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Abstract

This paper introduces the concept of Resilience Engineering in the con-

text of space systems design and a model of Global System Reliability and

Robustness that accounts for epistemic uncertainty and imprecision. In par-

ticular, Dempster-Shafer Theory of evidence is used to model uncertainty in

both system and environmental parameters. A resilience model is developed to

account for the transition from functional to degraded states, and back, dur-

ing the operational life and the dependency of these transitions on system level

design choices and uncertainties. The resilience model is embedded in a net-

work representation of a complex space system. This network representation,

called Evidence Network Model (ENM), allows for a fast quantification of the

global robustness and reliability of the system. A computational optimisation

algorithm is then proposed to derive design solutions that provide an optimal

compromise between resilience and performance. The result is a set of design

solutions that maximise the probability of a system to recover functionalities in

the case of a complete or partial failure and at the same time maximises the
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belief in the desired target value of the performance index.

Keywords: Epistemic uncertainty, Resilient satellite, Complex systems,

Evidence Theory

Acronyms

AOCS Attitude and Orbit Control Subsystem

bpa basic probability assignment

DSM Design Structure Matrix

DST Dempster Shafer Theory5

EBRO Evidence-Based Robust Optimisation

ENM Evidence Network Model

FE Focal Element

IDEA Inflationary Differential Evolution Algorithm

LEO Low Earth Orbit10

OBDH On-board Data Handling

TTC Telemetry, Tracking and Command

1. Introduction

With the increase in computing power, more and more sophisticated numeri-

cal methods have been applied to solve problems of increasing complexity. In the15

classical approach to engineering design, Design by Formula, the active work of

engineers was required throughout the whole design process. In the more recent

Design by Analysis [1] approach, the development of software analysis tools
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(numerical methods) shortened the design process and enabled a better un-

derstanding of the problem without the use of expensive experimental analyses.20

The design and associated decision-making process were still performed by engi-

neers, but the analysis of different configurations was automatised by numerical

procedures. A further advancement was introduced with Design by Optimi-

sation [2, 3], where numerical optimisation tools were coupled with numerical

simulations to automatically identify globally, or locally, optimal design solu-25

tions. Finally, in the last two decades an increasing attention has been devoted

to tackle optimisation under uncertainty. Design for Reliability and Robust-

ness and more in general Multi-Disciplinary Design (MDO) under Uncertainty

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is radically changing systems engineering, making

designers and decision makers able to handle higher degrees of complexity.30

This paper proposes a further methodological advancement with specific

application to the design of space systems. Space systems are complex systems

that involve multiple interconnected components and disciplines with complex

couplings: payload, structure, thermal analysis, attitude, control, etc. A system

level optimal solution cannot be found by optimising the single subsystems35

independently. Furthermore, the design and optimisation of space systems have

to account for uncertainty, in particular in the early design phase, given the

required robustness, reliability and resilience of these systems.

The most common and well-established approach to handle uncertainty in

space systems engineering is to use safety margins and redundancies [14, 15, 16].40

These traditional methods, however, lack an appropriate quantification of uncer-

tainty. As a consequence, there can be an overestimation or an underestimation

of the effect of uncertainty which can lead to either an increase in costs and de-

velopment time or to the occurrence of undesirable events. As it was recognised

during the Columbia Accident Investigation Board (CAIB) [17], the classic pat-45

tern that brings to failure, common to many other tragic accidents [18], is the

combination of production pressure, that pushes to reduce the safety margins,

and a fragmented problem solving that lacks a system level understanding. Sys-

tems engineering can address the required holistic view on system performance
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and evolution [19, 20] but the proper quantification of margins requires inte-50

grating rigorous uncertainty quantification techniques in the context of systems

engineering.

If one looks at the different types of uncertainty that a system can be subject

to, two macro-categories can be identified: aleatory uncertainty and epistemic

uncertainty [21]. Aleatory uncertainty is natural randomness which cannot be55

reduced. Epistemic uncertainty is due to the lack of information or incomplete

data. This type of uncertainty is reducible by acquiring more knowledge on the

problem. In this work we model epistemic uncertainty by means of Dempster-

Shafer theory of evidence (DST) [22, 23, 24] which offers a natural way to assign

degrees of belief to the expected performance of a system. Recent examples of60

the application of system-level optimisation principles, including uncertainty,

to the design of space systems can be found in [25] and [26]. Note however,

that the former proposes an exponentially complex computational method that

cannot be used for large scale systems while the latter does not include epistemic

uncertainty.65

This paper takes a further step forward and proposes an approach to Re-

silience Engineering in the context of space systems. Our proposed concept of

Resilience Engineering extends and integrates the concepts of Design for Re-

liability and Design for Robustness and introduces the use of DST to model

epistemic uncertainty. The idea is that a resilient system should be able to en-70

dure disturbances and recover from shocks [27, 18, 28, 29] while maintaining an

optimal level of performance and functionalities. In other words, the system is

expected to transition between different potentially degraded states but with-

out losing the ability to maintain or recover, in full or in part, its functionalities

and associated performance. In this sense, the concept of resilience, that we75

will develop in this paper, blends elements of robustness and reliability. In this

framework, the aim of resilience engineering is to maximise performance and

resilience at the same time. This can be translated into finding the design so-

lution that maximises the level of performance and active functionalities under

the effect of uncertainty that affects the transition to multiple states.80
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The ability to endure disturbances can be engineered by maximising robust-

ness. In particular, one could be interested in the worst case scenario in which

the effect of uncertainties is maximum. In mathematical terms, robustness can

be translated into a deterministic min-max optimisation problem [6] that aims

at maximum performance in the worst case scenario. This aspect is here com-85

plemented with the ability to recover after shocks. A shock can be seen as a

probabilistic transition to a degraded state. A system reliability model is then

introduced to quantify these transitions and relate them to the design solu-

tions. As an example, we consider the design of a satellite (but these concepts

have a broader applicability). The reliability model mixes random occurrences90

(aleatory) of both disaster and repair events, during the satellite lifetime, and

transitions from fully functional to degraded states (and back) that depend on

design solution and epistemic uncertain parameters. The satellite is modelled as

a finite multi-state system and the stochastic transitions between states are de-

scribed as a Homogeneous Continuous Time Markov Chain (HCTMC)[30]. Both95

performance and reliability are assumed to depend on a number of uncertain

and design system parameters. In the preliminary design phase, this uncertainty

is epistemic in nature and thus is here modelled with DST. The reliability model

is then integrated into the worst-case scenario optimisation problem by formu-

lating and solving a constrained min-max problem under epistemic uncertainty100

[31].

Then, an Evidence Network Model (ENM) is proposed to represent a com-

plex space system with multiple, coupled subsystems and disciplines. This

representation allows one to explore techniques to reduce the computational

complexity of evaluating the resilience and robustness of the system. In this105

model, each node is a subsystem (or component) and each link shares informa-

tion between pairs of subsystems (or components). Although it is customary

in multi-disciplinary design optimisation to represent a system as a set of con-

nected components that exchange information through connecting links (see

[32] for an example of multi-disciplinary optimisation under uncertainty with110

Evidence Theory) in an ENM the specific properties of the nodes and the form
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in which they exchange information is such that Belief functions can be com-

puted in polynomial time. The properties of an ENM and the difference with

respect to common MDO [33, 34] formulations will be explained in Sec. 6. The

ENM formulation was first introduced in [35]. The method was extended in115

[36] to make ENM computationally more efficient. Ref. [37] finally introduced

a time-dependent reliability measure in the ENM.

This work extends the ENM and the results in [37] with a resilient-measure

approach. The applicability of the proposed method to space systems engineer-

ing is demonstrated through the preliminary design of a small satellite in Low120

Earth Orbit (LEO). The goal of the satellite is to take pictures of the Earth. The

satellite is assumed to be composed of 5 subsystems, each of which is subjected

to epistemic uncertainty.

The rest of the paper is organised as follows. Section 2 introduces the concept

of Resilience Engineering. The proposed resilience model is presented in Section125

3. Section 4 introduces the framework of DST to model uncertainties. Section 5

describes the concept of Evidence-Based Robust Optimisation (EBRO) for the

design of complex systems under epistemic uncertainty. The details of the worst-

case optimisation approach is described in Section 5.1. In Section 6 the ENM is

introduced. The satellite design problem is detailed in Section 7. In particular130

Section 7.1 presents the mathematical models for the subsystems, in Section

7.2 the resilience model is applied, Section 7.3 presents the formulation of the

optimisation problem and Section 7.4 applies the ENM. Finally, the results of

the case study are presented and evaluated in Section 8.

2. Resilience Engineering135

The concept of Resilience Engineering is relatively recent and derives from

two decades of research that has first tried to formalise the definition of resilience

and then developed methods to model and quantify the resilience of systems

[27, 38, 28, 29]. Resilience Engineering takes a step forward and attempts to

make systems resilient by design. In this section, we provide our definition of140
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resilience and an overview of our approach to design space systems so that their

resilience and performance are jointly optimised.

Resilience is here defined as the ability of a system to endure disturbances

or regain a desirable operational state after the occurrence of a shock. The

former characteristic of resilience is directly connected to the robustness of the145

system. Hence in the following, we will propose an approach to enhance ro-

bustness when the possible disturbances are captured by a model of epistemic

uncertainty. The latter characteristic of resilience can be quantified by mea-

suring the degree of recovery of system performance, over time, after a failure

[27]. We will then propose a global system reliability model that relates the150

epistemic uncertainty in system and environmental parameters and the design

choices to the transition between different functioning states. Thus, our con-

cept of Resilience Engineering, combines robustness and reliability with a time

component that accounts for the temporal variation of system performance and

the response to disturbances and shocks.155

The uncertainties in system characteristics and environment are deemed to

be epistemic in nature and are modelled with DST as the underlying assumption

is that they cannot be captured by a known probability distribution. This

uncertainty model is applied to a graph representation of the space system, i.e.

the ENM. We then quantify the values of the performance indexes of the ENM160

by propagating the effects of the epistemic uncertainties through the network

and the global reliability model.

