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Abstract

A fast spectral method (FSM) is developed to solve the Uehling-Uhlenbeck equation for
quantum gas mixtures with generalized differential cross-sections. The computational cost
of the proposed FSM is O(Mdv−1Ndv+1 logN), where dv is the dimension of the problem,
Mdv−1 is the number of discrete solid angles, and N is the number of frequency nodes in each
direction. Spatially-homogeneous relaxation problems are used to demonstrate that the FSM
conserves mass and momentum/energy to the machine and spectral accuracy, respectively.
Based on the variational principle, transport coefficients such as the shear viscosity, thermal
conductivity, and diffusion are calculated by the FSM, which agree well with the analytical
solutions. Then, the FSM is applied to find the accurate transport coefficients through
an iterative scheme for the linearized quantum Boltzmann equation. The shear viscosity
and thermal conductivity of three-dimensional quantum Fermi and Bose gases interacting
through hard-sphere potential are calculated. For Fermi gas, the relative difference between
the accurate and variational transport coefficients increases with fugacity; for Bose gas, the
relative difference in thermal conductivity has similar behavior as the gas moves from the
classical to degenerate limits, but the relative difference in shear viscosity decreases when
the fugacity increases. Finally, the viscosity and diffusion coefficients have been calculated
for a two-dimensional equal-mole mixture of Fermi gases. When the molecular masses of
the two components are the same, our numerical results agree with the variational solutions.
However, when the molecular mass ratio is not one, large discrepancies between the accurate
and variational results are observed; our results are reliable because (i) the method does not
rely on any assumption on the form of velocity distribution function and (ii) the ratio
between shear viscosity and entropy density satisfies the minimum bound predicted by the
string theory.
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1. Introduction1

The experimental manipulation of ultracold atomic gases has attracted extensive research2

interest to understand the dynamics of quantum systems [1]. Most researches focus on the3

condensed phases [2, 3], since these quantum systems are ideal to study the crossover from a4

Bardeen-Cooper-Schrieffer superfluid to Bose-Einstein condensation, which is ubiquitous in5

high-temperature superconductivity, neutron stars, nuclear matter, and quark-gluon plasma.6

In experiments, however, quantum gases are prepared from dilute classical gases at room7

temperature, where the thermal motion of gas molecules is described by the Boltzmann8

equation. As the temperature goes down, the thermal de Broglie wavelength could become9

comparable to the interatomic distance; in this case the quantum effects emerge, and the10

thermal motion of quantum gases can be described by the Uehling-Uhlenbeck equation [4],11

which is also known as the quantum Boltzmann equation (QBE). When the temperature12

decreases further, the condensation begins, and the condensed phase coexists with the normal13

phase. For example, for Bose gas, at the temperature below the onset of Bose-Einstein14

condensation, the QBE and Gross-Pitaevskii equation are used to describe the dynamics15

of Bose gas in the normal and condensed phases, respectively [5, 6]; the exchange of gas16

molecules between the normal and condensed phases is also described by the Boltzmann-17

type collision operators.18

Mathematically speaking, the QBE, which is defined in the six-dimensional phase space,19

is much more complicated than the mean-field Gross-Pitaevskii equation in the three-20

dimensional physical space. Although in the hydrodynamic regime (i.e. when the mean21

free path of gas molecules and the characteristic oscillation frequency are respectively much22

smaller than the characteristic flow length and the mean collision frequency of quantum23

gases) the Navier-Stokes equation can be derived from the QBE via the Chapman-Enskog24

expansion [7] to describe the gas dynamics, in quantum experiments, however, this situation25

is always violated. This is due to the fact that the gas is confined by external potentials,26

the gas density is very small in the vicinity of the trap so that the gas is highly rarefied.27

Therefore, to describe the dynamics of quantum gas in the normal phase accurately, an28

efficient and accurate method to solve the QBE is necessary. In the paper we focus only on29

the numerical method for QBE.30

The direct simulation Monte Carlo method (DSMC) [5, 6, 8] has been proposed to solve31

the QBE. Since the collision frequency is enhanced (or reduced) for Bose (or Fermi) gas, and32

this enhancement (or reduction) relies on the velocity distribution function (VDF) after the33

binary collision, the DSMC method for QBE needs to use a very large number of simulated34

particles to sample VDF. This is in sharp contrast to the DSMC for classical gases where35

no such sampling is needed [9]. Moreover, for Fermi gas, due to Pauli’s exclusion principle,36

the collision frequency might become negative (unphysical) if the VDF is not accurately37

sampled [10]. To reduce the number of simulated particles, Yano proposed to replace the38

post-collision VDF by the equilibrium VDF [11]. However, in this way, the DSMC solves39

the Uehling-Uhlenbeck model equation rather than the original QBE, which may introduce40

large errors when the system is far away from equilibrium as typically occurs in modern41

experiments of quantum gases [12, 13, 14]. For example, the shear viscosity obtained from the42
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Uehling-Uhlenbeck model equation is even smaller than the one obtained from the variational43

solution that predicts the lower bounds of transport coefficients [11].44

In recent years, the fast spectral method (FSM), which employs a Fourier-Galerkin dis-45

cretization in the velocity space and handles binary collisions in the corresponding frequency46

space, has attracted much attention thanks to its spectral accuracy in solving the Boltz-47

mann collision operator for classical gases [15, 16]. Due to its deterministic nature, it has48

been successfully applied to accurately calculate the transport coefficients for gas inter-49

acting through the Lennard-Jones potentials [17], Couette/Poiseuille/thermal transpiration50

flows [18, 19, 20], linear oscillatory flows in the rectangular cavity [21, 22], and the spectrum51

of Rayleigh-Brillouin scattering of the laser-gas interaction [23]. It has also been extended52

to solve the Boltzmann equation for classical gas mixtures [24, 25], the Enskog equation for53

dense gases [26, 27], and the QBE for single-species quantum gases [28, 29].54

In many recent experiments, quantum gas mixtures, which constitute either of different55

species or different quantum states of the same species, are used [30, 31, 12, 32]. However,56

very few numerical methods are developed for quantum gas mixtures. In this paper we57

propose an efficient and accurate FSM to solve the QBE for quantum gas mixtures.58

The rest of this paper is organized as follows. In Sec. 2, the QBE and the equilibrium59

properties of quantum systems are introduced. In Sec. 3, the FSM is proposed to solve60

the Boltzmann collision operator with general forms of differential cross-section. Spatially-61

homogeneous relaxation problems are investigated and factors affecting the accuracy of FSM62

are identified in Sec. 4. In Sec. 5, the accuracy of FSM is further validated by comparing the63

transport coefficients obtained from the FSM with variational solutions. Accurate trans-64

port coefficients of Fermi gas mixtures are obtained by solving the linearized QBE from65

the Chapman-Enskog expansion, without using any assumption on the form of VDF. In66

Sec. 6, we conclude with a summary of the proposed numerical method, and outline future67

perspectives.68

2. The quantum Boltzmann equation of gas mixtures69

Consider a system of quantum gas mixtures in the normal phase, so that it can be70

described semi-classically by the one-particle VDF f ı(t,x,v), where ı denotes the ı-th com-71

ponent, t is the time, x is the spatial coordinate, and v is the molecular velocity. Since72

the VDF is defined in the way that (mı/2π~)dvf ı(t,x,v)dxdv is the molecular number of73

