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1 Int roduct ion

Much of the empirical macroeconomic literature has been dominated by linear reduced form models (e.g.

AR or VAR models). Recent ly, therehasbeen a great deal of interest in freeing up thesymmetry restrict ions

implicit in linear t ime series models. For instance, one may wish to examine whether the persistence

of shocks is di®erent in recessions and expansions. Much of this work has considered threshold type

nonlinear speci¯ cat ions and found extensive, but not overwhelming, evidence for nonlinearity in many

key macroeconomic t ime series (see, among many others, Terasvirta and Anderson, 1992, Potter, 1995,

Beaudry and Koop, 1993, and Pesaran and Pot ter, 1997). However, there is an even larger literature that

searches for evidence of structural instability. For example, Stock and Watson (1996) ¯ nd evidence for

structural instability in a wide range of series. Thus, in addit ion to the quest ion of the importance of

these departures from linearity there is the quest ion of whether the apparent evidence for nonlinearit ies is

just evidence that there are structural instabilit ies in t ime series relat ionships that linear ¯ xed parameter

models cannot account for.

The importance to macroeconomics of answering these quest ions cannot be overemphasized. If linear

models provide an adequate representat ion of most economic t ime series then standard methodologies

(e.g. VAR methods) are suitable, and the stylized facts they produce (e.g. the widespread ¯ nding of unit

roots with the implicat ion that shocks have permanent e®ects) provide a good basis for policymaking and

theorizing. If important nonlinearit ies exist , however, then these should be incorporated in macro models

and the stylized facts generated by linear models are called into quest ion. On the other hand, if widespread

structural instability exists in most macroeconomic aggregates then empirical analysis of macroeconomics

using ¯ xed parameter t ime series methods is a dubious exercise at best .

In this paper, we describe a Bayesian method for test ing and est imat ion in light of the issues raised

above. We consider the common case where the researcher is considering a certain nonlinear model (e.g.

a threshold autoregressive, TAR, or a Markov switching model) that is felt to accommodate potent ially

important departures from linearity. In order to convince a wide audience of the usefulness of the nonlinear

model, the researcher must , of course, provideconvincing evidenceof departures from linearity. In addit ion,
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the author must convince the reader that apparent nonlinearit ies do not merely re°ect st ructural change.

Hence, we argue that the nonlinear t ime series econometrician must compare the nonlinear2 model both

to a linear model and to a model containing st ructural instability.

Thereare many ways of empirically implement ing thegeneral strategy out lined above. In this paper, we

base inference on variants and extensions of autoregressive models. We choose to focus on autoregressive

(AR hereafter) models because of their °exibility, computat ional simplicity and common usage in the

literature. We reason as follows: an AR model assumes that there is an invariant linear st ructure which

holds at all t imes; nonlinear extensions of AR models (e.g. TAR models) assume a linear st ructure which

changes in a way predicted by the past history of the t ime series. This suggests, when choosing a model

which re°ects st ructural instability, that we use a t ime-varying parameter (TVP) AR model where the

coe± cients evolve over t ime according to a random walk. Such a model would have a linear st ructure at

any point in t ime, but this structure will change in a way that is not predictable from the past history of

the t ime series. By basing our intuit ion on the degree of predictability of the linear structure, we can frame

a nonlinear model as lying between two extremes: one where perfect predictability exists (i.e. the linear

model where no change in structure occurs) and one where changes in structure are totally unpredictable.

In previous work (Koop and Potter (1999)), we recommend the use of Bayes factors for comparing

linear to nonlinear t ime series models: Bayes factors surmount Davies' problem (i.e. nuisance parameters

unident i¯ ed under the null) which plagues classical test ing; have an Occam's razor property which is

important in light of Lindley's paradox (see Poirier (1995), p. 545); allow for easy comparison of non-

nested models and allow for pooling inferences from many models in the usual case where more than one

model receives sizeable support from the data. In the present work, we also adopt a Bayesian approach.

For most of our models, analyt ical tools can be used to calculate the marginal likelihoods that are necessary

to calculate Bayes factors or posterior model probabilit ies. For the t ime-varying parameter model, we show

how Markov chain Monte Carlo (MCMC) methods can be used to calculate the marginal likelihood.

We use our methods to invest igate the presence of nonlinearit ies in several art i¯ cial and real data series.
2Formally speaking, a st ructurally unstable model is \ nonlinear" . However, we will follow common pract ice and use the

term \ nonlinear" t ime series model t o refer to models such as t he TAR where t he change in linear stucture over t ime is at
least part ially predictable.
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Our empirical ¯ ndings indicate lit t le support for threshold-type nonlinearit ies alone. Postwar quarterly US

GDP growth does not provide strong evidence for departures from linearity. Postwar quarterly US in°at ion

appears to exhibit substant ial st ructural instability as does a long annual UK industrial product ion series.