We then use an optimisation method to identify those design choices that

maximise performance, over a given operational time, when this performance

is affected by disturbances and the possible intervention of multiple disruption165

and recovery events.

3. Resilience Model

In this section, we introduce a method for modelling possible functionality

impairments and restorations for a space system. We assume a random occur-
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rence of both disasters and repairs during the satellite mission. The satellite170

is modelled as a (finite) multi-state system and its performance, both instanta-

neous and cumulative, depends on its state and trajectory. The stochastic tran-

sitions among states are described as a Homogeneous Continuous-Time Markov

Chain (HCTMC).

We denote the set of possible states of the satellite by X and the satellite175

trajectory in this state space by a stochastic process X : T → X , where T is

the temporal dimension. A stochastic process is uniquely determined by an

initial distribution over the state space, say P0, and a family of conditional

distributions, the transition operators, {P (X(t)|X(s))} where {s, t} ∈ T.

In the case of HCTMC processes, the specification can be simplified [30].

HCTMC is uniquely determined by its transition rate matrix, Q ∈ R|X |×|X|,

which is an analogue to the derivative in the theory of ordinary differential

equations. If the non-diagonal elements of a transition rate matrix are non-

negative and the sum of elements in each row is zero, it induces a family of

transition operators of the form:

P (X(t) = x|X(s) = y) = exp(Q(t− s))(y, x), (1)

where exp denotes a matrix exponential. The probability of obtaining state x

at time t, can then be evaluated by:

P (X(t) = x) =
∑
y∈X

P0(y) exp(Qt)(y, x). (2)

Suppose that our performance measure, which is to be optimised, is a cu-

mulative performance, VT =
∫ T

0
V (t)dt, over the mission time T , and that the

immediate performance V (t) depends on the state of the satellite at the re-

spective time, X(t). Since X is a stochastic process, V (t) and the cumulative

performance VT become random variables. In order to formulate a real valued

objective function for the optimisation problem, we need to take the stochastic

character of VT into account. The objective function can be replaced by a real

functional on the underlying probability space. We choose it to be the expected
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value, thus the objective function becomes:

fV (d,u) := E

{∫ T

0

V (t,X(t); d,u)dt

}
, (3)

where V (t,X(t); d,u) emphasises the dependency of the immediate performance

on the system state, a set of design parameters (or design choices) d, and a set

of uncertain parameters u. Due to the Fubini’s theorem [39], we can switch the

order of integrations to obtain:

fV (d,u) =

∫ T

0

E {V (t,X(t); d,u)} dt. (4)

Because the set of system states, X , is finite, Eq. (4) attains its final form:

fV (d,u) =

∫ T

0

∑
x∈X
{V (t, x; d,u)P (X(t) = x)} dt. (5)

Eq. (5) implies, that we can calculate the objective function in two steps.180

First, solve the stochastic process X(t), and second, integrate the performance

with pre-calculated values of P (X(t)). If the immediate performance function

is defined to be discrete in time, the integration into the expected cumulative

performance in Eq. (5) will become a summation with respect to a counting

measure.185

4. Evidence Framework for Epistemic Uncertainty

A key aspect of this work is that uncertainties in system and environment

parameters are deemed to be epistemic in nature and cannot be quantified by

precise probability distributions. In order to capture this imprecision and lack

of knowledge we propose the use Dempster-Shafer Theory of Evidence. DST190

has been shown to be a useful tool to model uncertainty in a number of engi-

neering applications [22, 23, 24]. Here we take advantage of the fact that DST

can associate a degree of belief in the realisation of a given event without a

precise quantification of the probability of that event to occur. This quantifica-

tion is particularly useful in the early design phase when decisions are affected195

by a fundamental lack of information on system characteristics and subjective
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statements. We assume that the sources of information for each system and en-

vironment parameter are independent and uncertainties are uncorrelated. This

assumption is reasonable in most of the cases and one can reduce to independent

sources by a proper model parameterisation.200

Given an event space, the set Θ of all the mutually exclusive and collectively

exhaustive elementary events (or hypotheses) Θ =
{
θ1, θ2, ..., θi, ..., θ|Θ|

}
is con-

sidered. The different available sources of evidence are treated independently

in this paper. The collection of all non empty subsets of Θ is the Power Set

2Θ = (Θ,∪). One can now assign a probability mass, called basic probability205

assignment (bpa), to the elements of 2Θ. Each element of 2Θ with a non-zero

bpa is called a Focal Element (FE) and is represented with the symbol γ in the

following. The pair 〈Γ, bpaΓ〉 - where Γ 3 γ and bpaΓ 3 bpaγ - is called the Body

of Evidence.

We call the power set U = 2Θ the Uncertain Space. We can now define the

performance index of the system we want to analyse as:

f(d,u) : D × U ⊆ Rm+n → R (6)

where D is the design space for the decision or design parameters d, of dimension210

n, and U the event space for the uncertain parameters u, of dimension m.

DST measures the influence of uncertainty on the quantity f , for a fixed

design vector d∗, by means of two functions, Belief and Plausibility, that gener-

alise the concept of Probability measure given in classical probability theory. If

we are interested in the amount of evidence associated to the event f(d,u) ∈ Φ

we can define

Ω = {u ∈ U |f(d,u) ∈ Φ} (7)

as the corresponding set in U and then compute the cumulative Belief and

Plausibility associated to that event:

Bel(Ω) =
∑

γi⊂Ω,γi∈U
bpa(γi), (8)
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Pl(Ω) =
∑

γi∩Ω6=0,γi∈U

bpa(γi). (9)

From Eqs. (8) and (9) we can state that the belief in the realisation of the event215

f(x) ∈ Φ is the sum of the bpa of all the FEs totally included in Ω, while the

Plausibility is the sum of all the FEs that have a non-null intersection with Ω.

More details about the DST can be found in [24].

5. Evidence-Based Robust and Resilience Optimisation

Given the performance index f in (6), Evidence-Based Robust Optimisation220

aims at finding the decision vector d∗ that maximises the Belief in statement (7),

given a body of evidence, and optimises the set Φ. The concept was introduced

by the authors in [40] and extended in [41]. In this section, we present the basic

unconstrained formulation and its extension to include constraints.

If Φ is the set Φ = {f ≤ ν} then one can assume, without loss of generality,

that the function f in (6) has to be minimised. Then Eq. (7) translates into:

Ω = {u ∈ U | f(d,u) ≤ ν}. (10)

The idea is then to find a solution to the problem:

maxd∈D Bel(f(d,u) ≤ ν)

minν∈R ν
(11)

Problem (11) requires the evaluation of the Belief in statement (10) for

multiple d vectors and ν scalars. In the general case the set Ω changes with

both d and ν and needs to be recalculated together with the max and min values

of f within each focal element in Ω. In the presence of constraints of the form

C ≤ 0 one has to consider the further statement:

ΩC = {u ∈ U |C(d,u) ≤ νC} (12)

with associated Bel(C(d,u) ≤ νC). Problem (11) can be augmented to include
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a hard condition on the belief that the constraints are satisfied:

maxd∈D Bel(f(d,u) ≤ ν)

minν∈R ν

Bel(C(d,u) ≤ νC) > 1− ε

(13)

Problem (13) is equivalent to general mixed robustness-reliability formulations225

and presents the difficulty of calculating the two Belief values associated to

objective function and constraints. In the literature on Reliability Based Op-

timisation some authors proposed methods to efficiently solve the constraint

in (13) by introducing hypotheses on the local differentiability of the constraint

functions, the existence of a Most Probable Focal Element (MPFE) or by a form230

of probabilistic approximation of the belief functions [22, 42, 43] to speed up the

calculation of an approximation of Bel. Besides focusing their attention mainly

on the constraint satisfaction all these methods do not exploit the properties of

the complex system and are restricted by the assumptions on the MPFE and

local differentiability of the constraint functions. Among all vectors d that solve235

problem (13) the most critical one, d∗, corresponds to the minimum values of

ν and νC such that Bel(f(d,u)) is maximum and Bel(C(d,u) ≤ νC)) = 1. We

call the search for d∗, worst-case scenario optimisation in the following. Solving

for the worst-case scenario renders the optimisation problem independent of the

uncertainty quantification method, has a complexity that is independent of the240

number of focal elements and does not require any particular assumption on the

constraint functions.

5.1. Worst-Case Scenario Optimisation

The worst-case scenario optimisation introduced in the previous section can

be translated into the following constrained min-max problem:

mind∈D maxu∈U f(d,u)

s.t.

∀u ∈ U : C(d,u) ≤ 0,

(14)

where f is the objective function (or performance index) and C is the con-

straint function. Problem (14) seeks for the decision vector d that minimises245
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the maximum value of f over the uncertainty space U while guaranteeing that

the constraints are always satisfied for all possible values of u. Following the

approach in [41] before tackling problem (14) the uncertainty space U is mapped

to a unit hyper-cube via an affine transformation. In this way, one can easily

apply a population-based global search algorithm to the solution of (14) as ev-250

ery sample in the unit hyper-cube is directly mapped into one focal element

belonging to U .

The solution approach is summarised in Algorithm 1 and explained in the

following. For more details on the convergence of the method please refer to

[44].255

In line 1 of Algorithm 1 the design point is initialised (randomly if there is

no initial information) and the corresponding feasible worst solution is evalu-

ated. In line 2 the archives are defined: Au for the u vector of the worst-case

scenarios, Ac for the u vector of the maximum value of the constraints and Ad

for the d vector of the optimal design solutions. Then, outer and inner loops are260

alternated until the number of function evaluations is lower than the maximum

allowed number Nmax
feval.