ı-th component at time t in the phase-space dxdp/(2π~)dv = (mı/2π~)dvdxdv, macroscopic74

quantities such as the number density n, bulk velocity V, shear stress Pij, and heat flux Q75

of each component can be calculated as the moments of the corresponding VDF:76

nı(x, t) =

(
mı

2π~

)dv ∫
f ıdv, Vı(x, t) =

(
mı

2π~

)dv 1

nı

∫
vf ıdv,

P ı
ij(x, t) =

(
mı

2π~

)dv
mı

∫
vr,ivr,jf

ıdv, Qı(x, t) =

(
mı

2π~

)dv mı

2

∫
vr|vr|2f ıdv, (1)

where mı is the mass of the ı-th component, ~ is the reduced Planck’s constant, dv = 2 or77

3 is the dimension of the problem, vr = v−V is the peculiar velocity, and indexes i and j78
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are Cartesian components of the spatial variable x. Note that p = mıv is the momentum79

of gas molecules; we use the velocity v instead of the momentum p because it will be easier80

to develop the FSM that is compatible to our previous works [18, 19, 24, 17, 25, 20].81

2.1. The quantum Boltzmann equation82

The QBE is derived from a heuristic argument of the classical Boltzmann equation [4],83

where the streaming part remains unchanged when compared to that of the classical gas,84

while the collision operator is modified by quantum laws. For fermions, the collision prob-85

ability is reduced if the final state that the collision leads to has already been occupied,86

due to Pauli’s exclusion principle. For bosons, on the contrary, the collision probability is87

enhanced. The QBE takes the form of [4]88

∂f ı

∂t
+ v · ∂f

ı

∂x
− 1

mı

∂U ı

∂x
· ∂f

ı

∂v
=
∑


Qı(f ı, f ), (2)

where U ı(x, t) are the effective potentials acting on the molecules of ı-th component,Qıı(f ı, f ı)89

is the self-collision operator of the ı-th component, and Qı(f ı, f ) with ı 6=  is the cross-90

collision operator between the molecules of ı-th and -th components. All the collision91

operators are local in time and space. For simplicity, t and x are omitted in writing the92

collision operators in the following general form:93

Qı(f ı, f ) =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ

{
f (′vı∗ )f ı(′vı)[1 + θ0f

(v∗)][1 + θ0f
ı(v)]

− f (v∗)f ı(v)[1 + θ0f
(′vı∗ )][1 + θ0f

ı(′vı)]

}
dΩdv∗,

(3)

where v and v∗ are the pre-collision velocities of molecules of sorts ı and , respectively,94

while ′vı, ′vı∗ are the corresponding post-collision velocities. Conservation of momentum95

and energy yield the following relations96

′vı = v +
m

mı +m
(|u|Ω− u), ′vı∗ = v∗ −

mı

mı +m
(|u|Ω− u), (4)

where u = v−v∗ is the relative pre-collision velocity, Ω is the unit vector in the sphere (or a97

circle when dv = 2) Sdv−1 having the same direction as the relative post-collision velocity, and98

θ is the deflection angle between the two relative velocities, i.e. cos θ = Ω ·u/|u|, 0 ≤ θ ≤ π.99

The differential cross-section is given by dσı/dΩ, which is a function of the relative pre-100

collision velocity and deflection angle. Finally, the Boltzmann equation for molecules obeying101

the classical statistics is recovered when θ0 = 0, while θ0 = 1 and θ0 = −1 should be chosen102

for molecules obeying the quantum Bose-Einstein and Fermi-Dirac statistics, respectively.103

In the following numerical simulations by FSM, it is convenient to separate the quantum104

collision operator (3) into the following quadratic and cubic collision operators [28, 29]:105

Qı(f ı, f ) = Qıc + θ0(Qı1 +Qı2 −Q
ı
3 −Q

ı
4 ), (5)
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where the classical quadratic collision operator is106

Qıc (f ı, f ) =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ
[f (′vı∗ )f ı(′vı)− f (v∗)f ı(v)]dΩdv∗, (6)

and the cubic collision operators are107

Qı1 =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ
f (′vı∗ )f ı(′vı)f (v∗)dΩdv∗,

Qı2 =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ
f (′vı∗ )f ı(′vı)f ı(v)dΩdv∗,

Qı3 =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ
f (′vı∗ )f (v∗)f

ı(v)dΩdv∗,

Qı4 =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ
f ı(′vı)f (v∗)f

ı(v)dΩdv∗. (7)

2.2. Equilibrium properties108

Introducing the entropy density function s = −
∑

ı

(
mı

2π~

)dv ∫
[f ı ln f ı−θ0(1+θ0f

ı) ln(1+109

θ0f
ı)]dv to Eq. (2), one can obtain the equilibrium VDF110

f ıeq(t,x,v) =

{
1

Z ı
exp

[
mı(v−V)2

2kBT

]
− θ0

}−1

, (8)

where Z ı(x, t) is the local fugacity satisfying111

Z ı(x, t) = exp

[
µı(x, t)− U ı(x, t)

kBT

]
, (9)

with µı and kB being the chemical potential and Boltzmann constant, respectively.112

When the quantum system is in equilibrium, we have113

nı =

(
mıkBT

2π~2

)dv/2
Gdv/2(Z ı), P ı

ij = nıkBT
Gdv/2+1(Z ı)

Gdv/2(Z ı)
δij, (10)

where δij is the Kronecker’s delta function, and Gn(Z) = 1
Γ(n)

∫∞
0

yn−1

Z−1ey−θ0dy is the Bose-114

Einstein (θ0 = 1) or Fermi-Dirac (θ0 = −1) function, with Γ(n) being the Gamma function.115

It should be noted that, when the fugacity Z → 0, Gn(Z)→ Z, the quantum gas is in the116

near classical limit, where the equilibrium VDF is very close to the Maxwellian equilibrium117

VDF for classical gases. Moreover, we have f ı ∼ f ıeq � 1, so the behavior of the quantum118

gas is similar to the classical one as the quantum correction term θ0f
ı is negligible.119
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2.3. Linearized collision operators120

In some cases it is useful to calculate the linearized quantum collision operator, for121

example, to calculate the transport coefficients such as the shear viscosity and thermal122

conductivity. When the system slightly deviates from the equilibrium state (8), the one-123

particle VDF can be expressed as124

f ı(t,x,v) = f ıeq(x,v) + hı(t,x,v), (11)

where hı is the disturbance satisfying |hı/f ıeq| � 1.125

The quantum Boltzmann collision operator (3) can be linearized into the following form:126

Lı(hı, h) =
∑


[(Lıc+ − µıc hı) + θ0(Lı1 + Lı2 − L
ı
3 − L

ı
4 )] , (12)

where Lıc+ and µıc are respectively the gain part and the equilibrium collision frequency in127

the classical Boltzmann equation that are defined as [19, 17, 25]128

Lıc+ =

(
m

2π~

)dv ∫ ∫
|u|dσ

ı

dΩ
[f eq(

′vı∗ )hı(′vı) + h(′vı∗ )f ıeq(
′vı)− h(v∗)f ıeq(v)]dΩdv∗,

µıc =

(
m

2π~

)dv ∫ ∫
|u|dσ

ı

dΩ
f eq(v∗)dΩdv∗, (13)

while the linearized cubic collision operator Lı1 is obtained by replacing the two VDFs in129