All of these series could be incorrect ly missclassi¯ ed as having threshold nonlinearit ies using tradit ional

approaches. We argue that our ¯ ndings indicate both the importance of Bayesian methods (which lessen

the chances of data mining) and of comparing nonlinear models to both linear and structurally unstable

models (instead of just the former).

2 M odels

The models considered in this paper are extensions of the standard AR(p) model:

yt = ®0 + ®1yt ¡ 1 + ::: + ®pyt ¡ p + ¾" t (1)

where " t » I.I.D. N(0,1). We label this M L for linear model. It is parameterized by ® = (®0; :::; ®p)0 and

¾2.

A simple way of extending this model is to allow for AR dynamics to di®er across various regimes,

where the regimes are dē ned endogenously using past informat ion in the system. There are many ways

in which one can do this, the simplest being the threshold autoregressive (TAR) model (see Potter, 1995)

which we will label M T A R . In this paper, we will focus on a two regime model:

yt =
½

®01 + ®11yt ¡ 1 + : : : + ®p1 1yt ¡ p1 + ¾" t if X t ¡ d > r ;
®02 + ®12yt ¡ 1 + : : : + ®p2 2yt ¡ p2 + ¾" t if X t ¡ d · r ;

(2)

Not ice that the TAR allows for di®erent dynamics depending on whether a variable X t ¡ d is above or below

a threshold r . X t ¡ d is some funct ion of data observed between periods t ¡ 1 and t ¡ d inclusive. We choose

X t ¡ d to be lags of the dependent variable, i.e. X t ¡ d = yt ¡ d. r and d are treated as unknown parameters in

our analysis. To keep the number of models and parameters manageable, we set p1 = p2 ´ p and d · p:3

The TAR can be reparameterized using dummy variables as:

3T he T AR could easily be extended t o allow for het eroskedast icity. We do not do so in order t o focus on nonlinearit ies in
the condit ional mean of the series.
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yt = ®0D1t + ®1yt ¡ 1D1t + ::: + ®pyt ¡ pD1t + °0D2t + °1yt ¡ 1D2t + ::: + °pyt ¡ pD2t + ¾" t ;

where D1t = 1 if X t ¡ d · r , and = 0 otherwise and D2t = 1 if X t ¡ d > r , and = 0 otherwise. Hence, the

parameters of the model are the same as the AR model except that r; d and ° = (°0; :::; °p)0 are added.

The third class of models we consider also allows for the dynamics to di®er over t ime, but does not

allow for changes in st ructure to be predictable using past observables. This is a t ime varying parameter

model (M T V P ) which allows the coe± cients of a linear AR representat ion to evolve according to a random

walk:

yt = ®0t + ®1t yt ¡ 1 + ::: + ®pt yt ¡ p + ¾" t ;

where

®i t = ®i ;t ¡ 1 + ¸ i ¾vi t

and vi t is assumed to be independent of " t and is dist ributed I.I.D. N(0,1) for i = 0; ::; p. We dē ne

¸ = (¸ 0; :::; ¸ p)0: Note that evidence in favor of signi¯ cant variat ions over t ime in the parameters is also

evidence of structural instability. If ¸ = 0; this model reduces to the linear AR model. Writ ing ®i t =

®i 0 + ¸ i ¾
P t

j = 1 vi j , it can be seen that the ®0
i 0s (i = 1; ::; p) are analogous to the AR coe± cients in M L .

Hence, M T V P can be parameterized in terms of ® = (®00; :::; ®p0)0; ¾2 and ¸ :

Within these three classes of models (M L ; M T A R ; M T V P ); we allow for various submodels depending

on AR lag length. In our empirical sect ion, we allow the lag length to range from 1 to 44

3 Pr iors and Bayes Fact or Calculat ion

To calculate Bayes factors in the context of comparison of nested models, proper priors must be speci¯ ed

(i.e. the prior must integrate to one). The use of °at (improper) priors typically results in degenerate

Bayes factors that always favor the restricted over the unrestricted model regardless of the data. The

4Preliminary dat a analysis indicat ed t hat no values of p greater t han 4 received appreciable post erior support for any of
our series.
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use of informat ive priors is often crit icized by non-Bayesian econometricians. In addit ional to the usual

Bayesian methodological arguments in favor of informat ive priors, we note that :

i) In the VAR forecast ing work of Lit terman and Sims, informat ive priors are found to great ly improve

forecast ing performance. This occurs despite the fact that the priors are chosen mainly for computat ional

simplicity. Prior hyperparameters are chosen in a fairly crude way using only rough reduced form infor-

mat ion (e.g. macroeconomic series are probably roughly I(1), AR coe± cients are probably not too large,

distant lags of the series are probably less important than recent lags, etc.). That is, prior informat ion can

be useful in an empirical modelling exercise even if the informat ion is very inexact .

ii) Opt imal solut ions to Davies' problem require the elicitat ion of something that is essent ially ident ical

to a prior (see Koop and Pot ter (1999)), so classical approaches are also dependent on informat ive priors.

iii) Bayes factors are usually robust to \ reasonable" changes in the prior. In pract ice, we carry out a

sensit ivity analysis.

iv) In this paper we are interested in comparing di®erent classes of models. These classes have many

common parameters (the AR coe± cients and error variance). We use the same prior for these parameters

in each class of models. It is only for the few parameters that are not common to all models (i.e. ° and ¸ )

that prior informat ion is potent ially important . Loosely speaking, this means that it is less likely that the

prior is driving the Bayes factors obtained (i.e. since the prior is so similar, it must be likelihood di®erences

driving the Bayes factor results).