In the outer loop (lines 5-7), a constrained minimisation of the objective

function f over the design space is evaluated in the worst-case between the

uncertainty vectors (scenarios) stored in an archive A = Au ∪Ac:

mind∈D maxu∈A f(d,u)

s.t.

maxu∈A C(d,u) ≤ 0

(15)

Line 7 updates the Ad archive with the solution argmind∈D maxu∈A f(d,u).

In the inner loop (lines 9-11) two optimisations are run in parallel over the

uncertain parameters u ∈ U for the fixed design vector dmin found in the outer

loop, a constrained maximisation of the cost function f and a maximisation of
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Algorithm 1 Constrained minmax

1: Initialise d̄ and run ua = argmax f(d̄,u) s.t. C(d̄,u) ≤ 0

2: Au = Au ∪ {ua}; Ac = ∅; Ad = ∅

3: while Nfval < Nmax
fval do

4: Outer loop:

5: dmin = argmind∈D{maxu∈Au∪Ac
f(d,u)} s.t.

6: maxu∈Au∪Ac
C(d,u) ≤ 0

7: Ad = Ad ∪ {dmin}

8: Inner loop:

9: ua,f = argmaxu∈U f(dmin,u) s.t. C(dmin,u) ≤ 0

10: ua,C = argmaxu∈U C(dmin,u)

11: Au = Au ∪ {ua,f}

12: if Nfval < N ε
fval∨ ∃d ∈ Ad t.c. maxu∈U C(d,u) ≤ 0 then

13: if C(dmin,ua,C) > 0 then

14: Ac = Ac ∪ {ua,C}

15: end if

16: else

17: update ε

18: Ac = {Ac \ uia,C s.t. C(Aid,u
i
a,C) ≤ ε}

19: if C(dmin,ua,C) > ε then

20: Ac = Ac ∪ {ua,C}

21: end if

22: end if

23: end while

24: Cross-check between Ad, Au and Ac.

25: Return [dminmax,uminmax]

the constraint function:

maxu∈U f(dmin,u)

s.t.

C(dmin,u) ≤ 0

(16)
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max
u∈U

C(dmin,u). (17)

Lines 12-16 update the archives previously defined with the solutions of inner

loop: ua,f = argmaxu∈U f(dmin,u) is added to the archive Au and ua,C =265

argmaxu∈U C(dmin,u) is added to Ac if the constraint function is violated.

The algorithm looks for an optimal design vector that minimises the worst-

case solution and is feasible over all the possible scenarios in U . However, such

an optimal solution might not exist and in this case a small and increasing

worst-case constraint violation ε is accepted through a relaxation procedure270

(line 19). In particular, a new constraint C∗ = C + ε is considered where ε is

progressively increased by a user-defined percentage of the maximum constraint

violation if a solution cannot be found. Line 24 finally performs a cross-check

between the solutions stored in the archives Ac, Au and Ad in order to mitigate

the possibility to identify a local maximum that is not the global maximum275

during the optimisation over U .

6. Evidence Network Model

This section introduces the concept of Evidence Network Model (ENM) for

the representation of complex engineering systems affected by epistemic uncer-

tainty modelled with Evidence Theory. The model was presented in [35, 36, 37]280

and, here, is extended with the Resilience measure introduced in section 3.

We propose to represent a space system as a network of nodes (subsystems)

connected through links (shared information). This is a common approach in

multi-disciplinary design where a system is often represented with a Design

Structure Matrix (see [26] for an example of application to space systems).285

In an ENM, however, we try to exploit the fact that information is carried by

scalar quantities that lump together the effect of multiple uncertain parameters.

Furthermore, we argue that the Design Structure Matrix (DSM) representation,

although simple, is not ideal to describe a multi-connected system as it does not

weigh the importance of each connection and does not offer an easy way to290
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represent sub-networks or clusters. In the following, we will explain how an

ENM is constructed and which properties is assumed to have.

In an ENM, the performance index defined in Eq. (6), can be written as:

f(d,u) =

N∑
i=1

gi(d,ui,ϕi(d,ui,uij)), (18)

where N is the number of nodes in the network and ϕi(d,ui,uij) is the vector

of scalar exhange functions ϕij(d,ui,uij) that represent the input/output of

the nodes, with j ∈ Ji, and Ji the set of indexes of nodes connected to the295

i-th node. Eq. (18) decomposes the uncertain components in two categories:

the uncoupled components ui that affect only subsystem i, and the coupled

variables uij shared among subsystem i and one or more subsystems j. We

further assume that:

1. The functions gi are positive semi-definite300

2. Information is transferred from one node to another by means of the scalar

functions ϕij

3. The dependency of gi on ϕij is such that the

maxu∈γ gi(u) = maxui∈γi(maxϕij gi(ui, ϕij)) where during the optimisa-

tion over ϕij the other uncertain parameters are anchored to the value of305

the worst-case scenario and γi is the projection of the focal element γ on

the subspace of the uncertain parameters ui.

While the first two assumptions are easy to verify and are common to many

space systems (e.g. the mass of the system), the third one is less obvious but

it was verified to be true in the case investigated in this paper. We can, in310

fact, assume that the function ϕij is also positive semi-definite in the domain

of interest (e.g. the power demand or the data volume).

6.1. Decomposition

The computation of the Bel value over an extended network with a large

number of uncertain variables can be extremely expensive as it would require315

to run one maximisation of the quantities of interest for each focal element.
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However, if the ENM satisfies the assumptions presented in the previous section,

one can introduce an efficient decomposition of the network that allows for fast

computation of a good approximation of Bel.

The decomposition aims at decoupling the subsystems over the space of320

uncertain variables so that optimisations can be run only over a small subset of

FEs. The method was first introduced in [36] and can be summarised with the

following 4 main steps:

1. Identification of an anchor point in the U space. In the following we will

start with the solution of the optimal worst-case scenario problems (Eqs.325

(15), (16) and (17)) as that corresponds to the most conservative solution

and would generate a lower (more conservative) approximation of the full

Bel curve. Once the partial Bel curves associated to the coupled variables

(see step 2) are available, more anchor points can be defined by sampling

the partial curves.330

2. Maximisation over subsets of coupled variables and computation of mc

partial Belij curves only considering the contribution of a given subset of

coupled variables while keeping the uncoupled variables and the rest of

the coupled variables at the value of the anchor point.

3. Maximisation over the uncoupled variables for different values of the cou-335

pled variables obtained from point 2 by sampling Belij .

4. Reconstruction of the approximation B̃el(Ω).

In [36] it was demonstrated that, under the three assumptions introduced in

the previous section, the decomposition produces an outer approximation of the

Bel that progressively converges to the exact value as the number of samples340

drawn from the partial curves Belij increases.

The decomposition procedure is summarised in Algorithm 2.
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Algorithm 2 Decomposition

1: Initialise d̃ s.t. ∀u, C(d̃,u) ≤ 0

2: Define uu = [u1,u2, ...,ui, ...,umu ]

3: Define uc = [u12,u13, ...,uij , ...,umc ]

4: Compute (d̃,uu,uc) = argmax f(d̃,uu,uc)

5: for all uij ∈ uc do

6: for all FE γk,ij ⊆ Γij do

7: f̂k,ij = maxuij∈γk,ij
f(d̃,uu,uij)

8: ûk,ij = argmaxuij∈γk,ij
f

9: mk,ij = bpa(γk,ij)

10: end for

11: Evaluate partial Belief curve Bel(F (uij) ≤ ν)

12: for all qij sampled FEs γk,ij ⊆ Γij do

13: Sort γijs.t.f̂1,ij < f̂2,ij , ... < f̂qij ,ij ;

14: ∆Bel
qij
ij = Belij(f < fq,ij)−Belij(f < fq−1,ij)

15: end for

16: end for

17: for all the combinations h ∈ ×ijqij do

18: for all ui ∈ uu do

19: for all FE γk,i ⊆ Γi do

20: f̂k,i = maxui∈γk,i
f(d̃, ûh

c ,ui)

21: ûk,i = argmaxui∈γk,i
f

22: mk,i = bpa(γk,i)

23: end for

24: end for

25: for all the FE γk,×Γi
⊆ ×iΓi do

26: f̂hk =
∑N
i f̂k,i

27: mk =
∏N
i mk,i ·

∏
ij ∆Bel

qij
ij

28: end for

29: end for

30: Return Belief curve
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Algorithm 2 presents only the reconstruction of the Belief curve; however,

the Plausibility curve reconstruction is a symmetrical problem (minimisation

instead of maximisation). In lines 1-3 of Algorithm 2 the problem is initialised345

for the decomposition approach. In particular, a design configuration is chosen

(d̃ in line 1), that is feasible in all the uncertain domain U .

Lines 2-3 define the uncoupled ui and the coupled uij uncertain vectors

∀i, j ∈ [1, 2, ..., N ] with N the number of the network nodes (Eq. 18). All the

ui and uij vectors are then collected in uu and uc respectively.350

Line 4 evaluates the global maximum u of f for the fixed d̃ in line 1. If,

for example, d̃ is chosen to be the optimal worst case design solution dminmax,

then u = uminmax.