Qı1 in Eq. (7) with h and feq and only keeping the linear term of h, in the following manner:130

Lı1 =

(
m

2π~

)dv ∫
Rdv

∫
Sdv−1

|u|dσ
ı

dΩ

[
h(′vı∗ )f ıeq(

′vı)f eq(v∗) + f eq(
′vı∗ )hı(′vı)f eq(v∗)

+ f eq(
′vı∗ )f ıeq(

′vı)h(v∗)

]
dΩdv∗, (14)

the rest cubic collision operators Lı2 , Lı3 , and Lı4 can be obtained in the same way.131

It is obvious that these linearized collision operators can be solved in the same way as132

that for the full collision operators.133

3. Fast spectral method for the quantum Boltzmann collision operator134

The approximation of the self-collision quadratic operator (6) (i.e. Qıc with ı = )135

by the FSM has been extensively studied [15, 16, 18, 19], even for generalized forms of136

the differential cross-section corresponding to general intermolecular potentials such as the137

Lennard-Jones potential [17, 33, 20]. The approximation of the cubic collision operators (7)138

with ı =  by the FSM has been proposed in Ref. [28, 29], while the approximation for the139

cross-collision operator for classical gas mixtures (i.e. Qıc with ı 6=  and mı 6= m) by the140

FSM has been recently developed by the author [24, 25, 20]. In this section, on the basis of141

all these numerical methods, we will develop a FSM for the quantum Boltzmann collision142

operators with general forms of the differential cross-section, for quantum gas mixtures with143

different molecular masses. Specifically, we will solve the cubic cross-collision operators (7)144

between the molecules of ı-th and -th components only.145
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3.1. Carleman-like representation of the collision operator146

As usual, we rewrite the collision operators in Eq. (7) using the Carleman-like rep-147

resentation. With the following basic identity 2dv−1|u|2−dv
∫
Rdv δ(y · u + |y|2)f(y)dy =148

|u|dv−2
∫
Sdv−1 f

(
|u|Ω−u

2

)
dΩ, where δ is the Dirac delta function, the cubic collision oper-149

ator Qı1 becomes:150

Qı1 =

∫
Rdv

∫
Rdv

Bı(|y|, |z|)δ(y · z)f (v + z + bıy)f ı(v + aıy)f (v + y + z)dydz, (15)

with151

aı =
2m

mı +m
, bı =

m −mı

mı +m
. (16)

Note that in the derivation of Eq. (15) we have used the transformations y = (|u|Ω−u)/2152

and z = v∗ − v − y = −u − y. Therefore, u = −y − z and the deflection angle θ satisfies153

cos θ = Ω · u/|u| = −(y− z) · (y + z)/|y + z|2. Additionally, the delta function δ(y · z)154

poses the condition that the vector z should be perpendicular to the vector y, thus we have155

cos θ = (|z|2−|y|2)/(|y|2 + |z|2) and θ = 2arctan (|y|/|z|). Since the differential cross-section156

dσı/dΩ is a function of the relative pre-collision velocity |u| and the deflection angle θ, Bı
157

can be expressed as a function of |y| and |z| only:158

Bı =

(
m

2π~

)dv
2dv−1|u|3−dv dσ

ı

dΩ
≡ Bı(|y|, |z|). (17)

In numerical calculations, suppose the distribution functions are supported by a sphere159

when dv = 3 (or a disk when dv = 2) of radius S, the relative velocity satisfies |u| = |y+z| ≤160

2S, which leads to |y|, |z| ≤ R =
√

2S. Therefore, the infinite integration region with respect161

to y and z is reduced to BR, i.e. a sphere (or a disk) of radius R centered at the origin.162

Consequently, the collision operator in Eq. (15) is truncated into the following form:163

Qı1 =

∫
BR

∫
BR
Bı(|y|, |z|)δ(y · z)f (v + z + bıy)f ı(v + aıy)f (v + y + z)dydz. (18)

Similarly, the other cubic collision operators in Eq. (7) are transformed and truncated as164

Qı2 =

∫
BR

∫
BR
Bı(|y|, |z|)δ(y · z)f (v + z + bıy)f ı(v + aıy)f ı(v)dydz,

Qı3 =

∫
BR

∫
BR
Bı(|y|, |z|)δ(y · z)f (v + z + bıy)f (v + y + z)f ı(v)dydz,

Qı4 =

∫
BR

∫
BR
Bı(|y|, |z|)δ(y · z)f ı(v + aıy)f (v + y + z)f ı(v)dydz. (19)
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3.2. Fast spectral method for truncated collision operators165

In FSM, VDFs are periodized on the velocity domain DL = [−L,L)dv , where the ve-166

locity bound L is chosen to be L = (3 +
√

2)S/2 to avoid the aliasing error caused by the167

periodization of VDFs and collision operators [34]. In the Fourier spectral method, VDFs168

are approximated by the truncated Fourier series,169

f ı(v) =
∑
j

f̂ ı(ξj) exp(iξj · v), f̂ ı(ξj) =
1

(2L)3

∫
DL
f ı(v) exp(−iξj · v)dv, (20)

where i is the imaginary unit, and the frequency components are denoted by170

ξ = (ξ1, ξ2, · · · , ξdv) = (j1, j2, · · · , jdv)
π

L
= j

π

L
, (21)

with jk ∈ [−Nk/2,−Nk/2 + 1, · · · , Nk/2 − 1] and Nk being the number of frequency com-171

ponents in the k-th frequency direction.172

Expanding the truncated collision operators in Eqs. (18) and (19) in the truncated Fourier173

series, we find that the j-th modes Q̂ı1 (ξj), Q̂ı2 (ξj), Q̂ı3 (ξj), andQ̂ı4 (ξj) are related to the174

Fourier coefficients f̂ ı and f̂  as175

Q̂ı1 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ıl f̂

mf̂


nβ(aξl + bξm + ξn, ξm + ξn),

Q̂ı2 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ıl f̂

mf̂

ı
nβ(aξl + bξm, ξm),

Q̂ı3 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ıl f̂

mf̂

ı
nβ(ξm + aξn, ξm),

Q̂ı4 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ıl f̂

mf̂


nβ(ξm + bξn, ξm + ξn), (22)

where the kernel mode β(l,m) is176

β(ξl, ξm) =

∫
BR

∫
BR
Bı(|x|, |y|)δ(y · z) exp(iξl · y + iξm · z)dydz. (23)

Note that the direct calculation of each term in Eq. (22) is time-consuming, at the order177

of N3dv . Our goal in the following subsection is to separate ξl and ξm in the kernel mode178

β(ξl, ξm) so that Eq. (22) can be calculated effectively by the FFT-based convolution, with179

a much lower computational cost.180

3.2.1. Approximation of the kernel mode181

Introducing y = ρe and z = ρ′e′, where e and e′ are vectors in the unit sphere when182

dv = 3 and unit circle when dv = 2. The kernel mode (23) is expressed in the spherical183
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(dv = 3) or polar (dv = 2) coordinates as184 ∫ ∫
δ(e · e′)

∫ R

0

∫ R

0

(ρρ′)dv−2Bı(ρ, ρ′) exp(iρξl · e) exp(iρ′ξm · e′)dρ′dρde′de

=

M2∑
r=1

∫ ∫
δ(e · e′)