Throughout this paper, we condit ion on p init ial observat ions and, hence, the AR model has the same

likelihood funct ion as the Normal linear regression model.5 Accordingly, we make use of the Normal-

inverted Gamma natural conjugate prior for ® and ¾. Writ ing p(®; ¾) = p(®j¾)p(¾), we take p(®j¾) to be

N (0; ¾2A) and p(¾) to be inverted Gamma with hyperparameters ¹ ¾ and º ¾ (we adopt the notat ion for the

inverted-Gamma given in Judge, Gri± ths, Hill, Lutkepohl and Lee (1985), pages 106-107). Prior degrees

of freedom are given by º ¾ and the prior mode of ¾is
q

º ¾
º ¾+ 1 ¹

¾
:With this prior, the marginal likelihood

has an analyt ical form (see, e.g., Judge, Gri± ths, Hill, Lutkepohl and Lee (1985), page 129). This su± ces

5From this point fort h, we will write t he data as running from period 1 t o T , implicit ly labelling t he ¯ rst p observat ions
as 1 ¡ p t hrough 0.
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to describe the likelihood, prior and computat ional techniques for calculat ing the marginal likelihood for

M L :

For M T A R , we write the prior as: p(®; ¾; °; r; d) = p(®; °j¾)p(¾)p(r jd)p(d): We use a prior for ®; ° and

¾which is analogous to that used for M L . In part icular, we use a Normal-inverted Gamma prior for these

parameters where the inverted-Gamma part is ident ical to that given above. Furthermore, the prior for

the regression coe± cients, condit ional on ¾2, is given by:

µ
®
°

¶
» N

µ
0; ¾2

·
A 0
0 A

¸ ¶
:

Flat priors are used for the parameters r and d. In part icular, r is assumed to be a priori °at over all

possible values that imply that at least 15% of the observat ions lie in each regime and d is °at over the

integers 1; : : : ; p. Note that the prior is centered over the linear speci¯ cat ion. The marginal likelihood for

thismodel can easily becalculated by not ing that , condit ional on r and d, M T A R isa linear regression model

and standard analyt ical results can be used. An uncondit ional marginal likelihood can be calculated by

evaluat ing the condit ional marginal likelihood at every possible r ,d combinat ion and then averaging using

the priors for these lat ter two parameters. Koop and Potter (1998a,b) provide further details regarding

TAR models.

M T V P contains the same parameters as M L plus ¸ . For the common parameters, we use the same

prior. ¸ is assumed to be independent of the common parameters. We assume p(¸ ) =
Q p+ 1

i = 1 p(¸ i ) and

p(¸ i ) is inverted Gamma with hyperparameters ¹ ¸ i and º ¸ i :

The marginal likelihood for M T V P is much more di± cult to calculate, since analyt ical results are not

available. However, as described below, a Gibbs sampler can be set up to take pseudo-random draws from

the posterior for this model. Given the output from this posterior simulator, the method of Chib (1995)

can be applied direct ly to calculate the Bayes factor.

3.1 Values for Pr ior H yperparamet ers

In this paper we use either art i¯ cially simulated data or real data. In order to simplify prior elicitat ion for

these various series, the art i¯ cial data is simulated with ¾= 1 and the real data is in growth rates and
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standardized to have mean zero and unit standard deviat ion. With all these data sets, it is reasonable

to use the same prior. The prior hyperparameters are selected to be intuit ively reasonable, but fairly

noninformat ive. An appendix contains results from a sensit ivity analysis where the prior hyperparameters

are varied.

Given that we are using demeaned, growth rate data, it is sensible to choose prior means of zero for

all regression coe± cients. The prior variance of these coe± cients, condit ional on ¾2; is ¾2A. We set

A = 0:25 £ I . Given that ¾is likely around 1, the prior standard deviat ion of the regression coe± cients

will be roughly .5 indicat ing that we think it unlikely that they are larger than 1 in absolute value. In

other words, we are fairly con¯ dent (but not dogmat ically so) that the AR coe± cients lie in the stat ionary

region.

For the error variance, we set ¹ ¾= 1 and º ¾ = 3. Since the degrees of freedom parameter can, loosely

speaking, be thought of as a prior sample size, this prior is fairly noninformat ive (i.e. it has roughly the

same informat ion content as three data points) but it is centered near 1.