Lines 6-10 describe the uncertainty propagation, through the network-model,

of the effect of the coupled variables uij only, keeping all other components of355

the uncertain vector fixed to the anchor point u. More precisely, following

Eqs. (8) and (10) a Belief curve Belij is computed for each vector uij ∈ uc. In

order to evaluate the curve, the maximum of f (f̂k,ij in line 7 and ûk,ij in line

8) for each k-FE γk,ij ∈ Γij is searched and the corresponding bpa, mk,ij , is

saved (line 9).360

In lines 12-15, each partial Belij curve is sampled N c
ij times. For each

sample q ∈ [1, ..., N c
ij ], the values [Belij(f < νq), νq]

T
are stored and a subset

Γqij ⊆ Γij is defined by all the k-FE γqk,ij whose maxima are below νq. For

each Γqij then, the k-FE γq
′

k,ij with the highest maximum f̂q,ij is selected and

the corresponding ûq,ij vector is saved. The maxima f̂q,ij are then sorted (line365

13) and the contribution of the q-sample ∆Belqij to the final belief curve is

computed as the difference Belij(f < νq)−Belij(f < νp) where νp corresponds

to Γpij which associated f̂p,ij is the highest maximum over all the f̂k,ij < f̂q,ij

(line 14).

In lines 17-28, all the
∏
ij N

c
ij samples (combinations of all the samples for370

each Belij) are considered from the Cartesian product ×Γij of all the FEs in

the space of the coupled variables uc. For each one of them, fixing the coupled

components uc from the combination of samples, the network in Eq. (18) is
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decomposed because the nodes are influenced only by the uncoupled components

uu. For each node then the maxima over only the uncoupled k-FEs γk,i ∈ Γi are375

calculated in lines 19-22 (f̂k,i in line 20 and ûk,i in line 21) and the corresponding

bpa, mk,i are saved (line 22).

In lines 25-28, finally, the maximum of f in a generic FE γ ∈ Γt,1×...×Γz,N×

Γk,1,2 × ... × Γm,ij is computed where t and z are t-th and z-th FEs in Γ1 and

ΓN respectively and k and m are samples in the partial Bel1,2 and Belij curves380

respectively. More precisely the maximum in γ is the sum of the maxima of f

evaluated in the corresponding FEs independently in the different nodes, with

the coupled components uc fixed from the sample h. The corresponding bpa of

γ is the product of the bpa mi of that FE due to only the uncoupled components

uu and all the contributions from the partial belief curves
∏
ij ∆Bel

qij
ij (line 27).385

6.2. Computational Complexity

The very important effect of the decomposition approach is the reduction in

computational complexity to estimate the Bel function. In fact, for a problem

with m uncertain variables, each defined over Nk intervals, the total number of

FEs would be:

NFE =

m∏
k=1

Nk. (19)

The total number of focal elements NFE can be rewritten in terms of coupled

and uncoupled uncertain vectors:

NFE =

mu∏
i=1

pui∏
k=1

Nu
i,k

mc∏
i=1

pci∏
k=1

N c
i,k

 , (20)

where pui and pci are the number of components of the ith uncoupled and coupled

vector, respectively, and Nu
i,k and N c

i,k are the number of intervals of the kth

components of the ith uncoupled and coupled vector respectively. Thus one

would need to run NFE optimisations to calculate an exact value of Bel.390

Instead, if one applies the decomposition approach proposed in this section,

the total number of FEs, over which the decomposition algorithm has to opti-
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mise, is:

NDec
FE = Ns

mu∑
i=1

Nu
FE,i +

mc∑
i=1

N c
FE,i, (21)

considering the vector of uncertainties ordered as:

u = [u1, ...,umu︸ ︷︷ ︸
uncoupled

,u1, ...,umc︸ ︷︷ ︸
coupled

], (22)

where Ns is the number of samples of the partial belief curves Belij , N
c
FE,i =∏pci

k=1N
c
i,k and Nu

FE,i =
∏pui
k=1N

u
i,k. This means that the computational com-

plexity to calculate the maxima of the function f within the FEs remains expo-

nential for each single uncoupled or coupled vector but is polynomial with the

number of subsystems.395

7. System Model and Problem Definition

The approach to Resilience Engineering described in the previous sections is

here applied to the design of system and operations of a CubeSat in Low Earth

Orbit (LEO). The CubeSat is divided in 5 subsystems, Attitude and Orbit Con-

trol (AOCS), Telecommunication (TTC), On Board Data Handling (OBDH),400

Power and Payload subsystems. The assumption is that each component has

multiple functionalities and both the performance of a component and the reli-

ability associated to each functionality are affected by epistemic uncertainty.

The satellite is translated into the ENM represented in Fig. 1. The figure

shows the 5 subsystems and the interconnections with the transfer of information405

among subsystems. The concept of ENM was explained in Section 6 and its use

will be explained in more detail in section 7.4.

The two performance indexes, or quantities of interest, are the overall mass

of the satellite MTOT and the total amount of data sent back to the ground

station V . The former does not change in time while the latter is subject to

disruptions during the operational life. These two quantities are defined as:

MTOT (d,u) = Mttc +Mobdh +Maocs +Mpl +Mp (23)
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V (d,u, t) = V ci +
V ci+1 − V ci
ti+1 − ti

(t− ti) i = 0, ..., No − 1 (24)

and depend on a vector of decision parameters d and epistemic uncertain vari-

ables u. Eq. (24) is a linear piece-wise interpolation of the components of the

vector Vc = [V c1 , ..., V
c
No

]T of compressed data volumes sent to the ground sta-410

tion for each of the To = [T1, ..., TNo
]T periods of the No orbits during the total

mission time T , such that Ti+1 = ti+1 − ti and T =
∑No

i=1 Ti.

The calculation of the subsystem masses Mttc, Mobdh, Maocs, Mpayload,

Mpower and of the data volumes V ci will be described in more detail in the

following sections.415

7.1. System Models

This section presents the mathematical models used to calculate the quanti-

ties of interest MTOT (d,u) and V (d,u, t) for each subsystem and ∀t ∈ [T0, T ].

7.1.1. Payload

The payload is a camera that takes images of the Earth during daylight-420

time Tdl and send them to the OBDH for compression. Since there is no orbital

dynamics node in this example we calculate all the orbital quantities in the

payload node.

More specifically, the orbit period Torb(h) = 2π
√

(RE+h)3

µ , the eclipse time

Tecl(h) = DEA(h)Torb(h)
360◦ and the daylight time Tdl(h) = Torb − Tecl [45], that

are used by the Payload and the Power nodes, are functions of the uncertain

altitude h, where DEA = 2 arcsin( RE

h+RE
) is the Earth Angular Diameter, RE =

6.3782 · 103 km the Earth radius and µE = 3.986 · 1014 m3s−2 the Earth gravity

constant. The access time to the ground station Tac, that is shared with the

TTC node, is defined as:

Tac =
Torb
180◦

arccos
cos (ζmax)

cos (ζmin)
(25)
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where

ζmax = 90◦ − εmin − ηmax (26)

sin (ηmax) = sin
DEA

2
cos εmin (27)

sin (ζmin) = sin (Lpol) sin (LGS)+ (28)

cos (Lpol) cos (LGS) cos (∆L) (29)

with ε the elevation angle, η the nadir angle, Lpol = 90◦−I with I the inclination

(I = I0 + δinc with I0 = 0), LGS the latitude at the ground station and ∆L the425

difference in longitude between orbit pole and ground station [46].

For each completed orbit the payload generates Npic
i images, with i ∈ [1, No].

Over several orbits the numbers of images are stored in the vector Npic(FR, h) =

[Npic
1 , Npic

2 , ..., Npic
No ]T , where the number of images per orbit is the product

Npic
i = FRTdl between daylight time and frame rate FR. The frame rate FR is

evaluated with a piecewise interpolation of the values {6.6, 26.6, 26.6, 26.6} s−1

over the design parameter τpl ∈ {1, 2, 3, 4}. The corresponding amount of data

generated by the payload system for each orbit is stored in the vector VPL:

VPL =
ImSBDNpic

233
, (30)

which is passed on to the OBDH subsystem. The image size ImS is piecewise

interpolated using the data {1280× 1024, 640× 480, 2592× 1944, 1280× 1024}

pixel, over τpl. The bit depth BD is a design parameter and the value at

denominator is used to change units from bits to Giga bytes.430

Mass and power of the payload are derived from a a look-up table of available

cameras. As for the frame rate and image size, by inserting a value of the design

parameter τpl, the model does a piecewise interpolation returning a mass value

from the vector Mpl = [1.1, 1.1, 0.256, 1.1]T kg, a power value in daylight from

the vector Ppl,dl = [4, 4, 2.5, 4]T W and a power value in eclipse from the vector435

Ppl,ecl = [0, 0, 1.75, 9.75]T W [47, 48, 49].
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7.1.2. On Board Data Handling

In this system model, it is assumed that the main purpose of the OBDH

is to compress and store the images coming from the payload. According to

[50], the total compression rate for JPEG compression is C=0.0434. Thus, the

volume of data after the compression, that is used in the Eq. (24) for the second

quantity of interest, is:

Vc = VPLC. (31)

The design parameter τobdh does a piecewise interpolation of the type of OBDH

within a list of four available systems. The model takes the value of τobdh and

linearly interpolates the specific mass and power for the single OBDH module

from the vectors: md
obdh = [2.3, 2, 1.5, 3]T kg and pdobdh = [15, 20, 22, 30]T W.

The maximum data storage is vdobdh = 4 Gbytes [51]. The total mass Mobdh

and the power Pobdh of the OBDH are then functions of the compressed data

volume V maxc = max(Vc), and the uncertain parameters δPobdh and δMobdh:

Mobdh = md
obdh

V maxc

vdobdh
(1 + δMobdh) (32)

Pobdh = pdobdh
V maxc

vdobdh
(1 + δPobdh) (33)

7.1.3. Telecommunication System

The TTC is composed of an antenna, an amplified transponder and a radio

frequency distribution network (RFDN). TTC connects the transmitter antenna

on the CubeSat with the receiving antenna on the ground station. A patch

antenna is considered. The mass Mant of the antenna depends on the diameter

D:

D =
λant
π

√
Gt
ηant

(34)

with ηant the uncertain antenna efficiency and λant the wave length.

