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Abstract

The coupling between ion acoustic waves (IAWs) and a neutrino beam undergoing flavor oscillations in a dense,
relativistically degenerate plasma is analyzed. The neutrino-driven streaming instability of the IAWs is investigated
with relevance to plasma conditions at the last stage of stellar evolution in a massive supernova progenitor. The
influence of neutrino beam parameters such as the energy of the incident neutrino beam and eigenfrequency of the
neutrino flavor oscillations on the instability growth rate is obtained numerically. It is observed that the neutrino
flavor oscillations significantly affect the neutrino-driven instability of the IAWs. Our results also indicate that the
time period for the onset of the streaming neutrino-driven instability is shorter than the typical time period of a
core-collapse supernova explosion. The findings of this investigation may shed new light on the understanding of
the underlying physical mechanism responsible for the core-collapse supernova.

Unified Astronomy Thesaurus concepts: Supernova neutrinos (1666); Neutrino oscillations (1104); Core-collapse
supernovae (304); Degenerate matter (367); Relativistic fluid dynamics (1389); Plasma physics (2089)

1. Introduction

The mechanism of a core-collapse supernova due to the
gravitational death of a massive star is considered to be one of
the most complex and physically rich astrophysical phenomena
(Jankaa et al. 2007). The investigation of a supernova
comprises the study of plasma dynamics in a strong
gravitational field while considering the transport of intense
neutrino beams from the core to the outer layers of the
supernova progenitor. At the advanced stages of stellar
evolution, the electron–positron pair annihilation is the main
process responsible for the production of neutrinos. However,
during the collapsing stage, electron capture by the Fe-peak
elements becomes the dominant neutrino emission process. If
the mean-free path of these neutrinos is much shorter than the
size of the dense core of the star, the neutrinos interact with the
core a number of times before diffusing out of the core
(Mezzacappa & Messer 1999). The interaction of neutrinos
with the core plasma may lead to different kinds of
hydrodynamic instabilities in the supernova core during the
first few seconds of the explosion. These instabilities are of
potential importance as they may trigger the explosion, or
create the seed for the ejecta asymmetries observed later on.

Due to their critical role in the energy and momentum transfer
that causes the Supernova II (SN II), several authors have over the
past few decades investigated the nonlinear interaction of intense
neutrino beams with plasmas (Chiueh 1993; Bingham et al.
1994, 1996; Serbeto 1999; Shukla et al. 1999; Silva et al. 1999,
2000; Serbeto et al. 2002). Quantum mechanically, it is proposed
that a neutrino spends some of its time as a combination of two
virtual particles, one of which is an electron and the other a

+W -boson. The motion of neutrinos through the plasma tends to
influence these virtual charged particles, which leads to a form of
inhomogeneous Debye shielding of the particles, thus giving rise
to a net electric charge and the induced electromagnetic properties
of the neutrinos in plasma. The small neutrino charge in plasma is
given by d d q= + -n nnG G I Q2 2 sinj je j j wF

2
e

( ( )), where j
denotes the electron (e) and proton (p) species of plasma, GF is the

Fermi’s coupling constant of weak interaction, θw is the Weinberg
mixing angle ( q »sin 0.23w

2 ), Ij is the weak isotopic spin of the
particle of species j (equals −1/2 for electrons and +1/2 for
protons), and Qj=qj/e is the particle normalized electric charge.
A weakly charged neutrino beam propagating through a dense
plasma interacts with the plasma electrons via electro–weak
interaction and may give rise to a neutrino-driven instability.
Bingham et al. (1994) studied the collective interactions