It is worthwhile to just ify the prior for the ¸ 0
i s in more detail and to dist inguish between the case where

thedata is in levelsas opposed to growth rates. Webegin by considering thecasewherep= 0 (i.e. themodel

contains only an intercept which follows a random walk). It is well-known that this model implies that yt

contains a unit root and that ¸ 0¾is, loosely speaking, a measure of how large the unit root component is.

This forms the basis for several unit root tests (see, e.g., Kwiatkowski, Phillips, Schmidt and Shin, 1992).

This suggests that , if yt is a growth rate, ¸ 0 is likely quite small, since the I(2) component of the original

level series is likely quite small. On the other hand, if yt is a level series, it is possible that ¸ 0 is much

larger.

If p> 0, then the evolving parameters include AR coe± cients, which are unlikely to change by much in

any period. Consider the case where p= 1. If ®1t often changes by more than, say, 0.1 in any period it will,

with high probability, wander into the explosive region of the parameter space. Allowing for changes of this

magnitude is not reasonable for macroeconomic t ime series unless massive technical change is repeatedly

occurring. Such considerat ions hold regardless of whether yt is a growth rate or a levels series. In other
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words, ¸ i should be very small for i= 1,..,p.

These propert ies are illustrated in Figures 1 and 2, which plot six di®erent art i¯ cial series with T= 200

and p= 1.6 All have ®00 = 0, ®10 = 0:5 and ¾= 1; but vary in their choices of ¸ 0 and ¸ 1. All series are

normalized to have zero mean and unit variance. Figure 1 chooses small values for ¸ 0 which are typical of

growth rates, while Figure 2 sets ¸ 0 = 1. ¸ 1 is then varied in each ¯ gure. These two ¯ gures illustrate three

points: i) Set t ing ¸ 1 = :1 in either ¯ gure allows the AR(1) coe± cient to wander o® into explosive regions.

This value seems to be too high for macroeconomic t ime series; ii) If we look at the cases where ¸ 1 = 0,

then we can see how ¸ 0 a®ects the trend propert ies of the series; and iii) Moderate values for ¸ 1 such as

0.05 do generate series which look like they could plausibly model real macroeconomic data.

Given these considerat ions, and the fact that we are using growth rates, we set ¹ ¸ i = :1 and º ¸ i = 2

for i = 0; ::; p: This is a very noninformat ive prior. In part icular, it has a median of .12. In other words,

this prior allocates roughly half its weight to the region we feel is plausible, [0,.1], but has an ext remely

long tail so that some prior weight is allocated even to implausibly large values of ¸ i .

4 M CM C A lgor i t hm

TheMCMC algorithm for M T V P can beobtained by modifying theexist ing literatureon Bayesian literature

on state space models. That is, condit ional on knowing the states (i.e. ®¤
i = (®i 1; :::; ®i T )0 for i = 0; ::; p)

the distribut ion of the remaining parameters is simple to derive { it becomes a standard linear regression

model with natural conjugate prior. Furthermore, condit ional on knowing the parameters of the model,

random draws of the states can be taken using established methods. This informal logic suggest a Gibbs

sampler with data augmentat ion can be used.

Formally, we can take random draws from p(®¤ jData; ®; ¾; ¸ ), where ®¤ = (®¤
0; :::; ®¤

p); using the tech-

niques of de Jong and Shephard (1995). Techniques for drawing from p(®; ¾jData; ®¤) are similarly easy

since this posterior condit ional has the familiar Normal-inverted Gamma form. In part icular, remember

that for M T V P ; ® is dē ned as the init ial states in the state equat ion and that ®i t = ®i 0 + ¸ i ¾
P t

j = 1 vi t .

6All series are created with t he same init ial seed in the random number generat or.
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Hence, the model can be writ ten as:

y¤
t = ®00 + ®10yt ¡ 1 + ::: + ®p0yt ¡ p + ¾" t ;

where, condit ional on knowing the states, y¤
t is known and is given by:

y¤
t = yt ¡ ¾f

tX

j = 1

¸ 0v0j + yt ¡ 1

tX

j = 1

¸ 1v1j + ¢¢¢+ yt ¡ p

tX

j = 1

¸ pvpj g:

We choose this non-standard way of set t ing up the model since it becomes clear that , condit ional on

knowing the states, the model becomes a linear regression model and, hence, the Normal-inverted Gamma

prior for (®; ¾) is (condit ionally) natural conjugate.

It remains to derive the form of p(¸ jData; ®; ®¤; ¾). Using the inverted Gamma prior for this parameter

discussed in the previous sect ion, it follows that the posterior condit ional is also inverted Gamma (see, for

instance, Min (1992)).

Details on the Gibbs sampler and the marginal likelihood calculat ion for the TVP model are given in

Appendix A.