Mant = π
D2

4
(0.0005ρc + 0.0015ρd) (35)

with ρc = 8940 kg/m2 and ρd = 2000 kg/m2 respectively the density of copper

and the density of dielectric material. Eq. (35) can be found in [52]. The
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RFDN mass Mrfdn is an uncertain variable while the amplified transponder

mass Mamp and the power requirement Pamp are derived from available data

as described in [53], as a function of the transmitter power Pt (power in output

from the antenna)

Pt =
Eb
N0
−Gt − Lt − Ls − Lp −

Gr
Tn,s

+ 10 log10R− 228.6 (36)

and of the amplifier type τamp (design parameter in Table 1). The relations

can be found in [53] and are defined from data derived from actual flight hard-440

ware. The ratio of received energy-per-bit to noise density, Eb

N0
, is a function of

frequency fttc, modulation τmod and required bit error rate BER = 10−5 as in

[54] where fttc and τmod are design parameters. For each modulation type from

the list {PSK, BPSK, CFSK, BFSK, FSK, DPSK, QPSK, NRZ} a different for-

mula to evaluate Eb

N0
[54] is given. A linear pairwise interpolation is done of the445

Eb

N0
values over the τmod parameter. The quantity Lt is the uncertain on-board

loss, while Ls = 92.44 + 20 log10 dA + 20 log10 fttc is the free space path loss

with dA the distance between the transmitter and receiving antennas [54]. The

distance dA is here assumed to be equal to the altitude h for sake of simplicity.

The term Lp is the propagation loss and it collects atmospheric attenuation,450

rain attenuation, pointing loss and other losses that are taken into account in

the uncertain parameter Lother. Gr = 60dB is the receiver antenna gain. The

temperature Tn,s is the system noise temperature. R =
Vmax
c

Tac
is the data rate,

where V maxc , in bits, is the maximum transmitted data volume across all orbits

and Tac is the access time to the ground station.455

Finally, the mass of the TTC system is the sum of its components:

Mttc = Mant +Mamp +Mrfdn. (37)

The power of the TTC is a function of the transponder only. In particular, the

value in decibel of Pttc is linearly interpolated using the vector [0.0792, 0.5441]T

over the range [0.1461, 1.9031]T [53]. Pttc is then used as input for the Power

subsystem.
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7.1.4. Attitude and Orbit Control System460

The AOCS is in charge of controlling the orientation of the CubeSat with a

three axis stabilisation system. The actuators are reaction wheels and magneto-

torquers.

During the mission, the CubeSat is assumed to be affected by a number of

disturbances and it is expected to perform some slew manoeuvres. In particular,

the solar radiation pressure Ts, the magnetic torque Tm, the torque due to

aerodynamic drag Ta and the gravity gradient torque Tg. The torque due to

solar radiation pressure is defined as:

Ts = l
Is
c
Asc(1 + rf ) (38)

with Is = 1420 W/m2 the incident solar radiation, c the speed of light, Asc the

uncertain area of the surface normal to the sunlight, l the offset between the

centre of gravity and centre of pressure of the satellite (a design parameter in

Table 1) and rf the uncertain reflectance factor. The torque due to the magnetic

field is:

Tm = mdipB (39)

with mdip the uncertain spacecraft residual dipole and B the planet magnetic

field strength:

B =
B0R

3
E

(RE + h)3

√
3 sin2 (lM ) + 1 (40)

where lM is the magnetic latitude. The torque due to drag is defined as:

Ta = pdynCdAscl. (41)

In Eq. (41) pdyn = 1
2ρv

2 is the the dynamic pressure, where ρ = ρ0e
−h/Hsh is

the atmospheric density, with ρ0 = 1.2250 kg/m3 and Hsh = 8.6 km, and v the

velocity on a circular orbit at altitude h. Cd is the uncertain drag coefficient of

the spacecraft. Asc is the uncertain area of the surface normal to the velocity

vector considered equal to the surface area in Eq. 7.1.4 (please refers to Table 2

for the value of this uncertain parameter). Note that we assume that both the

area of the surface normal to the sunlight and the one normal to the velocity
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are the same. The torque due to the gravity gradient is:

Tg =
3µE

2(RE + h)3
|Iz −min(Ix, Iy)|sin 2ψ (42)

where Iz = 0.1417(1 + δI) kg m2, Iy = 0.1083 kg·m2 and Ix = 0.0417 kg·m2 are

the principal moments of inertia of the satellite and ψ = 8.7266 · 10−2 radiant

is the angle between the spacecraft z-axis and the nadir vector [35]. The total

disturbance is the sum:

Td = Ts + Tm + Ta + Tg (43)

The momentum due to Td that is stored in the reaction wheels, Hd, and the

momentum required for the slew manoeuvres, Hsl, are defined as:

Hd =
TdTorb

4e
(44)

Hsl =
4φslIz
tsl

(45)

with e = 8.7266 · 10−2 radiant the pointing accuracy, φsl the slew angle and tsl

the time allowed for the manoeuvre (design parameters in Table 1). The mass,

Mrw, and power, Prw, of the reaction wheels are computed by interpolation

from available real data [53], as functions of the maximum between Hd and Hsl:

Mrw ∝ max (Hd, Hsl) (46)

Prw ∝ max (Hd, Hsl) (47)

In particular, for momentums of [0.0016, 400]T Nms, the masses are respectively

[0.072, 20]T kg and the power consumptions are [0.465, 110]T W. It is assumed

that the momentum stored in the reaction wheels is unloaded with magneto-

torquers. The mass and power of the magneto-torquers are interpolated as

functions of the required magnetic dipole Dmag as in [53]:

Mmt ∝ Dmag (48)

Pmt ∝ Dmag (49)

where

Dmag =
Td
B

(50)
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with B given in Eq. (40). In particular, for dipoles Dmag of [0.06, 4000]T Am2,

the masses are respectively [0.0835, 50]T kg and the power consumptions are

[0.155, 16]T W.

Finally, the outputs of the AOCS node are:

Maocs = Mrw +Mmt (51)

Paocs = Prw + Pmt (52)

7.1.5. Power System

The electrical power system (EPS) is composed of a solar array, a battery

pack, and a power conditioning and distribution unit (PCDU). The mass of the

power system is the sum of the individual masses of its components

MPower = Msa +Mbp +Mpcdu (53)

The power produced by the system in daylight is the one generated by the solar

array Psa. The design of the solar array is a function of the power require-

ments during light-time Plt and eclipse Pecl that are calculated from the power

requirements of the other subsystems:

Plt = 16 + Paocs + Pttc + Pobdh + Ppl,lt. (54)

Pecl = 16 + Paocs + Pttc + Pobdh + Ppl,ecl. (55)

where the number 16 is the base power that accounts for the maintainince of

the basic functionalities of the satellite. Given Pecl as well as the duration Tecl

of the night, the energy capacity requirement of the battery system is

Ereq =
PeclTecl
ηb−lDOD

(56)

where ηb−l is the transfer efficiency between battery and loads and it is the prod-

uct of the efficiencies of the battery discharge regulator ηbdr, the distribution

unit ηdu, and the harness ηhar:

ηb−l = ηbdrηduηhar (57)
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The efficiency ηbdr of the battery discharge regulator is a function of the bus

voltage Vbus and is calculated using a linear interpolation of available data [54].

In particular we linearly interpolate the efficiencies [0.90, 0.97] over the voltage

range [20, 100] V. The harness efficiency ηhar is

ηhar = 1− Vdr
100

(58)

and is, therefore, dependent on the allowable voltage drop Vdr given as a per-

centage of the bus voltage. The depth of discharge DOD is a function of the

number CL = Ttot

Torb
of charge/discharge cycles, that is dependent on the fixed

mission time and on the uncertain altitude h. Their relationship is defined as

in [54]:

DOD = −36.76 log
CL

207800
(59)

Given the energy requirement for the battery, the mass of the battery pack is

Mbatt =
Ereq
Ec

(60)

where the energy density Ec (in Wh/kg) is selected from a list of available465

battery types depending on the capacity CB =
Ereq

Vbus
. The capacities CB is used

to select the energy density Ec from a look-up table. The model enters with

the value CB to the vector [1.5, 5.8, 10, 16, 28, 39, 50]T Ah and finds the closest

approximation. The corresponding value of the energy density is read from the

vector [115, 133, 139, 155, 118, 126, 165]T Wh/kg [54].470

The power Psa required from the solar array is computed considering the

duration of the daylight Tdl:

Psa =
PeclTecl

ηa−bηb−lTdl
+

Plt
ηa−l

(61)

where ηa−b is the transfer efficiency between solar array and battery pack, ηa−l is

the transfer efficiency between solar array and loads. Although the uncertainty

on the power requirements comes from all the loads it is assumed that a further

epistemic uncertainty exists on the total demand. Therefore an uncertainty

factor δPp is applied to Plt and Pecl: Plt = Plt(1+δPp) and Pecl = Pecl(1+δPp).
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The transfer efficiencies can be expressed as the product of the efficiencies of

the components:

ηa−b = ηsarηbcrηbatt (62)

ηa−l = ηsarηdistηhar (63)

In Eqs. (62) and (63) ηbcr is the efficiency of the battery charge regulator and,

as for the discharge regulator, it is a function of the bus voltage Vbus. Also in

this case we interpolate the efficiency [0.90, 0.97] over the voltage range [20,

100] V. The parameter ηsar is the efficiency of the solar array regulator, and

it is a linear interpolation between 0.94 at 20 V and 0.99 at 100 V when the

design parameter τconf selects the direct energy transfer (DET) configuration,

or between 0.93 at 20 V and 0.97 at 100 V when τconf selects maximum power

peak tracking (MPPT) configuration. The efficiency of the distribution unit is

ηdist = 0.99. The charging efficiency of the battery is ηbatt = 0.96. The array

pointing loss factor is

ηp = cosα (64)

where α is the solar incidence angle. The distance rS (in AU) from the Sun

involves a loss, or gain, that is

ηr =
1

r2
S

(65)