∫ R

0

ωr(ρrρ
′)dv−2Bı(ρr, ρ

′) exp(iρrξl · e) exp(iρ′ξm · e′)dρ′de′de

=

M2∑
r=1

∫ ∫
δ(e · e′) exp(iρrξl · e)φ(ρ′r, ξm · e′)de′de, (24)

where the integral with respect to ρ has been approximated by the Gauss-Legendre quadra-185

ture, with ρr and ωr (r = 1, 2, · · · ,M2) being respectively the abscissas and weights of the186

Gauss-Legendre quadrature in the region of 0 ≤ ρ ≤ R, and the term187

φ(ρ′r, ξm · e′) =

∫ R

0

ωr(ρrρ
′)dv−2Bı(ρr, ρ

′) cos(ρ′ξm · e′)dρ′, (25)

can be calculated accurately by some high order numerical quadrature.188

It should be highlighted that the maximum value of ρrξl · e in Eq. (24) is NπR/2L.189

Therefore, the function exp(iρrξl · e) oscillates N times at the most. Consequently, M2190

should be roughly of the order of N to make the integral with respect to ρ in Eq. (24)191

by the Gauss-Legendre quadrature accurate. In practical calculation, however, since the192

spectra of the VDF and the kernel model at high frequency components are very small, M2193

can be several times smaller than N to have better numerical efficiency; this point will be194

demonstrated in the numerical simulation in Sec. 4. Also, note that in the evaluation of the195

integral with respect to ρ′, the imaginary part is omitted due to the symmetry condition,196

that is, Bı, which is related to the differential cross-section, remains unchanged when e′ is197

replaced by −e′, see Eq (17).198

After some algebraic manipulation (see descriptions from Eq. (34) to Eq. (38) in Ref. [18]199

when dv = 3, and Eqs. (15) and (16) in Ref. [26] when dv = 2), we have200

• when dv = 3, the integral with respect to the unit vector e in a sphere is approximated201

by the trapezoidal rule, i.e. eθp,ϕq = (sin θp cosϕq, sin θp sinϕq, cos θp) with θp = pπ/M202

and ϕq = qπ/M , where p, q = 1, 2, · · · ,M), and the kernel mode (24) can be approxi-203

mated by:204

β(l,m) ' 2π2

M2

M2,M−1,M∑
r,p,q=1

cos(ρrξl · eθp,ϕq)ψ3

(
ρr,
√
|ξm|2 − (ξl · eθp,ϕq)2

)
sin θp, (26)

where ψ3(ρr, s) = 2π
∫ R

0
ωrρrρ

′Bı(ρr, ρ
′)J0(ρ′s)dρ′, with J0 being the zeroth-order205

Bessel function of first kind.206

• when dv = 2, the integral with respect to the unit vector e in a circle is approximated by207

the trapezoidal rule, i.e. eθp = (cos θp, sin θp) with θp = pπ/M , where p = 1, 2, · · · ,M),208
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and the kernel mode (24) is approximated by209

β(l,m) ' π

M

M2,M∑
r,p=1

cos(ρrξl · eθp)ψ2(ρr, ξm · eθp+π
2
), (27)

where ψ2(ρr, s) = 4
∫ R

0
ωrB

ı(ρr, ρ
′) cos(ρ′ξm · e′)dρ′.210

From Eqs. (26) and (27), we see that ξl and ξm are separated into two different func-211

tions, which enables fast computation of the quantum collision operator via the FFT-based212

convolution. The major algorithm is described below.213

3.3. Detailed numerical implementation214

We take the 2D case as an example to demonstrate how the FSM is implemented. First215

the cosine function in Eq. (27) is expressed in terms of the exponential function:216

cos(ρrξl · eθp) =
exp(iρrξl · eθp) + exp(−iρrξl · eθp)

2
, (28)

and for simplicity only the term related to exp(iρrξl · eθp) is considered in this subsection,217

as the term related to exp(−iρrξl · eθp) can be handled similarly.218

The spectrum of the cubic collision operators Q1 can be expressed as219

Q̂ı1 (ξj) '
π

M

M2,M∑
r,p=1

∑
l

exp(iaρrξl · eθp)f̂ ıl

×
∑

m+n=j−l
m,n

exp(ibρrξm · eθp)f̂ m × exp(iρrξn · eθp)f̂ nψ2(ρr, ξm+n · eθp+π
2
)︸ ︷︷ ︸

Crp2 (m+n)

, (29)

where the underlined term is a convolution that can be computed via FFT with a cost of220

O(N2 logN), and the result of which multiplied by ψ2(ρr, ξm+n · eθp+π
2
) forms Crp

2 (m + n).221

The terms Crp
2 (m + n) and exp(iaρrξl · eθp)f̂ ıl form the convolution again, which can be222

calculated by FFT again with a cost of O(N2 logN). Since this convolution has to be223

repeated MM2 times, the total computational cost will be O(MN3 logN), as M2 should be224

at the order of N , see the paragraph after Eq. (25).225

When Crp
2 in Eq. (29) is obtained, the spectrum of the cubic collision operator Q4 can226

be expressed as:227

Q̂ı4 (ξj) '
π

M

∑
l

f̂ ıl ×
M2,M∑
r,p=1

Crp
2 (j− l). (30)

which can be calculated by FFT with the cost O(N2 logN).228

To calculate Q̂ı2 , we first introduce229

Crp
1 (l + m) = exp(iaρrξl · eθp)f̂ ıl × exp(ibρrξm · eθp)ψ2(ρr, ξm · eθp+π

2
)f̂ m, (31)
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which is a convolution between the function exp(iaρrξl ·eθp)f̂ ıl and exp(ibρrξm ·eθp)ψ2(ρr, ξm ·230

eθp+π
2
)f̂ m. Then, the spectrum of the cubic collision operator Qı2 can be expressed as231

Q̂ı2 (ξj) '
π

M

∑
n

f̂ ın ×
M2,M∑
r,p=1

Crp
1 (j− n), (32)

which can be solved by the FFT-based convolution; the total computational cost should be232

O(MM2N
2 logN), since Crp

1 needs to be evaluated MM2 times, which is at the order of233

MN3 logN .234

The spectral of the cubic collision operator Q3, as given in Eq. (22), can be expressed as:235

Q̂ı3 (ξj) '
π

M

∑
l

f̂ ıl

M2,M∑
r,p=1

∑
m+n=j−l

m,n

exp(iaρrξn · eθp)f̂ ın × exp(iρrξm · eθp)f̂ mψ2(ρr, ξm · eθp+π
2
),

(33)

where the computational cost will be O(MN3 logN), like Q̂ı1 .236

When Q̂ı is obtained, the collision operator Qı can be obtained through the following237

FFT, with a cost O(N2 logN):238

Qı(v) =
∑
j

Q̂ı(ξj) exp(iξj · v). (34)

Therefore, if the FFT-based convolution is applied, for the case of dv = 2, the over-239

all computational cost is O(MN3 logN), while for dv = 3, the computational cost is240

O(M2N4 logN). Note that the procedure in deriving the FSM for QBE is essentially the241

same as that for the classical Boltzmann equation, therefore, it can be proved that the present242