5 A pplicat ion t o A r t i ¯ cial Dat a

Before working with real macroeconomic data, it is instruct ive to consider the performance of our Bayesian

methodology in art i¯ cial data. Accordingly, in this sect ion we simulate one data set of size 200 from each of

20 di®erent parmeter con¯ gurat ions.7 In order to focus on the comparison between linear, TAR and TVP

models we always set p= 1 and ¾= 1. The other parameters are set in order to shed light on the following

quest ions:

1. Is it possible for TVP data generat ing processes to be misclassi¯ ed as TAR models?

2. Is it possible for TAR data generat ing processes to be misclassi¯ ed as TVP models?

Accordingly, we carry out two experiments. In Experiment 1, we generate art i¯ cial data sets from

MT V P with ®00 = 0 and ®01 = :5 and ¸ 0 = ¸ 1. We then vary this common value for ¸ across data sets

7T he same seed for t he random number generat or was used for every art i¯ cial data set .
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over the region [0,0.08]. In our previous discussion on prior hyperparameter select ion we have mot ivated

this as an interest ing region of the parameter space. The case ¸ 0 = ¸ 1 = 0 corresponds to an AR(1) model

with coe± cient .5. The case ¸ 0 = ¸ 1= .08 has a large degree of coe± cient variat ion over t ime.

In Experiment 2, we generate art i¯ cial data sets from MT A R with ®0 = ®1 = °0 = 0, r= 0 and d= 1. The

coe± cient °1 is allowed to vary across data sets over [0,0.9]. If °1 = 0 then the model is linear. However,

as °1 increases the dynamics in the two regimes become more and more di®erent .

Figures 3 and 4 present the results of our two experiments in graphical form, using the prior described

above. In order to visually highlight the informat ion in these ¯ gures we plot the logs of Bayes factors

comparing the TAR and TVP models to the linear model. Note that the log of the Bayes factor being zero

implies that the models under considerat ion receive equal support from the data, values greater than zero

support the linear model and values less than zero support either the TAR or TVP model.

Figures 3 and 4 indicate that Bayes factors do a reasonable job of support ing the correct model, but

have a strong reward for parsimony built in. In Figure 3, if ¸ is less than roughly 0.025 (i.e. there is a

small degree of st ructural instability), the linear model is supported over the TVP model. In Figure 4, the

di®erence in AR(1) coe± cients across regimes has to be greater than 0.2 for the TAR model to be preferred

to the linear model. In other words there has to be a fairly sizeable degree of nonlinearity or structural

instability before the Bayes factor will support these more parameter rich models.

With regards to the two quest ions posed at the beginning of this sect ion, our results indicate that the

answers are Yes and No, respect ively. In part icular, Figure 3 indicates that if there is a large degree of

structural instability, then it is possible for the Bayes factor comparing the linear to the TAR model to

indicatesubstant ial support for the lat ter. If wehad omit ted to consider MT V P , wecould (incorrect ly) have

concluded our art i¯ cial data sets with ¸ = :07 or higher were generated from TAR models. In contrast ,

Figure 4 indicates that there is no way that a threshold model could be mistaken for a structurally unstable

model. Even for largeasymmetries between dynamics in the two regimes, our methodology always indicates

that the linear model beats the TVP model.

These results are, of course, suggest ive rather than conclusive. Remember, we only generated one data
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set for each of a limited set of parameter con¯ gurat ions. However, they do indicate that including both a

linear and a t ime-varying parameter model to compare with a candidate nonlinear model is potent ially of

great importance.

6 A pplicat ion t o Real Dat a

The data used in this sect ion is:

1. DGDP: Quarterly real US GDP growth from 1954Q2 through 1995Q1.

2. In°at ion: Quarterly change in the US CPI from 1947Q2 through 1998Q3.

3. DIP: Annual change in UK industrial product ion from 1701-1992.

These three select ions were made to re°ect the di®erent sorts of series macroeconomists often work

with. The DGDP series has been examined in a number of papers, which have found some (weak) evidence

of nonlinearity in this data set (see Pesaran and Potter, 1997 or Kapetanios, 1998 for a review). The

postwar behavior of in°at ion indicates that structural instability could be a problem for any t ime series

model of this series. DIP is a long annual UK industrial product ion growth series. This lat ter series runs

from 1701-1992 and has been extensively invest igated by economic historians (see Greasley and Oxley,

1994, and Mills and Crafts, 1996) who examine whether or not the industrial revolut ion was a dist inct

epoch that re°ected a large degree of technical progress.

The data (normalized to have mean zero and variance 1) is plot ted in Figure 5. Tables 1 through 3

present posterior model probabilit ies8 for each of the 3 models for each the four lag lengths. The three

series seem to exhibit quite di®erent behavior, so we discuss each in turn.

Table 1 indicates that there is almost no evidence in favor of structural instability for DGDP. That is,

the linear and TAR models receive virtually all of the posterior model probability, as do short lag lengths.