Furthermore, cells degrade with time mainly due to radiation fluence, and such

degradation can be estimated as [8]:

ηlife = (1−Dc)
T (66)

where Dc is the cell degradation per year and T is the cell life time (the mission

time). A further important factor affecting the efficiency of the solar array is

the uncertain assembly efficiency ηa. The efficiency of the array is lower than

the efficiency of the single cells because of a loss due to assembly. The total cell

efficiency is, therefore, ηtot = ηaηpηrηlife. The specific power (in Wh m−2) of

the array is

Pcell = 1370ηcηtot (67)
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where ηc is the efficiency of the single solar cell. From this, the required area of

the array is computed:

Asa =
Psa
Pcell

(68)

and finally the mass of the solar array

Msa = Asaρsa. (69)

The values of Dc, ηc and ρsa are chosen by the design parameter τp. More

precisely they are evaluated by a piecewise interpolation of the following data

over the design parameter τp ∈[0, 0.5, 1]T : ρsa ∈ [32 · 10−2, 116 · 10−2, 86 · 10−2]

kg/m2, Dc ∈ [0.0375, 0.0275, 0.0275]T and ηc ∈[0.1555, 0.2744, 0.2862]T . The

uncertainty factors δDc and δρsa are applied: Dc = Dc(1 + δDc) and ρsa =

ρsa(1 + δρsa).

The PCDU is a modular unit composed of modules such as battery charge

and discharge regulators, solar array regulators, maximum power point tracker,

shunt regulator, distribution unit (latching current limiters), telemetry interface.

The number of modules, and thus the mass of the unit, depends on τconf .

Indeed, if τconf is DET, there is no maximum power point tracker, and the

PCDU is lighter. On the other hand, an MPPT configuration extracts maximum

power from the solar array, therefore the array size decreases, but the presence

of the MPPT module decreases the transfer efficiency and increases the PCDU

mass. The configuration parameter τconf is used to trade-off between different

components and, thus, is a design parameter. The mass Mpcdu can be estimated

as the sum

MPCDU = µPCDU (2Psa + Plt + Pecl + cPsa) (70)

where µPCDU = 0.001 kg/W and c = 0 for DET and c = 1 for MPPT. The

factor 2 multiplying the first term in brackets accounts for a telemetry and a

distribution unit.

7.2. CubeSat Resilience Model

We assume that the CubeSat system can be in 3 distinct operational states.475

State 0: total system failure x0; state 1: partially functional system x1; state
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2: fully functional system x2. Each state is associated with a different value of

the performance function V (t, x; d,u).

The assumption underneath the modelling of the resilience of the CubeSat

is that a fully, or partially, functional system can deteriorate and a partially480

functional system can recover but once a total failure of the system occurs the

system is not able to recover anymore and the satellite is lost. When the satel-

lite is lost the data volume is zero. At the start of the mission the CubeSat is

assumed to be fully functional, which corresponds to a probability of being in

state x2, P (X(0) = x2) = 1. The further assumption is that the occurrence of485

a complete failure is independent of the occurrences of the partial failures and

their recoveries and does not depend on decision and uncertain variables. This

is a simplification that will be removed in future developments and does not im-

pair the validity of our results. Thus, following [55], we model the probability of

a complete failure of the whole satellite at time t with the Weibull distribution490

p0(t) =
∏
s p0,s(t), where p0,s is the Weibull distribution defining the proba-

bility of a failure of subsystem s. The individual Weibull density function and

associated parameters were taken from [55].

Until a complete failure occurs, the homogeneous continuous time Markov

Chain as introduced in Sec. 3 is used to model the transition between states

x1 and x2 and back. The stochastic dynamics of this process is given by the

transition operator given in Eq. (1) with a transition rate matrix

Q(d,u) =

 −µ µ

λ(d,u) − λ(d,u)

 , (71)

where the first line and column refer to state x1 and the second ones to state x2,

µ is constant and λ is a function of both design and uncertain parameters. The

state of the CubeSat changes from x2 to x1 with rate λ and with rate µ in the

opposite way. A general solution for the distribution of the system states at any

time, conditional upon that the fatal failure has not yet occurred, is given by

Eq. (2). The simple Markov Chain model we have chosen is well-known within

reliability theory as the alternating system with constant rates [56]. Considering
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our initial conditions (P (X(0) = x2) = 1), conditional on that the fatal failure

has not occurred by time t, the probability that the system is in state x2 at

time t can be expressed explicitly as

p2(t) := Pr(X(t) = x2|Tfail > t,X(0) = x2) =

=
µ

µ+ λ
+

λ

µ+ λ
exp(−t(µ+ λ)). (72)

The probability that the system is in state x1 at time t, conditional upon that

the fatal failure has not occurred by time t, will be denoted p1(t) = 1 − p2(t).495

It is the complement of p2 because of the law of total probability.

The expected value of the instantaneous data increment, which is needed to

evaluate the expected total volume of transmitted data (Eq. (4)), is

E {V (t,X(T )d,u)} =

[V2(t; d,u)p2(t) + V1(t; d,u)p1(t)](1− p0(t))+

+ V0(t; d,u)p0(t), (73)

where V0, V1 and V2 represent the instantaneous data increment respectively

for states x0, x1 and x2. V2(t) = V (t) is the data volume for a completely

functional satellite. V1(t) is the data volume of a satellite in the degraded state

x1, and is here computed as:

V1(t) =
V2(t)

2
(74)

When the satellite is in state x0, total failure, the corresponding data volume

is V0(t) = 0.

The parameters µ in Eq. (71) is set to the value 1/365 while parameter λ has

a base value λ0 = 1/365 and is related to the design and uncertain parameters

through the expression

λ(d,u) := λ0

∏
i

[ru,i(ui)]
∏
j

[rd,j(dj)] , (75)

where the two functions ru,i and rd,j represent the relative influence of each

of the uncertain or design parameters. This form was chosen because it cor-500

responds to Cox’s proportional hazard model [57] with covariates d and u. If
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some observations of the process were available, the relative influences could be

inferred by statistical methods. In the absence of data, we have chosen an expert

estimates for the relations based on linear interpolations between the estimated

influences at the lower and upper boundaries of the respective parameter spaces.505

For ui, ui, denoting the lower and upper bound for an uncertain parameter ui,

the respective relative influences at the boundary are denoted Ru,i, Ru,i and the

relative influence of ui on the failure transition rate is

ru,i(ui) := Ru,i +
Ru,i −Ru,i
ui − ui

(ui − ui) . (76)

An analogous expression is used to relate rd,i to each di. For the sake of the

simple exercise presented in this paper, these linear relationships and expression510

(75) were purposely constructed to allow the design process to change the rate

of transition from x2 to x1 in one direction and to allow the uncertain variables

to change in the opposite direction. This choice provides a verifiable result. In a

more general context, appropriate relationships will need to be defined for each

subsystem and component.515

We chose the values of Ru,i and Ru,i in such a way that each design and

uncertain parameter has a different influence on the system degradation and

recovery rates. All the values of Ru,i and Ru,i are reported in Tables 1 and

2. The level of influence of each parameter is proportional to Ri − Ri. When

this difference is zero, the corresponding parameter is expected to have no effect520

on the degradation and recovery rates. During the development of the method

presented in this paper, different combinations of parameters and intervals were

tested. The particular values reported in Tables 1 and 2 are only an illustrative

example of the many we tested and do not represent any particular system or

space mission.525

7.3. Optimisation Problem Definition

The goal is to minimise the system mass and maximise the expected total

data transmitted volume fV with expected immediate performance given by Eq.

(73). The uncertainty affects the probability of transitioning to a failure mode
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(reducing data volume) and the possibility to have a system mass bigger than

expected. We formulate this problem by treating the expected Data Volume as

a constraint and solving the following constrained min-max problem:

mind∈D maxu∈U MTOT (d,u)

s.t.

ν −minu∈U fV (d,u) ≤ 0.

(77)

where the worst-case scenario for the mass is such that the minimum Data

Volume, over U , sent to the ground station is higher than a threshold ν. To be

noted that the recovery from a partial failure is driven by the value of the design

vector d which, in turns, affects the value of the system mass. The uncertainty530

domain U is defined by the Cartesian product of the intervals in Table 2. In order

to facilitate the search for an optimal solution we apply an affine transformation

that maps the uncertainty space into a unit hyper-cube where all the uncertainty

intervals, along each dimension, are ordered and adjacent [35]. The decision

domain D, instead, is defined by the Cartesian product of the intervals in Table535

1. Where a continuous parameter is used in discrete or binary form, to select a

particular component, its value is automatically rounded to the closest integer

within the subsystem model.

7.4. Evidence Network Model and Belief Function Estimation

The ENM describing the overall system is graphically represented in Fig.1.540

The two performance indices in Eqs. (23) and (24) depend on 12 design param-

eters (listed in Table 1) and 20 uncertain parameters (listed in Table 2). Table

2 reports the intervals of uncertainty for each parameter with associated bpa in

brackets. Some of the bpa’s were taken from [35] where the authors elicited the

opinion of some ESA specialists. Other basic probability assignments were cho-545

sen to well illustrate the difference between deterministic and resilient solutions.

Note that although the shape of the Belief curves depends on the particular dis-

tribution of focal elements and associated bpa’s, the method proposed in this

paper does not depend on the particular body of evidence or uncertainty space

U .550
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Figure 1: Evidence Network Model of the CubeSat. The two quantities of interest

are the mass of the CubeSat MTOT and the total amount of data transmitted to the

ground station V ; MTOT is the sum of the mass of the 5 subsystems and V is the

quantity of data sent by the TTC after the compression in OBDH.