between dense plasmas and neutrinos emitted in the core of a
supernova. They showed that an intense neutrino beam couples
nonlinearly with collective plasma oscillations, which leads to
the transfer of neutrino energy to Langmuir waves that further
heat the plasma electrons through collisional damping. Another
analysis by Chiueh (1993) showed that the interaction of
neutrinos with ion sound waves gives rise to a neutrino-driven
instability, and the instability growth rate scales as ≈GF. The
instability growth rate dominates over the viscous damping of
the sound waves and leads to a net growth of the instability.
The detailed physics of collective interactions between
neutrinos and plasmas has been highlighted (Shukla et al.
1999), and it has been shown that an intense neutrino beam
may lead to two-stream instabilities, inhomogeneities, and
magnetic fields in plasmas. Serbeto et al. (2002) used a
hydrodynamic description to analyze the ion sound wave
excitation by intense neutrino beams. They obtained a neutrino-
modified dispersion relation for the ion sound waves and
proposed that the generated ion waves may be responsible for
the energy–momentum transfer from neutrinos to the plasma
environment of SN II that can enhance the stalled supernova
shocks.
Depending upon the properties of the medium through which

neutrinos propagate, there occurs a two-way periodic transfor-
mation of one type of neutrino into another (Mikheev &
Smirnov 1986, 1987; Smirnov 2005). This phenomenon,
referred to as a neutrino flavor oscillation, was found to be
responsible for the solar-neutrino deficit problem (Bethe 1986).
When the neutrinos interact with plasma, it causes a resonant
coupling between different flavor states. Recently, researchers
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have investigated the interaction of a neutrino beam with
plasma while considering the effect of neutrino flavor
oscillations (Mendonça & Haas 2013; Mendonça et al. 2014;
Haas et al. 2017a, 2017b). Mendonça & Haas (2013)
introduced a new model for the joint neutrino flavor and
plasma oscillations by formulating a neutrino flavor polariza-
tion vector in a plasma. Mendonça et al. (2014) found that the
electron plasma waves excited by the intense neutrino beams
are linked with the flavor oscillations of neutrinos, and that the
dispersion relation and growth rates of neutrino-driven
instabilities are directly influenced by the flavor oscillations.

The plasmas present in the core of a star at the last stages of
stellar evolution as well as in white dwarf interiors, neutron
stars, etc., are dense with electron number densities greater than

-10 cm30 3. At such high number densities, the Fermi energy of
electrons is greater than the thermal energy, i.e., >E K TB eFe
and the electrons are degenerate. Hence, it becomes important
to incorporate the quantum effects such as electron degeneracy
pressure while analyzing the instability phenomenon in a dense
astrophysical plasma. On the other hand, relativistic effects
depend upon the relative magnitudes of the Fermi energy of the
electron fluid and the rest mass energy of electrons. In other
words, if >E m ceFe

2, the charged species are considered to be
relativistic. In a classic paper, Chandrasekhar (1935) specified
the form of the degeneracy pressure in a dense plasma ranging
from the nonrelativistic to the ultrarelativistic limits. Haas
(2016) presented a detailed theoretical description of the model
equations suitable for an ultrarelativistic degenerate plasma by
comparing the expressions for the dispersion relation of ion
acoustic waves using both fluid and kinetic approaches. In the
prolific plasma literature, various authors have analyzed the ion
acoustic waves in dense astrophysical plasmas while taking
into account the relativistic and degenerate character of the
electrons (Eliasson & Shukla 2012; Masud & Mamun 2013;
Haas 2016; Rahman et al. 2017; Iqbal et al. 2018;
Sharma 2018). Haas & Eliasson (2015) presented a study of
a two-stream instability mode in a magnetized plasma while
considering a quantum hydrodynamic model. The authors
reported a new transverse model of streaming instability due to
streaming electron beams having properties of a nonrelativistic
dense Fermi gas and immobile ions in the presence of an
external magnetic field. An investigation of ion acoustic waves
was reported by Khan et al. (2016) in an extremely dense,
magnetized, astrophysical plasma containing nonrelativistic
ions and relativistic degenerate electrons. They analyzed the
dispersive effects due to plasma density and magnetic field
strength on the triggering of ion acoustic waves (IAWs) in very
high density plasmas under extreme conditions. Prajapati
(2017) reported the analysis of neutrino-beam-driven instability
in a homogeneous, self-gravitating, quantum plasma in the
presence of a neutrino beam, but where the influence of
neutrino flavor oscillations was not taken into consideration.