FSM conserves the mass and satisfies the H-theorem, while errors on the approximations of243

momentum and energy are spectrally small [15, 16].244

4. The spatially-homogeneous relaxation of quantum gases245

In this section, we assess the performance of FSM in the study of spatially-homogeneous246

relaxation of binary gas mixtures of components A and B. Since the property of self-collision247

operators has been well investigated [18, 16, 29], we focus on the cross-collision collision248

operators only. This situation actually occurs in Fermi gases where interactions between249

fermions with the same spin (i.e. described by the self-collision operator) are much smaller250

than those between opposite spins (i.e. described by the cross-collision operator) [12, 35, 36].251

For simplicity, we consider the case of dv = 2, with the following differential cross-section [35]:252

dσı

dΩ
=

2π~
mr|u|

1

log2(a2
sm

2
r|u|2/~2) + π2

, (35)

where as is the s-wave scattering length that can be controlled experimentally via Feshbach253

resonance, and mr = mAmB/(mA +mB) is the reduced mass.254
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The evolution of VDFs for components A and B in the spatially-homogeneous relaxation255

is governed by the following equations256

∂fA

∂t′
= QAB(fA, fB),

∂fB

∂t′
= QBA(fB, fA), (36)

with the following cross-collision operator257

Qı(f ı, f ) =

(
m

mA

)2 ∫ ∫
dΩdv∗

log2(a|u|2) + π2

{
f (′vı∗ )f ı(′vı)[1 + θ0f

(v∗)][1 + θ0f
ı(v)]

− f (v∗)f ı(v)[1 + θ0f
(′vı∗ )][1 + θ0f

ı(′vı)]

}
, (37)

where t′ = tmAkBTr/π~mr, a = 2kBTra
2
sm

2
r/m

A, and the velocity have been normalized258

by
√

2kBTr/mA, with Tr being the reference temperature. We will study how the initial259

non-equilibrium VDFs260

fA(t = 0,v) = fB(t = 0,v) =
8

π
|v|2 exp(−|v|2), (38)

relax to the final equilibrium states.261

4.1. The equal-mass mixture262

Since the mass and energy are conserved during the collision, for the equal-mass case263

(i.e. mA = mB), the final equilibrium state corresponding to the initial condition (38) is264

fA(t =∞,v) = fB(t =∞,v) =

{
1

Z
exp

(
|v|2

T

)
− θ0

}−1

, (39)

where the equilibrium fugacity and temperature (Z, T ) are (7.0363, 1.2219), (1.2732, 2.0000),265

and (0.6291, 2.5671) for the Fermi, classical, and Bose gases, respectively.266

Figure 1 depicts the relaxation-to-equilibrium process of VDFs, as well as the time evo-267

lution of the fourth- and sixth-order moments, when Eq. (36) is solved by the Euler method268

with a time-step of 0.0025, and the collision operator (37) is approximated by the FSM with269

the following parameters: the number of solid angle is discretized uniformly with M = 10,270

the velocity domain [−L,L)2 with L = 6 is discretized by N = 64 uniform grid points271

in each direction, and M2 = 64 is chosen in the Gauss-Legendre approximation used in272

Eq. (24). It can be seen from Fig. 1(a,b,c) that the final equilibrium states agree well with273

the analytical solutions (39). Mathematically, it has been proven that the FSM preserves274

the mass accurately for the classical Boltzmann equation, while the energy is conserved with275

spectral accuracy [15]; from the numerical simulation with the above detailed parameters,276

these conclusions hold also for the QBE. For example, for Fermi gas the maximum rela-277

tive variations in mass and energy during the whole relaxation process are 2.7× 10−15 and278

4.4× 10−7, respectively. Thus, the VDF, as well as its fourth- and sixth-order moments, are279

chosen as reference solutions to investigate factors that affect the accuracy of FSM, such280
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Figure 1: (top row) The spatially-homogeneous relaxation of VDFs for (a) Fermi, (b) classical, and (c)
Bose gases, where the differential cross-section is given by Eq. (35) with the normalized parameter a = 1 in
Eq. (37). Due to symmetry, only the region v1 > 0 is shown. In each subfigure, from bottom to top (near
v1 = 0), the time t′ for each line is 0, 0.25, 0.50, 0.75, 1, 1.25, and 10, respectively. The symbol ‘cross’
shows the equilibrium VDF (39). (bottom) The time evolution of the fourth- and sixth-order moments of
the VDF: M4(t) =

∫ ∫
f(v, t)|v|4dv and M6(t) =

∫ ∫
f(v, t)|v|6dv. Solid, dashed, and dash-dotted lines are

the results for Fermi, classical, and Bose gases.

as the number of discrete velocities N , discrete solid angles M , and the value of M2 in the281

Gauss-Legendre quadrature.282

Figure 2 shows the absolute error in the VDF when the velocity grids are kept at 64 ×283

64, while values of M and M2 are reduced. When the value of M2 is fixed, it is seen284

that decreasing the number of discrete solid angle M from 10 to 5 affects only slightly285

the accuracy. Therefore, M = 5 can be considered accurate, as it has been chosen in our286

previous numerical simulations of the classical Boltzmann equation [18, 19]. The value of287

M2, however, strongly affects the accuracy. Theoretically, M2 should be at the order of N288

to make the approximation in Eq. (24) sufficiently accurate for each frequency component,289

see the paragraph after Eq. (25). However, at large frequency components the kernel mode290

β(l,m) in Eq. (27) and the spectrum of the VDF are sufficiently small, therefore, M2 can291

be smaller than N : in Fig. 2 it is seen that even M2 = 10 has good accuracy.292

Figure 3 shows the relative errors of the zeroth-, second-, fourth-, and sixth-order mo-293

ments of the VDF as functions of the time. Odd-order moments are not included because294

they are zero due to the symmetry in VDF. From this figure we can see that the accuracy295

deteriorates when the number of velocity points and frequency components N2 decreases.296
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the FSM with the same parameters as used in Fig. 1.
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Figure 3: The relative errors of the zeroth-, second-, fourth- and sixth-order moments of the VDF of Fermi
gas as compared to the reference solutions with N = M2 = 64. M = 5 and M2 = 10 are chosen, while other
parameters are the same as in Fig. 1. Note that M0,r and M2,r are calculated based on the initial VDF,
since theoretically the mass and energy is conserved during the homogeneous relaxation.
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Figure 4: The relaxation of VDFs in the binary mixture with mA/mB = 4. (top row) The spatially-
homogeneous relaxation of VDFs fA for (a) Fermi, (b) classical, and (c) Bose gases, where the differential
cross-section is given by Eq. (35) with the normalized parameter a = 1 in Eq. (37). In each subfigure, from
bottom to top (near v1 = 0), the time t′ for each line is 0, 2, 4, 6, 1, 8, 10, 12, and 80, respectively. (bottom
row) The spatially-homogeneous relaxation of VDFs fB for (d) Fermi, (e) classical, and (f) Bose gases. Note
that in all the figures, the symbol ‘cross’ shows the equilibrium VDF given by Eq. (40). Due to symmetry
only the region v1 > 0 is shown.