Overall, theredoes not seem to beenough data informat ion to decidebetween M L or M T A R | both receive

appreciable support from the data (roughly 70% and 30%, respect ively). However, there dē nitely does

not seem to be the sort of overwhelming evidence which would lead one to abandon the well-understood

8We at t ach equal prior weight to each model, so t he posterior model probabilit ies are merely renormalized marginal
likelihoods.
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Table 1: Post er ior M odel Probabil i t ies for D GD P
M L M T A R M T V P Total

p= 1 0.507 0.230 0.005 0.741
p= 2 0.151 0.060 0.004 0.215
p= 3 0.032 0.005 1.4£ 10-4 0.038
p= 4 0.005 0.001 8.3£ 10-6 0.006
Total 0.696 0.296 0.009 1

Table 2: Post er ior M odel Probabil i t ies for I n°at ion
M L M T A R M T V P Total

p= 1 4.6£ 10¡ 14 2.2£ 10¡ 14 1.4£ 10¡ 10 1.4£ 10¡ 10

p= 2 2.2£ 10¡ 13 1.5£ 10¡ 13 1.9£ 10¡ 9 1.9£ 10¡ 9

p= 3 8.4£ 10¡ 12 3.9£ 10¡ 12 7.3£ 10¡ 8 7.3£ 10¡ 8

p= 4 2.0£ 10¡ 10 2.1£ 10¡ 9 1.000 1.000
Total 2.0£ 10¡ 10 2.1£ 10¡ 9 1.000 1

linear class of models.

Table 2, on the other hand, ¯ nds overwhelming evidence of structural instability in in°at ion. M T V P

receives virtually all of the posterior model probability.9 A second important ¯ nding is that , if we had

ignored M T V P and just compared M L and M T A R , we would have found reasonably strong evidence for

nonlinearity. That is, the Bayes factor comparing the threshold autoregressive model against the linear

autoregressive model is roughly 10. In other words, if we had ignored M T V P we could have been mislead

into concluding in°at ion followed a TAR process, when in reality it exhibits structural instability.

Table 3 presents a mixed message and exhibits a pat tern we have found common in our Bayesian work

with nonlinear t ime series models. That is, the data are often not informat ive to dē nit ively decide on a

part icular class of models. The industrial product ion data likely exhibits st ructural instability (61%), but

threshold nonlinearity received appreciable support (37%) and even linearity is not ruled out completely

(2%).

In this sect ion, we have considered only three di®erent macroeconomic series and a limited class of

9 In fact , t his ¯ nding was so st rong we were init ially suspicious of it . However, an examinat ion of the values of t he likelihood
funct ion at the MLE indicat es t he same pat t ern, i.e. the T VP model wit h p= 4 yields a much higher likelihood funct ion than
any of the ot her models.
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Table 3: Post er ior M odel Pr obabil i t ies for D I P
M L M T A R M T V P Total

p= 1 0.004 0.063 1.4£ 10¡ 4 0.067
p= 2 0.011 0.062 0.013 0.086
p= 3 0.004 0.224 0.094 0.321
p= 4 0.001 0.022 0.503 0.525
Total 0.019 0.371 0.609 1

models (e.g. only the simplest two regime TAR). With this in mind, we would argue that our results are

caut ionary for nonlinear t ime series econometricians. In previous work (Koop and Pot ter, 1999,1998a,b),

we have argued that classical econometric ¯ ndings of predictable nonlinearit ies (e.g. of the sort implied

by various regime shift models such as TAR or Markov switching) could be fragile due to data mining.

We argued that a Bayesian approach which averages over all models and parameters is less subject to

this crit icism and tends to indicate weaker support for nonlinearit ies. The present paper strengthens our

previousargumentsand extends them to say that someapparent ly nonlinear t imeseriescould in fact merely

be structurally unstable. Note that none of our three widely di®ering series provide st rong evidence for

the TAR models. However, if we had only compared M L and M T A R we would have concluded that there

was st rong evidence for the lat ter class of models for two of the three t ime series considered. Furthermore,

classical econometric analyses have often found the third series, DGDP, to be nonlinear.

One reason for the poor performance of the TAR model is undoubtedly due to the fact that it is very

parameter rich and the Bayesian methodology we use here incorporates a strong reward for parsimony.

Hence, one message coming out of the present paper is that there might be gains in developing more

parsimonious nonlinear models. The endogenous delay threshold autoregressive model of Pesaran and

Potter (1997), further developed in Kapetanios (1998), o®ers promising init ial results.

It is inst ruct ive to compare the present results to those in Koop and Potter (1998b). The lat ter paper

invest igated whether apparent nonlinearit ies were due to simple structural breaks or out liers and used the

DGDP and DIP series. In terms of the condit ional mean of these series, there seemed to be reasonable

support for linearity (and some support for models with out liers) for DGDP and st rong support for the
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nonlinear TAR model (and very lit t le support for out lier models) for DIP. The present paper modi¯ es the

lat ter result by arguing that the apparent TAR ¯ nding could be due to structural instability in the DIP

series.