Due to the slow nature of both the neutrino flavor
oscillations and the IAWs, it is interesting to investigate the
resonance between IAWs and neutrino flavor oscillations. Haas
et al. (2017a) studied the coupling between IAWs and neutrino
oscillations in a nonrelativistic electron–ion plasma in context
with the observations of supernova 1987A (Hirata et al. 1987).
They concluded that the neutrino flavor oscillations excite a
new fast unstable mode by transfer of energy to the plasma in
extreme astrophysical scenarios. Further, it has been reported
that the coupling between neutrino flavor oscillations and the

IAWs in a completely ionized plasma is not influenced by the
collisional effects (Haas et al. 2017b). It is a well-established
fact that a massive star after exhausting all of its nuclear fuel
contracts under its own gravitational pull until it reaches a stage
when there is an abundance of iron nuclei as the major trace
element and the electrons are relativistic as well as degenerate.
Many theoretical and simulation studies (Connor 2015;
Fröhlich et al. 2018; Ott et al. 2018) have investigated the
neutrino-beam-driven instability mechanism responsible for a
core-collapse supernova in a supernova progenitor.
The motivation of the present investigation is to explore the

dynamics of supernova explosion via the neutrino–plasma
interaction process in the dense, degenerate core of a supernova
progenitor star, including the impact of neutrino flavor
oscillations on the neutrino-driven instability of the IAWs in
a dense astrophysical plasma such as that at the last stage of
stellar evolution comprising ultrarelativistic degenerate elec-
trons and nondegenerate ions. It is expected that if a supernova
explosion occurs at a distance of ∼100 pc, the neutrinos
emitted in the process may be detected by the neutrino detector
KamLAND (Yoshida et al. 2016). In the present study, we
have investigated an instability regime of neutrino-driven
streaming instability with predicted parameters for a supernova
explosion in a progenitor star. We have highlighted the effects
of eigenfrequency of the neutrino flavor oscillations on the
growth rate of the instability and the influence of different
physical parameters that are characteristics of the streaming
neutrino beam and the plasma environment. Our investigation
gives a broader understanding of the instabilities in dense
astrophysical environments such as degenerate cores of
massive stars, which may seed or influence the dynamics of
the core collapse in a supernova progenitor.
The paper is structured as follows: Section 2 presents the

fluid model equations. A dispersion relation for ion acoustic
waves in a relativistic degenerate plasma in the presence of a
neutrino beam with flavor oscillations is derived in Section 3,
which is analyzed in Section 4 with respect to the neutrino
beam instability. Finally, concluding remarks are given in
Section 5.

2. Fluid Model Equations of Plasma and Neutrino Beam

Using a neutrino-modified fluid approach, we investigate the
instability of IAWs in an unmagnetized, dense plasma
containing cold heavy ions and ultrarelativistic degenerate
electrons interacting with a neutrino beam undergoing two-
flavor oscillations. The continuity and momentum equations for
the ions are written in the relativistic form as

g
g

¶
¶

+  =u
n

t
n 0, 1i i

i i i
( ) · ( ) ( )

g f
¶
¶

+  = - u um n
t

q n , 2i i i i i i i· ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

where ni and ui are, respectively, the proper number density
and velocity of the ion fluid, g = - -u c1i i

2 2 1 2( ) is the
relativistic factor for ions, mi depicts the mass of the ion
species, f is the electrostatic potential, and qi=Zie is the
ion charge, where Zi is the ion charge number. The electron
dynamics is modeled using a relativistic form of the electron
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continuity and momentum equations,
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g

¶
¶

+  =u
n
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n 0, 3e e

e e e
( ) · ( ) ( )
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f

¶
¶

+  = -  +
¶
¶

+  + + ´n n
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u
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P
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e

e

e

e
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F

· ( )

