubation, which both had the lowest individual impacts on hydrolysis, had the most significant interaction

influence (65.6%). It is expected that the application of these hydrolysis conditions will go a long way to increase the output

as well as impacting positively on the cost of biofuel production. 
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