We have argued in this paper that our prior choice is sensible and that results should not be sensit ive

to reasonable variat ions to this choice. Readers who are skept ical of this claim are directed to Appendix B

where we use a prior which is much more noninformat ive than the present ones. Results are qualitat ively

similar to those presented here.

7 Conclusions

In this paper we have done ¯ ve things:

i) We have recommended a modelling/ test ing strategy for nonlinear t ime series. Rather than just

comparing linear to standard nonlinear models, we recommend also considering t ime-varying parameter

models. That is, the nonlinear model typically has linear dynamics which di®er across two or more regimes

in a way that is predictable using past data. This should be thought of as an intermediate case between

linear models (linear dynamics do not change at all over t ime) and t ime-varying parameter models (linear

dynamics change over t ime in a completely unpredictable way).

ii) Wehaveargued for a methodology based on Bayesfactors. In previouswork (Koop and Pot ter, 1999),

we have presented many arguments in favor of such an approach. In the current paper, we addit ionally

emphasize the way that Bayes factors allow for the direct comparison of mult iple models.

iii) We have shown how to operat ionalize the general ideas raised in i) and ii). In part icular, we discuss

useful classes of models, pract ical techniques for prior elicitat ion and computat ional methods.

iv) We have shown that the methods can be implemented in pract ice in art i¯ cial and real data.

v) We have shown that t radit ional methodologies, which do not consider the structurally unstable

model, would have lead us incorrect ly to conclude that threshold nonlinearity was present in two of our

three series.
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8 A ppendix A : Comput at ional Det ai ls

The computat ional techniques necessary for Bayesian inference and marginal likelihood calculat ion for the

AR and TAR models are standard and will not be repeated here (see Koop and Potter, 1998a,b). For the

TVP model, the Gibbs sampler is composed of the following blocks:

p(®; ¾jData; ®¤) = p(®j¾; Data; ®¤)p(¾jData; ®¤);

where the former of these is the Normal density with mean:

® = (A ¡ 1 + X 0X )X 0y¤

and variance:

¾2(A ¡ 1 + X 0X )¡ 1:

In the previous expressions, y¤ is a vector with t0th element y¤
t (which is dē ned in Sect ion 4) and X is

a matrix with t0th row given by (1; yt ¡ 1; :::; yt ¡ p). The condit ional density for ¾is inverted Gamma with

parameters À¾ = T + À¾ and

¹ 2
¾ =

À¾¹ 2
¾

+ (y¤ ¡ X ®)0(y¤ ¡ X ®) + ®0A ¡ 1®

À¾
:

The second block in the Gibbs sampler is for p(¸ jData; ®¤; ®; ¾) which is the product of p+ 1 inverted

Gamma distribut ions each with parameters À¸ i = T + º ¸ i and

¹ 2
¸ =

¹ 2
¸

+ SSE¸ i

À¸
;

where

SSE¸ i =
P T

t = 1(®i t ¡ ®i t ¡ 1)0(®i t ¡ ®i t ¡ 1)
¾2 :

The remaining condit ional is for ®¤ which is Normal. Drawing from this can be done direct ly using the

techniques of de Jong and Shephard (1995). Since these techniques are described in detail in the lat ter

paper, we do not repeat them here.
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With this speci¯ cat ion involving three blocks, we can direct ly use the techniques described in sect ion

2.1.2 of Chib (1995) to calculate themarginal likelihood. This requires theevaluat ion of theprior, likelihood

and posterior condit ionals at a point in the parameter space. We select the posterior mean (based on an

init ial run through the Gibbs sampler) as this point .

9 A ppendix B : Pr ior Sensit iv i t y A nalysis

In this appendix we present results based on a prior which is similar to the one in the body of the paper,

but much more noninformat ive. Loosely speaking, we leave the prior located in roughly the same place

but increase the dispersion. In part icular, all hyperparameters are the same except we now set A= 1£ I ,

º ¾ = :01 and º ¸ i = :01 for i= 0,..,p: Note that this makes the prior on the AR coe± cients very °at,

allocat ing a great deal of weight to explosive regions of the parameter space. The prior degrees of freedom

parameters can be interpreted as a prior \ sample size" . Set t ing these values to 0.01 implies that our prior

has the same weight as one-hundredth of a data point , roughly speaking. In other words, these priors are

very noninformat ive and place a lot of weight in nonsensical areas of the parameter space (e.g. explosive

or regions with huge variat ion in AR coe± cients). Nevertheless, as can be seen from Tables B1, B2 and

B3, the qualitat ive results of the paper are not altered through using such a prior.