( ) ( )

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where g = - -u c1e e
2 2 1 2( ) is the relativistic factor for

electrons and H is the non-dimensional enthalpy density defined
as x= +H 1 2 , where x p=  n m c3 e e

2
0

1 3( ) . For the
ultrarelativistic degenerate electrons x 12  , so that H≈ξ. For
the slowly evolving IAWs, the electrons are considered to be
inertialess, so the terms on the left-hand side of Equation (4) will
be omitted below. The electron Fermi pressure is given by
Chandrasekhar’s ultrarelativistic equation of state (Chandrasekhar

1935) as =
p

P nhc
eFe

3 1 3

8
4 3( ) , where h is Planck’s constant and

c is the speed of light. Here, ne and ue are the proper number
density and velocity of the electron fluid. In Equation (4), GF is
the Fermi’s coupling constant of weak interactions, and the
neutrino’s effective weak electric and magnetic fields are given by

= - -
¶
¶

=  ´n nE v B vN
c t

N
c

N
1

and
1

, 5e e e e e2 2
( ) ( ) ( )

respectively, where Ne is the number density, ve is the fluid velocity
of electron neutrinos, and c is the speed of light. It should be noted
that the Fermi’s weak force couples the electron neutrinos with the
electrons (leptons) only and not with the ions (hadrons). The
system of equations is closed by Poisson’s equation

f g g = -


e
n Z n , 6e e i i i

2

0
( ) ( )

where ò0 is the electric permittivity of vacuum. We here
consider large-scale ion acoustic waves, where the electrons
stream to neutralize the ions, so that Poisson’s Equation (6) can
be replaced by the quasi-neutrality condition g g=Z n ni i i e e.
Also, for IAWs the electron and ion fluid velocities are
nonrelativistic, and hence the relativistic gamma factors (γi and
γe) are reduced to ≈1.

In order to investigate the coupling between plasma and
neutrino oscillations, we consider two-flavor neutrino oscillations
and, hence, represent the continuity equations for the electron and
muon-neutrino in terms of the quantum coherence factor

¶
¶

+  = Wv
N

t
N N P

1

2
, 7e

e e 0 2· ( ) ( )

¶

¶
+  = - Wm

m mv
N

t
N N P

1

2
, 80 2· ( ) ( )

where N=Ne+Nμ is the total neutrino fluid density, Nμ and
mv are the muon-neutrino fluid density and velocity, respec-
tively, and P2 is the quantum coherence factor in the flavor
polarization vector =P P P P, ,1 2 3( ). Also, w qW = sin 20 0 0,
where w = D m c 20

2 4
0, Dm2 is the squared neutrino mass

difference, 0 is the neutrino spinor’s energy in the funda-
mental state, and θ0 is the neutrino oscillation mixing angle.
The terms on the right-hand side of Equations (7)–(8) with the
opposite sign depict the contribution from neutrino oscillations
to the rate of change in electron and muon-neutrino density

flows. The global density of neutrinos is conserved as

ò ò+ = -  + =m m mr v v r
d

dt
N N d N N d. 0, 9e e e( ) ( ) ( )

where the volume integrals are over all space. The neutrino
dynamics is modeled by the relativistic momentum equations

¶
¶

+  =

´ - -
¶
¶

+ ´  ´

v p

u
v

u

t
G

n
c t

n
c

n

. 2

1
, 10

e e

e e e
e

e e

F

2 2
( ) ( ) ( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

¶

¶
+  =m

m m

p
v p

t
0, 11( · ) ( )

where =m m mp v ce e e, , ,
2 are the relativistic momenta of the

electron and muon neutrinos and = -m n m
- m c v c1e e,

2
,

2 2 1 2( )
are the energies of the electron and muon-neutrino beams. The
time evolution of the flavor polarization vector in a material
medium is given by

¶
¶

= -W
¶
¶

= W - W

¶
¶

= W

P

t
n P

P

t
n P P

P

t
P

, ,

and .
12

e e
1

2
2

1 0 3

3
0 2

( ) ( )
( )

where w q wW = - n G ncos 2 2e e0 0 F 0( ) ( ).