The ENM is built to model the influence of the uncertain parameters only.

Hence all solid links in Fig. 1 represent the propagation of the effect of the

most influential uncertain parameters. This influence is transmitted via a scalar

positive quantity. In the same figure dashed lines indicate the contributions of

all the subsystems to the total system mass and the total data volume. Note

that after a preliminary sensitivity analysis, the dependency between Payload

and TTC through δinc and ε was found to be poorly influential. Given the ENM

in Fig. 1, the uncertain vector u can be partitioned into the uncoupled vector:

uu = [δMobdh, rf ,mdip, ηant,Mrfdn, δDc, ηa, δρsa, δPp]
T (78)

and the coupled vector:

uc = [l, Asc, CD, δI,Gt, Lt, Lother, δPobdh, h, ε, δinc]
T . (79)
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Table 1: Design parameters.

SYSTEMS d LB UB Rd Rd

AOCS tsl (s) 30 90 1 1

φsl (deg) 10 60 0.899 1.097

TTC fttc (GHz) 7 10 0.85 1.2

τmod 0 1 0.95 1.05

τamp 0 (TWTA) 1 (SSA) 0.95 1.05

Power Vbus (V) 3 5 0.9 1.1

Vdr (%) 1 5 1 1

τconf 0 (DET) 1 (MPPT) 1 1

τp 0 1 1 1

Payload BD 1 5 0.9 1.2

τpl 1 4 0.9 1.1

OBDH τobdh 1 6 0.8 1.2

Once the uncertain parameters are partitioned into coupled and uncoupled,

one can write the total mass as an explicit function of the two groups of param-

eters and of the scalar exchange functions ϕij (namely scalar quantities V maxc ,

Tac, V
max
pl , Paocs, Pttc, Pobdh, Tecl, Tdl and h as represented in Fig. 1):

MTOT = Maocs(h, rf ,mdip, l, Asc, CD, δI)+

Mttc(V
max
c (h), Tac(h), ηant,Mrfdn, Gt, Lt, Lother)+

Mpl +Mobdh(V maxpl (h), δMobdh)+

Mp(Paocs(h, l, Asc, CD, δI), Pttc(V
max
c (h),

Tac(h), Gt, Lt, Lother), Pobdh(V maxc (h), δPobdh),

Tecl(h), Tdl(h), δDc, ηa, δρsa, δPp)

(80)

where only the dependencies on the uncertain parameters are made explicit.

Note that Mpl does not depend on any uncertain parameter and that the values

of δinc and ε in the calculation of the access time were fixed to the value coming

from the worst case analysis, due to their low influence on the calculation of

mass and power. Furthermore, five exchange functions, Tac, Tecl, Tdl, V
max
pl and555

V maxc , all depend on the same uncertain parameter h, hence in the following all
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Table 2: Uncertain parameters.

Systems u interval 1 (bpa) interval 2 (bpa) Ru Ru

Payload h (km) [600 800] (0.4) [800 1000] (0.6) 0.9 0.967

ε (deg) [0 5] (0.4) [5 10] (0.6) 1 1

δinc (deg) [0 5] (0.3) [5 10] (0.7) 1 1

OBDH δPobdh [0 0.1] (0.5) [0.1 0.2] (0.5) 1 1

δMobdh [0 0.1] (0.8) [0.1 0.2] (0.2) 1 1

AOCS l (m) [0.005 0.01] (0.5) [0.01 0.02] (0.5) 0.94 1.2

Asc (m2) [0.034 0.0885] (0.5) [0.0885 0.15] (0.5) 1 1

rf [0.5 0.6] (0.5) [0.6 0.7] (0.5) 1 1

mdip (mA ·m2) [0.5 1] (0.5) [1 1.5] (0.5) 0.85 0.98

CD [2 2.2] (0.4) [2.2 2.5] (0.6) 0.9 1.1

δI [-0.1 0.05] (0.5) [0.05 0.1] (0.5) 0.85 1

TTC ηant [0.6 0.8] (0.3) [0.8 0.9] (0.7) 1 1

Gt (dB) [1 3] (0.3) 3 5 (0.7) 1 1.15

Lt (dB) [0.1 0.5] (0.3) [0.5 1] (0.7) 1 1.05

Lother (dB) [0.5 1.5] (0.4) [1.5 2.0] (0.6) 0.85 1

Mrfdn (kg) [0.1 0.3] (0.4) [0.2 0.5] (0.6) 1 1

Power δDc [0.025 0.0275](0.4) [0.3 0.0375] (0.6) 1 1

ηa [0.8 0.85] (0.4) [0.85 0.9] (0.6) 0.8 1

δρsa (kg/m2) [3.5 3.6] (0.3) [3.6 4] (0.7) 1 1

δPp [0 0.1] (0.5) [0.1 0.2] (0.5) 0.95 1.05

these links will be treated as one and a partial belief curve will be computed for

the overall influence of h on the calculation of the system mass.

With this ENM and related partitioning of the uncertain vector, one can ap-

ply the decomposition proposed in Algorithm 2 and generate a lower estimation560

of the Bel with a total cost of 28+26Ns optimisations, where the parameterNs is

the number of FEs samples from the partial curves (see Eq. (21)). In comparison

an exact calculation of the Bel would require a total of Nfull
FE = 220 = 1048576

optimisations.

To be noted that the ENM is only used to reconstruct the Belief curves and565

surfaces. When problem (77) is addressed, all the couplings among subsystems

are considered both in the uncertainty and design spaces. Furthermore, the

number of influential links that we propose for the construction of the specific
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ENM in Fig. 1 only serves the scope to develop an exercise that proves the ef-

fectiveness of the methodology we described in previous sections. More complex570

and realistic interactions among subsystems are clearly possible but do not im-

ply a modification of the method. They would simply scale the computational

complexity as in Eq. (21).

8. Results

For the case analysed in this paper, the memetic algorithm IDEA [58] was575

used to find both the global maxima over U and the global minimum over D

in the constrained min-max problem (Algorithm 1) and in the decomposition

procedure. A few preliminary runs of the min-max algorithm were used to

identify a good value of IDEA’s parameters. The settings used to produce the

results in this section are as follows: the number of agents for the minimisation580

over D (Outer pop size) was set equal to the size of d while the number of

agents for the maximisation over U (Inner pop size) was set equal to the size of

u, the maximum number of local restart is iun = 10, the crossover probability,

CR = 0.75; differential weight, F = 0.8, the size of the convergence box ρsc=

0.2, the distance from the cluster centres for the global restart δglobal = 0.1 and585

the dimension of the bubble for the local restart δlocal = 0.1. Table 3 contains

a summary of the values used to produce the results in this section.

The total number of function evaluations for the min-max problem was set

to be 2 · 106 while the maximum number of function calls from the optimiser

for the single inner and outer loops was set to 20000. As defined in Eq. (15),590

in the outer loop, every time a d vector is evaluated, each of the u vectors in

the archive Au is paired with d and for each pair f is called. Accordingly, at

each function call from the optimiser in the outer loop, f is evaluated 20000NAu

times. The algorithm calls the inner loop 13 times and the outer loop 12 times.

The overall number of function evaluations for the constrained maximisation595

in Eq. (16) is 280000, for the constraint maximisation in Eq. (17) is 280000

and for the constrained minimisation in Eq. (15) is 1440000. Considering an
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Table 3: Settings of IDEA

Parameter Value

Inner pop size dimd

Outer pop size dimu

max local restarts iun=10

CR 0.75

F 0.8

ρsc 0.2

δglobal 0.1

δlocal 0.1

average time-cost of 5.5 10−3s for the evaluation of both the function f and the

constraint C, the maximum total time required for the computation of the worst

case scenario would be 3 hours, where more than the 63% of the computational600

time is used in the calculation of the expected data volume. On the other hand,

over the 20 test runs we used to asses the stability of the results of the min-max

(due to the stochastic nature of the optimiser), the algorithm converged to the

final value in less than 200000 function calls to both constraints and objective

function. This part can be greatly accelerated by improving the cost of the605

piece-wise interpolation of the data volume and the expectation integral.

The number of function evaluations for each maximisation in the decomposi-

tion procedure was fixed to 1000. The estimation of the final Bel was computed

with 1, 2 and 3 samples drawn from each partial Bel curve, in order to show

that the decomposition quickly converges to a stable solution. Fig. 2 shows the610

sequence of Bel curves computed with one, two and three samples from each

partial curve, for a resilient solution computed with the constrained min-max

approach. The figure shows that the curves converge as expected from below

(the curve generated with one sample is more conservative than the one gener-

ated with two samples) confirming that the system models have the expected615

properties on an ENM. From this simple convergence analysis one can see that
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two samples from each partial curve are enough to produce a variation below

5% across the whole approximated Bel curve, i.e. using three samples would

produce an approximated Bel that is everywhere less than 5% different from

the approximation computed with two samples. Two samples from each partial620

Bel curve correspond to a total of Ns = 24 = 16 samples and NDec
FE = 450 op-

timisations. With a maximum time-cost of 10−3s for each function evaluation

(because each subsystem function is called individually), each full belief curve

requires 7 minutes.

It is worth reminding at this point that the decomposition is used to re-625

construct the belief curves and that starts from the solution of the min-max

problem. The solution of the min-max problem is assumed to have Bel = 1.

The reconstruction of the curves confirms the correctness of the min-max as no

worse solution in the U space is found. Note also that a full exact reconstruc-

tion of the belief curves would require 220 optimisations against the 450 required630

with the decomposition.