Table B 1: Post er ior M odel Probabil i t ies for D GD P
M L M T A R M T V P Total

p= 1 0.748 0.113 0.001 0.862
p= 2 0.111 0.013 0.001 0.125
p= 3 0.012 2.9£ 10¡ 4 3.4£ 10¡ 5 0.012
p= 4 0.001 7.4£ 10¡ 6 3.5£ 10¡ 11 0.001
Total 0.872 0.127 0.002 1
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Table B 2: Post er ior M odel Probabi l i t ies for I n°at ion
M L M T A R M T V P Total

p= 1 3.4£ 10¡ 9 2.2£ 10¡ 9 1.2£ 10¡ 8 1.8£ 10¡ 8

p= 2 5.2£ 10¡ 9 1.8£ 10¡ 9 6.4£ 10¡ 8 7.1£ 10¡ 8

p= 3 9.7£ 10¡ 8 5.7£ 10¡ 8 5.4£ 10¡ 7 6.9£ 10¡ 7

p= 4 2.7£ 10¡ 6 4.0£ 10¡ 4 1.000 1.000
Total 1.8£ 10¡ 8 4.0£ 10¡ 4 1.000

Table B 3: Post er ior M odel Probabil i t ies for D I P
M L M T A R M T V P Total

p= 1 0.019 0.208 5.7£ 10¡ 5 0.228
p= 2 0.029 0.048 2.3£ 10¡ 5 0.077
p= 3 0.005 0.041 0.174 0.221
p= 4 3.7£ 10¡ 4 0.001 0.473 0.474
Total 0.054 0.299 0.647 1

10 B ibliography

References

[1] Beaudry, P. and Koop, G. (1993). \ Do recessions permanent ly change output?" Journal of Monetary
Economics, 31, 149-163.

[2] Chib, S. (1995). \ Marginal likelihood from the Gibbs output ," Journal of the American Statistical
Association, 90, 1313-1321.

[3] Dejong, P. and Shephard, N. (1995). \ The simulat ion smoother for t ime series models," Biometrika,
82, 339-350.

[4] Greasley, D. and Oxley, L. (1994). \ Rehabilitat ion sustained: The Industrial Revolut ion as a macro-
economic epoch," Economic History Review, 2nd Series, 47, 760-768.

[5] Judge, G., Gri± ths, W., Hill, R.C. and Lee, T.-C. (1985). The Theory and Practice of Econometrics,
second edit ion, New York: John Wiley and Sons.

[6] Kapetanios, G. (1998). \ Essays on the econometric analysis of threshold models," unpublished PhD
dissertat ion, University of Cambridge.

[7] Koop, G. (1996). \ Parameter uncertainty and impulse response analysis," Journal of Econometrics,
72, 135-149.

17



[8] Koop, G. Pesaran, M.H. and Potter, S.M. (1996). \ Impulse response analysis in nonlinear mult ivariate
models," Journal of Econometrics, 74, 119-148.

[9] Koop, G. and Pot ter, S.M. (1999). \ Bayes factors and nonlinearity: evidence from economic t ime
series," Journal of Econometrics, 88, 251-85.

[10] Koop, G. and Potter, S.M. (1998a). \ Dynamic asymmetries in USunemployment," Journal of Business
and Economic Statistics, forthcoming.

[11] Koop, G. and Potter, S.M. (1998b). " Nonlinearity, st ructural breaks or out liers in economic t ime
series?" to appear in Nonlinear Econometric Modelling, William Barnet t et al. (ed.), Cambridge:
Cambridge University Press.

[12] Kwiatkowski, D., Phillips, P.C.B, Schmidt , P. and Shin, Y. (1992). \ Test ing the null hypothesis of
stat ionarity against the alternat ive of a unit root ," Journal of Econometrics, 54, 159-178.

[13] Mills, T. and Crafts, N. (1996). \ Trend growth in Brit ish industrial output , 1700-1913: A reappraisal,"
Explorations in Economic History, 33, 277-295.

[14] Min, C. (1992). \ Uncondit ional est imat ion of t ime-varying-parameter models: A Gibbs sampling ap-
proach," manuscript.

[15] Pesaran, M.H., and Potter, S. (1997). \ A Floor and ceiling model of US output ," Journal of Economic
Dynamics and Control 21, 661-695.

[16] Poirier, D. (1995). Intermediate Statistics and Econometrics, Cambridge: The MIT Press.

[17] Pot ter, S. (1995). \ A Nonlinear approach to US GNP," Journal of Applied Econometrics, 10, 109-125.

[18] Stock, J. and Watson, M. (1996). \ Evidence on st ructural instability in macroeconomic t ime series
relat ions," Journal of Business and Economic Statistics, 14, 11-30.

[19] Terasvirta, T. and Anderson, H. (1992). \ Characterising nonlinearit ies in business cycles using smooth
transit ion autoregressive models," Journal of Applied Econometrics, S119-S136.

18



Figure 1:

19



Figure 2:

20



Figure 3:

21



Figure 4:

22



Figure 5:

23