3. Small Amplitude Wave Dispersion Relation

We linearize Equations (1)–(12) by considering plane wave
perturbations of the form d i w= + -k r tf f f exp0 ( ( · )) with
df f0∣ ∣  , where f represents a physical quantity. The
equilibrium values of the physical quantities for a homo-
geneous static equilibrium are (Haas et al. 2017a)

f= = =
= = = =m m m

u
v v v

n Z n

N N N N

, 0, 0,
, , . 13

e i i e i

e e e

0 0 0, 0

0 0 0 ( )

Also, for the flavor polarization vector, we consider

=
W
W

= =
W
W

=
-

n n

m
P P P

n N N

N
, 0, . 14e e

01
0

02 03
0 0 0

0

( ) ( )

Here, we have W = W + Wn ne
2 2

0 0
2( ) , where Wn represents the

eigenfrequency of two-flavor neutrino oscillations and
= + mN N Ne0 0 0 is the total equilibrium number density of

the neutrino beam. The equilibrium values for the flavor
polarization are obtained from the properties of neutrino
oscillations in a fixed homogeneous medium, where it is
considered that  = 0. Also, by using that d d=Z n ni i e, we
substitute the expression for the electrostatic potential f from
the ion momentum equation in the electron momentum
equation. The linearized electron momentum Equation (4)
after taking its scalar product with k becomes

w d

w d w d

- +

´ - + =k v k v

V k n
G Z n

m c

c k N N

2

0. 15

s e
i e

i

e e e

2 2 2 F 0
2

0
2 2

0

( )

(( · ) · ) ( )

where p= V Z c n m3 3s i e i
2

0
1 3( ) is the ion acoustic speed in

the ultrarelativistic degenerate plasma. Linearizing the electron
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neutrino momentum Equation (10), we obtain

w d w d
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where º e0 0 is the energy of the incident electron neutrino
beam. From Equation (16), we obtain the perturbed electron
neutrino beam velocity

d
w

d w d

d
w

d

d d

=
-

-

- -

- -


v

k v
k u

k v v u v
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G
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n
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e e e e
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0
0

2 0 0
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⎞
⎠

The linearization of electron continuity Equation (3) yields the
perturbed electron velocity

d
w d

=u
k n

n k
. 18e

e

e0
2

( )

Using Equation (18) in Equation (17), we obtain

d
w

w
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Using Equation (19) with Equation (15), we find
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On the other hand, from the electron neutrino continuity
Equation (7), we have

w d d
i d

- - =
W

k v vN N k
N P

2
. 21e e e0 0

0 0 2( · ) · ( )

The effect of neutrino oscillations is given by the dP2 term
in Equation (21); hence, we obtain the expression for the
perturbation of quantum coherence vector from Equation (12) as

d i
w d

w
= -

W
- W Wn n

P
G n2

. 22e
2

0 F
2 2( )

( )

By substituting Equations (19), (20), and (22) in Equation (21),
we finally obtain the dispersion relation for IAWs in an
ultrarelativistic degenerate plasma in the presence of a neutrino
beam with flavor oscillations as

w
w w
w w

q w
w

= +
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W - - W

+ -
-

-

n n



k v
k v

k v

V k A
c k

B
v

c

c k c k
1

cos 2
, 23

s
2 2 2 0

2 2 2
0

0
2 2

0
2 2

2

2 2 2 2 2

0 0
2

( ( · ))
( · )( )

( )
( · )

( )
⎛
⎝⎜

⎞
⎠⎟

where
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B
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and . 24i e e

i

i e

i

F
2
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2

F
2
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2

( )

4. Analysis of Neutrino Beam Instability

For the neutrino beam mode, it is clear from the dispersion
relation (23) that the growth rate is the maximum for the
following resonance condition:

w » = W =n k vV k . 25s 0· ( )