The computer used for the simulations is a Microsoft Windows 10 Pro, x64-

based, Intel(R) Core(TM) i7-6700 CPU, 3.40 GHz, 3408 MHz, 4 cores, 8 Logical

Processors, 8 GB (RAM) and the software is implemented in MATLAB R2018b.

The solutions of the min-max problem (77) are represented in Fig. 3, for 4635

different values of the threshold ν (represented by a vertical line): 500, 600, 700

and 800. For each ν the figure shows the optimal mass that corresponds to the

robust design vector dminmax, which satisfies the reliability constraint in Eq.

(77) for all values in the uncertain domain U .

In Fig. 4, instead, each optimal solution is represented by two points and a

line that connects them. The two points correspond to the same design solution

dminmax but to two different uncertain vectors u. The circle corresponds to the

maximum value of the mass MTOT , the diamond to:

umaxC = argmax
u∈U

(ν − fV (d,u)). (81)

In all four cases the maximum constraint violation is equal to zero, thus all640

decision vectors d are always feasible. This figure also shows that the mass is
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Figure 2: Convergence of the belief curves calculated with the decomposition approach.

maximised for a u vector that is inside the feasible domain.

Fig. 5 compares a particular solution from Fig. 3 (the one with ν = E(V ) =

600) with the solution of the following deterministic optimisation problem,

where the uncertain vector u was set to the value unom (the mean value of

the intervals defined in Table 2):

mind∈DMTOT (d,unom)

s.t.

ν − fV (d,unom) ≤ 0.

(82)

The red point is the optimal resilient solution (dminmax,uminmax) calcu-

lated with the EBRO approach proposed in this paper, where dminmax is in

Table 8 and uminmax = [2.0000·10−2, 1.5000·10−1, 7.0000·10−1, 1.5000·10−3,645

2.3447, 2.6608, 6.0000·10−1, 1.0000, 1.0000, 2.0000, 5.0000·10−1, 8.0000·10−1

2.0000·101, 3.0000·101, 1.0000·102, 1.0000·103, 1.0000·101, 1.0000·101, 2.0000·101,

2.0000·101]T . The blue square is the solution of problem (82); the green hexa-
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Figure 3: Results for the constrained min-max optimisation: each point represents the mini-

mum worst-case value in the uncertain space for both objective and constraint functions.

gram is the worst possible mass due to uncertainty, given the solution of problem

(82), doptnom; the yellow pentagram is the minimum value of fV due to uncertainty,650

given the design vector doptnom. From this figure one can see that by not account-

ing for the full variability of the uncertain parameters, problem (82) returns a

solution that has a lower mass than the resilient one but violates the constraint

on the data volume for some values of the uncertain parameters (yellow penta-

gram) and produces a worst case mass increase that also violates the constraint655

on the data volume (green hexagram).

In Fig. 6 we compare the resilient solution dminmax corresponding to fV =

600 from Fig. 3 with a non-resilient solution darchive = [1.0007·101, 4.8123·101,

9.7875, 1.4981·10−4, 4.0505·10−1, 9.9803·10−1, 4.7210, 2.4052·10−1, 1.1660, 1.0057,

2.5439·10−1, 7.3898·10−1]T that is feasible in all the uncertain space U . The660

resilient solution corresponds to the dotted Bel curve in blue, while the non-
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Figure 4: Results for the constrained min-max optimisation: both the worst-cases for the

mass and the constraint violation are represented.

resilient solution, with u = unom, corresponds to the dashed vertical line. Fol-

lowing the normal practice [15] and considering the satellite as an item to be

developed, a 20 % margin was added to each subsystem mass of the non-resilient

solution. Also a 20 % margin was added to the power requirements of the TTC,665

OBDH, AOCS and payload subsystems. The non-resilient solution plus mar-

gins is the solid vertical line.

One can then build the Bel curve also for the non-resilient solution (dotted

line in Fig. 6). From this simple comparison one can see that the non-resilient

solution without margins has Bel = 0 to be realised. The one with margins670

does not achieve Bel = 1 but only Bel = 0.05 to be realised and is oversized

compared to the resilient solution. Although the non-resilient solution in this

example is arbitrary, the result demonstrates that an improper quantification of

uncertainty can lead to an undesirable design solution even if the recommended
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Figure 5: Comparison, with ν = 600, of constrained and unconstrained min-max and deter-

ministic approach.

subsystem and system level margins are used.675

Fig. 7 shows the Belief surface that corresponds to the condition:

Bel(MTOT < νM ∧ fV > νV ) (83)

where the two thresholds νM and νV are assumed to be independent from each

other. While the cumulative belief distribution in Fig. 6, blue dotted line,

represents the effect of uncertainty on the system mass MTOT for fV = 600,

one could be interested in the belief that both (MTOT and fV ) satisfy condition

(83) at the same time. The resulting Belief-surface in Fig. 7 extends the Belief-680

curve in Fig. 6 by adding the evidence in support of the achievement of the values

of fV . By sectioning the surface with cuts parallel to the axes one can find, for

any fixed value of fV or MTOT , the corresponding Belief-curve (Bel(fV > νV )

or Bel(MTOT < νM ). Fig. 7 shows that, in order to have a joint Bel > 0.8 that
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Figure 6: Comparison between Margin approach and ENM .

both expected data volume and mass are correct, one needs to assume a mass685

larger than 12.9kg and a data volume lower than 620GBit. However, it has to

be noted that the Belief values on the expected data volume were computed

still using the ENM in Fig.1. Thus one has to interpret the result in Fig. 7 as

the evidence in support to the expected data volumes associated to the values

of the mass that can be computed with the ENM.690

In Fig. 8 and 9, finally, only the constraint function fV is considered. Five

deterministic solutions, including the optimal-deterministic solution with unom,

and the resilient solution [dminmax,uminmax] with the constraint fV > 600 are

compared. Table 8 lists the design vectors. The histograms show the normalised

results for 10000 simulations where the time span covered by each mission is695

365 days. In particular, Fig. 8 compares the total number of transitions from

one state (0, 1 and 2) to another while Fig. 9 shows the cumulative time spent

in each spacecraft state divided by 365 times the number of simulations.
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Figure 7: Belief surface for the constrained problem formulation with the design vector

dminmax. Both mass MTOT and expected data volume fV are considered.

The comparison proves that the resilient design solution increases the proba-

bility of the whole system of being in the fully functional state x2 and decreases700

the number of transitions from state x2 to the partial functioning state x1. It

also shows that the resilient solution is always the best in terms of time spent

in state x2. On the contrary, a random design solution may lead to a much

longer time spent in the partially functioning state x1. Note that all bars in

the histogram correspond to the worst uncertainty vector for the expected data705

volume.

The optimal deterministic solution was computed using 50000 function eval-

uations, compared to the 200000 used to compute the resilient solution. How-

ever, the higher computational cost of the min-max solution is repaid by a lower

failure rate as shown in Figs. 8 and 9. More importantly, Fig. 5 has shown that710

the effect of uncertainty leads to a considerable increase in mass with respect to
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Table 4: Design vectors of Figs. 8 and 9

parameter design 1 design 2 design 3 design 4 dminmax dopt

tsl (s) 41.730 10.000 10.081 10.000 10.000 10.000

φsl (deg) 41.954 50.685 78.239 52.453 53.631 75.157

fttc (GHz) 8.413 10.000 9.946 10.000 10.000 10.000

τmod 0.602 1.000 0.331 1.000 0.333 0.333

τamp 0.049 0.500 0.500 0.500 0.499 0.500

Vbus (V) 0.400 0.000 0.000 0.000 0.000 0.000

Vdr (%) 3.026 5.000 4.307 5.000 5.000 5.000

τconf 0.374 0.413 0.146 0.486 0.201 0.278

τp 2.380 1.000 1.069 1.000 1.000 1.000

BD 3.837 1.000 1.075 1.000 1.000 1.000

τpl 0.852 0.343 0.045 0.259 0.061 0.022

τobdh 0.815 0.750 0.750 0.750 0.749 0.750

the min-max solution and a substantial violation of the reliability constraint.

9. Conclusions

The paper introduced a method for resilience optimisation of space systems

under epistemic uncertainty. It was demonstrated that this method can accom-715

modate models for robustness and global system reliability in the same frame-

work and produce optimised worst case solutions with problems of moderate

dimension and complexity. It was also theoretically proven that the method is

scalable and can handle larger dimensional systems provided that the resulting

ENM has some specific properties.720

The results show that the method allows for a rigorous optimisation of the

complex system also when it is affected by epistemic uncertainty. A design

configuration can be found that is feasible and resilient for all the possible

realisations of the uncertain variables; this design configuration, furthermore,

minimises the worst value of the objective function over the uncertain variables.725
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Figure 8: Comparison of five deterministic design solutions and the resilient solution (minmax)

over the number of transitions between the three system’s states (0,1,2).

Compared to a solution that uses standard safety margins, the resilient solution

was proven to be better both in terms of resilience and performance. Further-

more, compared to an optimised solution that does not account for uncertainty,

the resilient solution was shown to improve the number of transitions to a fully

functional state.730

It was also shown that the computational cost is affordable provided that

subsystem performance and reliability metrics can be evaluated in a short time

on a standard desktop. In this respect, although we argue that the properties of

the ENM that allow for an efficient decomposition are common to general space

systems, an approach will be proposed in future works to relax some of these735

properties so that more generic complex systems can be handled. Likewise, once

the computational cost of individual subsystems become important compared to

the overall evaluation of system performance and reliability, an approach based
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Figure 9: Comparison of five deterministic design solutions and the resilient solution (minmax)

over the time spent in each system’s state (0,1,2).

on hierarchical surrogate models can be used, as demonstrated in [59]. Finally

the model of resilience presented in this paper is not dynamically affecting the740

structure of the ENM. This aspect will be investigated in future works.
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