When N = 64, from Fig. 3(a) we find that the mass is conserved to the machine accuracy.297

However, as N decreases, the mass is not strictly conserved, e.g. when N = 24. This is298

because the discretized frequency components do not cover the whole spectrum of VDF,299

such that some information is lost, and consequently the mass is not conserved; if higher300

accuracy is required when N = 24, the velocity domain should be reduced by decreasing the301

value of L such that the discretized frequency components will cover the whole spectrum302

of VDF, as from Eq. (21) we find that the range of the frequency is inversely proportional303

to L. From Fig. 3(b) we see that the energy (temperature) is not conserved, but the max-304

imum relative deviation from the initial value is about 10−5 when N = 24 and 10−6 when305

N = 32. Although the relative error generally increases with the order of moment, deviations306

of the sixth-order moment from reference solutions are still very small for the parameters307

considered.308

4.2. The unequal-mass mixture309

We now consider the case of unequal-mass mixture, where the molecular mass of the310

A-component mA is 4 times of that of the B-component mB. Due to the conservation of311

mass of each component and the total energy of the mixture, the initial condition (38) leads312
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Figure 5: The relaxation of the second-, fourth-, and sixth-order moments of VDFs in the binary mixture
with mA/mB = 4. Here the moments are defined as M ı

l (t) = (mı/mA)3
∫ ∫

f ı(v, t)|v|ldv, where l = 2, 4,
and 6. Other parameters are the same as used in Fig. 4.

to the following equilibrium states:313

f ı(t =∞,v) =

{
1

Z ı
exp

(
|v|2

T

)
− θ0

}−1

, (40)

where the fugacities ZA and ZB of each component and the temperature T of the mixture are314

(ZA, ZB, T ) = (7.9246, 0.7284, 1.1634), (1.3320, 0.3330, 1.9118), and (0.6461, 0.2287, 2.4516)315

for Fermi, classical, and Bose gases, respectively. Note that for Bose gas, there is a compu-316

tational challenge, as under the fugacity limit Z → 1, the viscosity decreases to zero and317

the equation becomes stiff so that the time step will be very small in explicit method; some318

implicit numerical methods may be used [37]. However, in this case Z = 0.2287 is much319

smaller than 1, so the simple explicit numerical method is used.320

In the numerical simulation, the velocity space [−L,L)2 with L = 12 is discretized by321

64 × 64 uniformly-distributed grid points: we choose L = 12 because the component B322

has a smaller molecular mass, so it requires larger velocity domain. For the component B,323

however, N = 64 and L = 12 is roughly equivalent to N = 32 and L = 6 in the equal-mass324

mixture in Sec. 4.1. We also choose M = 5 and M2 = 10, as the accuracy is only improved325

slightly when the two values are doubled. These parameters should predict solutions with326

the same order of error as the case of N = 32 in the equal-mass case considered in Sec. 4.1,327

where the conservation of mass and total energy is preserved with the relative error less than328

10−8 and 10−6, respectively.329

The relaxation of the two initial VDFs (38) is depicted in Fig. 4, while the time evolution330
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of the second-, fourth-, and sixth-order moments are shown in Fig. 5. It is seen that near331

the region v1 = 0, the VDF of component A increases monotonically with time, while that332

of the component B first increases rapidly, and then decreases as time t′ goes by. This is333

due to the energy exchange between the two components: from the first row in Fig. 5 we334

see that the component B receives energy from the component A, so the width of VDF of335

component B has to increase while the value of VDF near v1 = 0 has to decrease. When t′336

is large enough, the final equilibrium states have been achieved for both components, and337

the simulated VDFs agree well with the analytical solutions (40). Finally, when compared338

to the equal-mass mixture case without energy transfer between the two components, it is339

seen in Fig. 5 that the fourth- and sixth-order moments of the component A first decrease340

slightly, due to the energy output to the component B, and then increase with time, while341

those of the component B always increase until reach the corresponding equilibrium values.342

It should be emphasized that the two numerical examples presented in this section only343

show the correctness of relaxation to final equilibrium states. However, whether the relax-344

ation process (i.e. the speed of relaxation) is accurately captured by the FSM or not is not345

clear, since we have no analytical solutions to compare with for quantum gases, although346

for the classical Boltzmann equation of Maxwell molecules (i.e. the intermolecular force347

is proportional to r−5, where r is the intermolecular distance), the relaxation process has348

been verified by analytical BKW solutions [18, 24]. In the next section, we will assess the349

accuracy of FSM by comparing the numerical results of transport coefficients to analytical350

and numerical solutions presented in literature [38, 35, 36].351

5. Transport coefficients352

Compared to classical gases, transport coefficients of quantum gases are hard to measure353

experimentally. Therefore, an accurate and efficient method is urgently needed to solve the354

QBE. The transport coefficients such as shear viscosity, thermal conductivity, and diffusion355

can be calculated by means of the Chapman-Enskog expansion [7]. The basic idea of this356

expansion is to expand the VDF around the local equilibrium (8) in terms of a small pa-357

rameter related to the Knudsen number, which gives the Euler equations at the zeroth-order358

approximation. For the first-order approximation, i.e. a solution of Eq. (2) in the form of359

Eq. (11) is sought, the Navier-Stokes equations can be derived, where the small perturbation360

satisfies (in what follows we focus on two-component mixtures; detailed calculation can be361

found, e.g. in Ref. [38]):362

Lı(hı, h) =

{
mı

kBT

∑
ij

Dı
ij

[
vr,ivr,i −

δij
dv
|vr|2

]
+ vr · dı

+
vr · ∇xT

T

[
mı|vr|2

2kBT
− dv + 2

2

G(dv+2)/2(Z ı)

Gdv/2(Z ı)

]}
f ıeq(1 + θ0f

ı
eq), (41)

where Dij = (∂Vj/∂xi + ∂Vi/∂xj)/2 is the rate-of-strain tensor. Note that the first, second,363

and third terms on the right-hand size of Eq. (41) are related to the shear viscosity, diffusion,364

and thermal conductivity, respectively. Since the definition of the coefficient of mass diffusion365
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refers to a state of gas in which no external forces act on the molecules, and the gas pressure366

and temperature are uniform [7], the complicated expression for dı is simplified to dı =367

∇xZı

Zı
= ∇xµı

kBT
[38].368

The constitutive relations at the first-order Chapman-Enskog expansion are given by369

P =
∑
ı

δijP
ı
ı − 2η

[
Dij −

Tr(Dij)

dv
δij

]
, Q = −κ∇T, JM = −D∇M, (42)

where P is the total pressure of the mixture, and JM is the mass current induced by the370

population difference M = nı − n.371

The shear viscosity η, thermal conductivity κ, and mass diffusion coefficient D can be372

found in the following three steps. First, we obtain the perturbation functions h by solving373

the following equations (the detailed methods will be presented in following subsections):374

Lı(hı, h) = f ıeq(1 + θ0f
ı
eq)

mı

kBT
Dı
ij

[
vr,ivr,i −

δij
dv
|vr|2

]
, (43)

Lı(hı, h) = f ıeq(1 + θ0f
ı
eq)

vr · ∇T
T

[
mı|vr|2

2kBT
− dv + 2

2

G(dv+2)/2(Z ı)

Gdv/2(Z ı)

]
, (44)

Lı(hı, h) = f ıeq(1 + θ0f
ı
eq)

vr · ∇xµ
ı

kBT
. (45)

For simplicity, in the following calculations, we define terms on the right-hand sides of375

Eqs. (43)-(45) as the source S ı. Second, with h, we can calculate the total pressure P , heat376

flux Q, and mass current JM according to Eqs. (11) and Eq. (1). Finally, from Eq. (42) we377

can obtain the transport coefficients.378

5.1. Variational principles379

The complicated mathematical structure of the linearized Boltzmann collision operator380