Let us consider the case when w dw= W +n , where dw Wn .
By substituting these conditions in the general dispersion
relation (23), we obtain the following equation:

dw dwW - - + W =n nV V V2 0, 263
osc beam osc( ) ( )

where = - q


V 1Bc k v

cbeam
2 cos4 4

0

0
2 2

2( ) and = W
Wn

V A c k
osc 2

0
2 2 2

2 are

terms contributed by the neutrino beam and the neutrino flavor
oscillations, respectively. We have numerically solved
Equation (26) to find the growth rate dwimg of the neutrino-
beam-driven instability. It is clear that the conditions (25) are
met only for perturbation wavenumber of the order ~Wn Vs,
giving large-wavenumber or short-wavelength perturbations.
For the numerical analysis, we have used the parameters at

the core-collapse stages of a massive star such as Betelgeuse, as
given in a study by Yoshida et al. (2016), of time evolution of
the neutrino spectra emitted from supernova progenitors. The
values of various plasma parameters for iron plasma at the
core-collapse stage of a progenitor star are considered as

= 1.94 MeV0 , =v c0.9980∣ ∣ , = ´ -N 1.013 10 m0
34 3,

= ´ -n 1.23 10 me0
37 3, = ´T 6.5 10 K9 , =m 56 a.m.ui ,

and =Z 1, 2, 3i for Fe (I), Fe (II), and Fe (III) ions,
respectively. Other parameters are D = ´ -m c 3 10 eV2 4 5 2,

q = -sin 2 100
1( ) , and = ´ -G 1.45 10 J mF

62 3. For these
parameters, the electron Fermi energy is much larger than
both the thermal energy (E k TB eFe  ) and the rest mass energy
of the electrons (E m ceFe

2 ). Hence, the assumption of
ultrarelativistic and degenerate electrons is justified, which is
also the case for a dense iron core of a massive star at the last
stage of stellar evolution. It has also been proposed in an earlier
study that the neutrino-beam-driven instability growth rate is
larger for perpendicular propagation of the neutrino beam with
respect to the plasma waves (Prajapati 2017). However, for the
considered set of parameters in the present study, it is found
that the condition (25) is satisfied for a particular value of angle
(θ) between the direction of the IAWs and the neutrino beam,
which is q » 89.72 for ultrarelativistic degenerate electrons
and Fe(II) ions. Hence, it is clear that the neutrino-driven
instability growth rate attains a maximum value for a near-
perpendicular propagation of the neutrino beam with respect to
the IAWs. For the considered set of parameters, we obtain the
eigenfrequency of the neutrino flavor oscillations as W =n

´ -6.3 10 rads9 1 and the ion acoustic speed as = ´V 1.49s
- c10 m s6 1  . The critical wavenumber for the neutrino-

driven instability is evaluated to be = ´ -k 4.2 10 m3 1; hence,
the neutrino-driven instability will be significant for large-
wavenumber or short-wavelength perturbations. The time
period of the instability growth for the considered parameters
is numerically determined using MATHEMATICA from the
positive imaginary root of Equation (26) and is found to be
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»4.5 ms, which is small enough to alter the dynamics of
supernova explosion due to core collapse of a progenitor star.

The dependence of the growth rate dwimg of the neutrino
beam instability on the different physical parameters is depicted
in Figures 1–3. The influence of neutrino flavor oscillations and
the number density of the neutrino beam on the instability
growth rate is presented in Figure 1. It is shown that with an
increase in the eigenfrequency of the neutrino flavor oscilla-
tions and the number density of the neutrinos, the instability
growth becomes more rapid. It is inferred that as the
eigenfrequency of the neutrino flavor oscillations resonates
with the frequency of IAWs, the instability growth rate is
significantly enhanced, which may be due to an increased
energy exchange between the neutrino beam and the ion
acoustic waves. It is clear that the neutrino flavor oscillations
have a significant influence on the neutrino-driven instability
phenomenon.

