Personalized Prognostic Bayesian Network for Pancreatic Cancer:

Delivering personalized pancreatic cancer management
throughout the patient journey
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Survival outcomes for pancreatic cancer remain poor. Surgical resection is the only potentially curative treatment but approximately 10% present with resectable disease with 5year survival for resected cases
between only 7% and 25%. Adjuvant therapy after surgery is required to prolong survival but up to 50% of patients fail to receive adjuvant therapy. Neoadjuvant therapy has emerged as an alternative
treatment strategy but carries the risk of loosing the window of resectability. Risks of failure therefore exist throughout both treatment pathways. Recent decision-analysis have suggested that the selection of
optimal treatment pathways depends on individual patient and tumour factors. This paper presents a Bayesian Belief Network (BBN) model that evaluates the risk of failure and consequence factors across
surgery-first and neoadjuvant pathways. BBN is capable of providing personalized predictions of good prognosis (3year survival) post resection of pancreatic ductal adenocarcinoma. This can support clinical
decision action and patient counseling by identifying superior pathway selection at individualized level, and justify resource allocation by identifying patients at higher risk of failure who require additional

actions to reduce risk.

Methods 1:

BBN, also referred to as acyclic directed graphs, is a graphical model based on probability theory that models relationships between variables. BBN consist of variables, know as nodes, with arcs depicting
informational or causal relationships from parent to child nodes. Each node has a defined and exclusive set of states and the dependencies between nodes are quantified through a set of conditional probability
tables (CPTs) whereby the conditional probability of a child node is defined by the state of each of its parent nodes. Nodes that do not have parent nodes are reduced to the unconditional probability (UP)
structure. Where the UPs of a basic input parameter is not known a priori, equal weight are applied to states through the principle of insufficient reasoning.

Through Baye’s theorem, BBN can explicitly represent the conditional probability dependencies between variables, which has been proven to be an effective way of handling uncertainty. In a BBN, the updated
probability for n number of mutually exclusive parameters X;, where ._,,; ., and given observed data, Y, can be computed as: p(X;| Y)= pYXix p(Xi)2jpYXjp(Xj where the posterior probability of X given the
condition that Y occurs is represented by p(X|Y), the posterior probability of Y given the condition that X occurs is represented by p(Y|X), the prior occurrence probability of X is denoted by p(X) and the

marginal occurrence of Y is denoted as p(Y) . In this sense this is often viewed as the likelihood distribution.

This holds several advantages when modeling treatment pathways for potentially resectable PDAC. Through Bayes theorem the prior distribution and observed data are combined to update knowledge in the
form of the posterior distribution. Therefore BBNs allow the modeling of relationships between variables at various stages of the healthcare process, with predictions of outcomes evolving throughout the
process by utilizing all available patient data at that time. This means that the model could not only make predictions of outcome pre-operatively but also perform prognostic updating at the post-operative
stage of the patient journey. Where patient information is limited probabilistic inference can still make predictions based on global averages of the patient population. As more information becomes available
the predictions become more patient specific. Furthermore, BBN have the flexibility to perform bottom-up inference (inferring the state of the parent node from the observed state of the child node) and top-
down inference (inferring the state of the child node given the observed state of the parent node). This is also known as diagnostic and decision analysis respectively and is called marginalization which is
employed to compute the reliability of networks based on statistical data. For the pancreatic cancer model this process will also allow the testing of the model to perform scenario, or “what if” testing to
anticipate cause and impact of failure events such as developing side effects from therapy or complications from surgery.

Methods 2:

A weighted prognostic BBN was created using AgenaRisk software. The BBN was based on data from
survival analysis studies gathered from a comprehensive search of PubMed database (n=48691) that
was synthesized based on a two-stage weighting process. The model was validated against a
prospectively maintained patient database from a tertiary referral centre (n=365). Variables know at
the pre-operative stage of the patient journey were included in the pre-operative BBN and post-
operative factors were added to the model to perform prognostic updating. Individual patient data was
entered into the BN and the personalized pre and post-operative predictions of poor prognosis were
recorded and assessed against that individual’s actual survival time therefore deeming predictions to be
true or false.
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Methods 3: Sensitivity Analysis

Pearl’s inwards analysis and broadcasting analysis were used to perform sensitivity analysis.
This showed that for the pre-operative BBNs tumour factors had the greatest impact on
outcomes, followed by patient factors. When post-operative data was incorporated into the
BBN post-operative factors and surgical pathology had greatest impact on output followed by
tumour factors and patient factors.
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The BBN demonstrated a high level of predictive performance. Benefits over existing models include: pre-operative application, greater generalizability, and ability to encompass both upfront surgery and
neoadjuvant treatment options. This marks an important step towards achieving the delivery of precision medicine, as the next step will be to incorporated genomic data into the model hence combining

genetic, pathology and clinical data, creating a vehicle to deliver personalized precision medicine.