Lı makes the exact solution for the perturbation h in Eqs. (43)-(45) extremely difficult381

to find. Therefore, variational principles are used to find the upper and lower bounds of382

transport coefficients [39]. A simple way is to use the following ansatz:383

hı = C ıS ı, ı = A,B, (46)

where C ı are constants, whose values can be obtained by solving the following two linear384

equations of CA and CB:385 ∫
Lı(C ıS ı, CS) S ı

f ıeq(1 + θ0f ıeq)
dv =

∫
(S ı)2

f ıeq(1 + θ0f ıeq)
dv, ı = A,B. (47)

Expressions for the two constants CA and CB can be simplified analytically, and then386

solved by numerical quadrature (for the classical Boltzmann equation with some special387

forms of differential cross-section, analytical solution may be derived), see Eq. (49) below.388

Also, CA and CB can be computed by the FSM developed in this paper.389
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The variational principle (46) predicts the lower bound of transport coefficients. For the390

classical Boltzmann equation, this variational principle gives accurate transport coefficients391

for Maxwell molecules, while for hard-sphere molecules it underpredicts the transport coef-392

ficients by only about 2 % [7]. Whether this conclusion holds for quantum gases or not is393

not clear; this will be assessed in the following numerical examples.394

5.2. Direct numerical simulation395

A direct numerical solution of the linear equations in Eqs. (43)-(45) is necessary to find396

accurate transport coefficients. To this end, we first define the following two constants as397

the maximum values of the equilibrium collision frequencies in Eq. (13), for classical gases:398

µı =
∑

 µ
ı
c (v = 0) with ı = A,B. Then, the linear perturbation can be solved through the399

following iterative scheme [17]:400

hı,ι+1 =
−S ı + Lı(hı,ι, h,ι) + µıhı

µı
, ı = A,B, (48)

where the superscripts ι and ι+ 1 are the iteration steps.401

The reason to use µı in the denominator of Eq. (48) instead of the equilibrium collision402

frequency µıc , as normally used in the iterative scheme [17], is that the collision frequency403

approximated by the FSM approaches zero at large relative collision velocity u for the special404

differential cross-section (35). Therefore, the iteration will diverge when µıc is used in the405

denominator. Numerical simulations below have proven that the iterative scheme (48) is406

unconditionally stable, while using µıc in the denominator results in non-converged solution407

when the quantum gas is highly degenerated, that is, when the fugacity Z approaches infinity408

and one for Fermi and Bose gases, respectively.409

In the following numerical simulations, the iteration is terminated until the relative error410

in the transport coefficient between two consecutive steps is less than 10−5. Starting from411

the zero perturbation hı,ι=0 = 0, only several dozen iterations are needed to reach this412

convergence criterion.413

5.3. Results: three-dimensional case414

We consider the two-component population balanced Fermi gases, with mA = mB = m.415

In most experiments, the two components move together and only one VDF is enough to416

describe the system state. Due to Pauli’s exclusion principle, the s-wave scattering happens417

between molecules with different spins. As a consequence, only the cross-collision operators418

are considered. For simplicity, the hard-sphere molecular model is used, where the differential419

cross-section is dσı/dΩ = a2
s.420

Applying the Chapman-Enskog expansion to the QBE, one obtains the shear viscosity421

and thermal conductivity as [38]422

η =
5m

32a2
sIB

√
kBT

m
G2

5/2(Z), κ =
75kB

256a2
sIA

√
kBT

m

[
7

2
G7/2(Z)− 5

2

G2
5/2(Z)

G3/2(Z)

]2

, (49)
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Figure 6: The shear viscosity η and thermal conductivity κ of Fermi (top row) and Bose (bottom row) gases,
as functions of the fugacity Z, where η0 and κ0 are respectively the shear viscosity and thermal conductivity
at the classical limit Z = 0, which are obtained from the analytical solution (49) that is derived from the
variational principle [40, 38]. Solid lines: analytical solutions (49). Circles: numerical solutions using the
variational principle, i.e. by solving Eq. (47) numerically via the FSM. Triangles: numerical results obtained
by solving Eq. (48) via the FSM.

where423

IA =

∫ ∞
0

dξ0ξ
4
0

∫ ∞
0

dξ′ξ′7
∫ 1

0

dy′
∫ 1

0

dy′′F · (y′2 + y′′2 − 2y′2y′′2),

IB =

∫ ∞
0

dξ0ξ
2
0

∫ ∞
0

dξ′ξ′7
∫ 1

0

dy′
∫ 1

0

dy′′F · (1 + y′2 + y′′2 − 3y′2y′′2),

F =
Z2 exp(−ξ2

0 − ξ′2)

[1− θ0Z exp(−ξ2
1)][1− θ0Z exp(−ξ2

2)][1− θ0Z exp(−ξ2
3)][1− θ0Z exp(−ξ2

4)]
,

ξ2
1 = (ξ2

0 + 2ξ0ξ
′y′ + ξ′2)/2, ξ2

2 = (ξ2
0 − 2ξ0ξ

′y′ + ξ′2)/2, ξ2
3 = (ξ2

0 + 2ξ0ξ
′y′′ + ξ′2)/2, and424

ξ2
4 = (ξ2

0 − 2ξ0ξ
′y′′ + ξ′2)/2.425

For the one-component Bose gas, the differential cross-section is dσı/dΩ = 2a2
s [40], so426

the shear viscosity and thermal conductivity will be four times smaller than that of the427

population balanced Fermi gas, because both the self- and cross-collision operators have to428

be considered.429

Figure 6 shows the shear viscosity and thermal conductivity of quantum Fermi and430

Bose gases as functions of the fugacity. It is seen that the shear viscosity and thermal431

conductivity of the Fermi (Bose) gas increase (decrease) with the fugacity Z. The FSM432

solutions of variational equation (47) agree well with the analytical solutions (49) obtained433
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Figure 7: The normalized shear viscosity (a, c) and mass diffusion coefficient (b, d) of 2D Fermi gas as
functions of the (a, b) normalized temperature T/TF at (kFas)

2 = 2 exp(−1) and (c, d) s-wave scattering
length as at T/TF = 1. Dashed lines represent results from the variation principle adopted from Ref. [35].
Solid circles: FSM solutions of the variational principle (47). Open circles: the FSM solutions obtained
by the iterative scheme (48). Nearly-straight lines in (a) and (b) are the corresponding results for classical
gases. Note that TF = (~kF )2/2mkB is the Fermi temperature, and kF =

√
2πn is the Fermi wave vector,

with n being the total number density of both spin components.

by the same variational principle, which proves that our FSM has high accuracy.434

With the accuracy of the FSM verified by analytical solutions, we assess the accuracy435

of the variational principle that only gives the lower bounds of transport coefficients, by436

solving the linearized equation using the iterative method (48). Results are shown in Fig. 6437

as triangles. For Fermi gas, at Z increases from 0 to 100, the relative error between the438

accurate shear viscosity (thermal conductivity) and those from the variational principle439

increases from 1.6% (2.8%) to 5.2% (6%). For Bose gas, this relative error in thermal440

conductivity increases from about 2.8% when Z = 0 to 5.2% when Z = 0.9, while that in441

shear viscosity decreases from 1.6% when Z = 0 to 0.2% when Z = 0.9.442
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Figure 8: The normalized shear viscosity of 2D Fermi gas as a function of the temperature, where the
interaction strength between fermions with equal mass but opposite spins is (kFas)

2 = 2. Dashed lines
represent results from the variation principle adopted from Ref. [36]. Solid circles: the FSM solutions of the
variational principle (47). Open circles: the FSM solutions of the iterative scheme (48).