The variation of the neutrino-driven instability growth rate
with the neutrino energy for different values of the ion charge
number is depicted in Figure 2. It is seen that the growth rate of
the instability decreases with an increase in energy of the
neutrino beam. In other words, the enhanced energy of the
neutrino beam has a stabilizing influence on the neutrino-driven
streaming instability. It is also noticeable from Figure 2 that for
a higher ion charge state, the neutrino-driven instability growth
rate decreases. Hence, the IAWs become more rapidly unstable
if the abundant ion species are iron with the charge state Fe (I)
compared to Fe (II) and Fe (III).

The influence of the number density of ultrarelativistic,
degenerate electrons on the instability of IAWs in the presence
of neutrinos is illustrated in Figure 3. It is seen that an
enhancement in the number density of ultrarelativistic
degenerate electrons tends to an increase of the growth rate
of the neutrino-driven instability (dwimg). In other words, the
dense, degenerate core of a progenitor star gets destabilized in a
much shorter time if the electron gas interacting with the
streaming neutrino beam is denser. The effect of different ion
species on the neutrino beam instability is also seen in Figure 3.
It is remarked that the ion species play a prominent role for the
instability criterion of the IAWs in the present case. As the ion
species become more massive, for example, as the concentra-
tion of the dense core plasma and its surrounding layers is
changed when carbon gets converted into iron, the neutrino
instability growth is significantly increased. It is concluded that
the neutrino beam instability is most prominent if a dense

neutrino beam having minimal energy interacts with an
electron dense progenitor core containing iron as a major trace
element.

5. Conclusions

We have investigated the neutrino-driven instability mech-
anism by considering neutrino flavor oscillations in a plasma
containing cold, heavy ions and electrons that are relativistic
and degenerate. The instability phenomenon is studied with its
relevance to the core-collapse supernova explosion by
considering physical parameters of the advanced stages of a
progenitor star. It is observed that the neutrino parameters such
as the energy and number density of neutrinos and the
eigenfrequency of neutrino flavor oscillations have a profound
influence on the neutrino-driven instability growth rate. The
time period of the neutrino-driven instability process is of the
order of a few milliseconds and hence the instability is fast
enough to alter the dynamics of a core-collapse supernova
explosion that occurs at the timescale of few seconds. The
findings of this study of plasma wave instability due to a
neutrino beam carrying out flavor oscillations gives new
insights into understanding the process of core-collapse
supernova and in predicting the dominant mechanism for the
collapse.
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Figure 1. Variation of the growth rate of the neutrino-driven instability with the
number density N0 of the neutrino beam for different values of the
eigenfrequency Wn of the neutrino flavor oscillations. Red (solid) curve:
W = ´n 3 10 rad9 -s 1; blue (dashed) curve: W = ´n 4 10 rad9 -s 1; black
(dotted) curve: W = ´n 5 10 rad9 -s 1. The other parameters are

= 1.94 MeV0 , θ=89°. 72, = ´ -n 3.23 10 me0
37 3, Zi=2, mi=56 a.m.u.

Figure 2. Variation of the growth rate of the neutrino-driven instability with
energy 0 of the neutrino beam for different charge states Zi of iron. Red (solid)
curve: =Z 1;i blue (dashed) curve: =Z 2;i black (dotted) curve: Zi=3. The
other parameters are = ´ -N 1.03 10 m0

34 3, = ´ -n 3.23 10 me0
37 3, θ=

89°. 72, mi=56 a.m.u.

Figure 3. Variation of the growth rate of the neutrino-driven instability with the
electron number density ne0 for different values of the ion mass mi. Red (solid)
curve: mi=1 a.m.u.; blue (dashed) curve: mi=12 a.m.u.; black (dotted)
curve: mi=56 a.m.u. The other parameters are = ´ -N 1.03 10 m0

34 3,
= 1.94 MeV0 , Zi=1, θ=89°. 72.
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