5.3.1. Shear viscosity of the mass-balanced mixture443

We first consider the equal-mass mixture, i.e. mA = mB = m. Numerical results for444

the shear viscosity and spin diffusion coefficients are shown in Fig. 7, for a wide range of445

temperature and s-wave scattering length. It is clear that the variational solutions solved by446

the FSM agree well with the numerical solutions of Brunn [35] for both classical and Fermi447

gases, while the accurate shear viscosity and mass diffusion coefficient obtained from the448

iterative scheme (48) have very limited difference to the variational solutions (i.e. less than449

1%) when T/TF < 1. However, at very small values of T/TF , accurate transport coefficients450

are larger than the variational ones by about 5% for Fermi gas. This observation is consistent451

with the 3D Fermi gas case investigated in Sec. 5.3.452

We continue to compare our FSM solutions to the numerical solutions provided by453

Schäfer [36] in Fig. 8. The agreement is acceptable in general, especially for the case of454

classical gases. For Fermi gases, the shear viscosity obtained from the FSM agrees well455

with the variational solutions [36] in the low and high temperature limits. However, in the456

intermediate regime (near T/TF = 0.5) where the shear viscosity is minimum, both of our457

FSM solutions, obtained from the variational principle (47) and the iterative scheme (48),458

are higher than the variational results of Schäfer [36] by about 15%.459

5.3.2. Shear viscosity of mass-imbalanced mixtures460

We further calculate the shear viscosity of the equal-mole mixture of 2D Fermi gas, where461

the A-component has a larger molecular mass than the B-component. In Fig. 9 the shear462

viscosity when mA/mB = 1, 2, 4, and 40/6 is plotted. It is observed in Fig. 9(a) that, when463

the s-wave scattering length is fixed, that is, when the ratio of the two-body binding energy464

Eb = 1/2mra
2
s to the Fermi energy of A-component is equal to exp(1), the shear viscosity465

first decreases when the temperature increases, and then increases with the temperature,466

for all the molecular mass ratios considered. However, the reduced temperature T/TF at467
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Figure 9: The shear viscosity of equal-mole mixture of 2D quantum Fermi gas, where the molecular mass
of each components are different. The shear viscosity (a) and viscosity-entropy ratio (b) of 2D Fermi gas
as a function of the normalized temperature T/TF at (kFasmr/m

A)2 = exp(−1). The shear viscosity
(c) and viscosity-entropy density ratio (d) of 2D Fermi gas as functions of the s-wave scattering length
(kFasmr/m

A)2 when T/TF = 1. Symbols: the FSM solutions of the iterative scheme (48). Note that
TF = (~kF )2/2mAkB is the Fermi temperature of A-component, and kF =

√
2πn is the Fermi wave vector,

with n being the total number density of both spin components.

which the minimum shear viscosity is reached increases with the mass ratio. The same trend468

applies also to the viscosity-entropy density ratio in Fig. 9(b). Interestingly, in Fig. 9(a)469

we see that the minimum shear viscosity almost remains unchanged when the molecular470

mass ratio varies; this is in sharp contrast to the variational results [35], which states that471

the shear viscosity is proportional to the reduced mass, i.e. decreases when the mass ratio472

increases. This discrepancy may be caused by the fact that the variational ansatz used in473

Eq. (4) of Ref. [35] is different to ours in Eq. (46) when the molecular mass ratio is not one.474

Figure 9(c) shows the variation of the shear viscosity against the interaction strength,475

when the temperature of the mixture is equal to the Fermi temperature of A-component.476

When the molecular mass ratio is fixed, there is a minimum value of shear viscosity; and477

it seems that this minimum viscosity decreases when the mass ratio increases, but quickly478

saturated at mA/mB = 40/6. In addition, at small enough interaction strength, i.e. in479
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the right part of Fig. 9(c), the shear viscosity decreases when the molecular mass ratio480

increases, while at large interaction strength, there is no monotonous relation between the481

shear viscosity and mass ratio.482

Figure 9(b) and (d) depict the ratio between the shear viscosity and entropy density. It483

is clear that the minimum viscosity-entropy ratio does not change much when the molecular484

mass ratio varies. Although Brunn [35] claimed that the universal bound of the viscosity-485

entropy density ratio obtained from string theory methods [41]486

kBη

s~
>

1

4π
(50)

may be violated at large molecular mass ratios, our numerical calculations suggested this is487

not the case, at least for the QBE with the differential cross-section (35).488

6. Conclusions489

We have developed a FSM to solve the quantum Boltzmann equation for gas mixtures490

with a computational cost of O(Mdv−1M2N
dv logN), which is the same as that for the classi-491

cal Boltzmann equation when the general form of intermolecular potential is considered [17].492

The spatially-homogeneous relaxation problem has been used to determine factors that af-493

fect the accuracy of FSM. It has been shown that, the solid angle (or polar angle in the494

two-dimensional problem) can be discretized uniformly by M2 = 5 × 5 (or M = 5) points,495

while the number of abscissas in the Gauss-Legendre quadrature used in Eq. (24) can be as496

small as M2 = 10, when N = 32 velocity points are used to discretize the velocity distribu-497

tion function in each direction. The FSM handles the collision in the frequency space, and498

conserves the mass exactly, while the momentum and energy are conserved with spectral499

accuracy.500

Based on the variational principle that predicts the lower bounds of transport coefficients,501

the shear viscosity and thermal conductivity have been calculated by the FSM for both Fermi502

and Bose gases. Comparisons with the analytical solutions demonstrated the accuracy of the503

proposed FSM. Accurate transport coefficients are also obtained by solving the linearized504

Boltzmann collision operator via the iterative scheme (48). As expected, these transport505

coefficients are larger than those from the variational principle. Generally speaking, the506

relative error between the accurate and variational transport coefficients increases with the507

fugacity. The shear viscosity of a two-dimensional equal-mole mixture of Fermi gases has also508

been investigated for components with different molecular masses. Our numerical solutions509

suggested that the universal bound of the viscosity-entropy density ratio (50) predicted by510

the string theory is satisfied.511

Finally, we pointed that the established accurate FSM to solving the quantum Boltzmann512

collision operator is ready to be used to calculate the transport coefficients of noble gases513

based on ab initio potentials [42, 43]. Also, the FSM can be used to assess the accuracy of514

quantum kinetic models [44, 45, 46]. Furthermore, the FSM can be incorporated into other515

multi-scale methods [47, 48, 37] that solve the Boltzmann equation accurately and efficiently516

from the hydrodynamic to free-molecular flow regimes, which is encountered in experiments517
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where the quantum gas is trapped so that its density is maximum at the trap center (i.e.518

hydrodynamic regime) and vanishes near the trap edge (i.e. free molecular flow regime). In519

the future we will investigate the interesting spatially-inhomogeneous oscillations [12, 13, 14]520

and spin diffusion [30, 31, 32] in quantum gases.521
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