
Secure Calibration in High-Assurance IoT:
Traceability for Safety Resilience

Ryan Shah†, Michael McIntee†, Shishir Nagaraja†, Sahil Bhandary‡, Prerna Arote‡, Joy Kuri‡

{The University of Strathclyde†, Indian Institute of Science‡}

Abstract—Traceable sensor calibration constitutes a
foundational step that underpins operational safety in the
Industrial Internet of Things. Traceability is the property
that ensures reliability of sensed data by ensuring sensor
accuracy is within a small error margin of a highly-
accurate reference sensor. This is typically achieved via
a calibration infrastructure involving a long chain of
reference-calibration devices between the master reference
and the IoT sensor. While much attention has been given to
IoT security such as the use of TLS to secure sensed data,
little thought has been given to securing the calibration
infrastructure itself. Currently traceability is achieved via
manual verification using paper-based datasheets which is
both time consuming and insecure. For instance, when
the calibration status of parent devices is revoked as
mistakes or mischance is detected, calibrated devices
are not updated until the next calibration cycle, leaving
much of the calibration parameters invalid. Aside from
error, any party within the calibration infrastructure can
maliciously introduce errors since the current paper based
system lacks authentication as well as non-repudiation.
In this paper, we propose a novel resilient architecture
for calibration infrastructure, where the calibration status
of sensor elements can be verified on-the-fly to the root
of trust preserving the properties of authentication and
non-repudiation. We propose an implementation based on
smart contracts on the Ethereum network. Our evaluation
shows that Ethereum is likely to address the protection
requirements of traceable measurements.

I. INTRODUCTION

Connected robots are increasingly transforming a wide
range of application areas, including but not limited to
surgical suites [1] and industrial processing plants [2].
The use of automation in these areas brings forth the
potential to increase the efficiency of output, yet accu-
racy and precision under adversarial pressure remains
a constant worry. In the context of surgical robotics,
for example, a high degree of accuracy and precision
must be maintained as accurate sensing could mean the
difference between life and death.

While a household IoT-alarm system typically requires
calibration at manufacturing time alone, a high-assurance

device such as a surgical robot needs much more. A
calibration infrastructure distributed across the OEM,
several third-party calibration agencies and suppliers
involved in the supply chain are part of the calibration
work-flow. The root of trust (calibration integrity) is a
National Measurement Institute (NMI) that maintains
the gold standards for sensing and measurment. This
is typically a government agency such as the National
Physical Laboratory (NPL) in UK or the NIST in USA.
The root of trust for each type of sensor, consists of
a master calibration device which is used to calibrated
other calibration units that serve as a proxy for the
master, and are in turn used to keep calibration units
closer to the field calibrated. The field devices (such as
the deployed robot) are calibrated using the calibration
units at the bottom of the hierarchy, these are typically
portable versions of the master-proxy carried by cali-
bration engineers working for a third-party calibration
agency.

As we start to rely on connected robots to perform
critical tasks, we will start to see at least three changes.
First, the security of the calibration infrastructure itself
will start gaining importance and mechanisms will be re-
quired to deal with the obvious risks of fake calibration-
engineers and calibration devices.

Second, calibration correctness becomes a safety-
critical requirement. This means end-to-end measure-
ment and calibration traceability at all times to ensure
minimisation of calibration errors and associated liabil-
ities. Ensuring correctness of calibration in the face of
malicious actors, is crucial to address the operational
resilience requirements of connected systems. We argue
that the way ahead, is to ensure that all sensed data is
subject to verification via on-the-fly traceability checks.
This notion involves tracing sensed measurements to the
corresponding gold standard, by involving all stakehold-
ers: from the operator (e.g. surgeon in a hospital), to the
manufacturer and their suppliers.

Third, how can the operator, regulator, manufacturer,
and calibration agencies work together to create a

ar
X

iv
:1

90
8.

00
74

0v
1 

 [
cs

.C
R

] 
 2

 A
ug

 2
01

9



tamper-resistant trail of recorded activity to aid system
forensics, which can withstand hostile scrutiny in a court
of law when things go wrong? There have been cases
of lawsuits filed by patients, accusing hospitals of neg-
ligence over safety considerations when surgical robots
have inflicted accidental injuries, and such are illustrative
of the significant liabilities and stakes involved when
ensuring robot safety.

II. BACKGROUND

To ensure measuring instruments provide high quality
and accurate measurements, we must ensure that they
are calibrated against a trustworthy source. All mea-
surements have a quantifiable degree of uncertainty and
the challenge is to ensure that we can minimise this
uncertainty, while maintaining a quantifiable indication
of the quality of measurement. National standards for
weights and measures are maintained by National Mea-
surement Institutes (NMIs), such as the National Physical
Laboratory (NPL) in the United Kingdom. NMIs define
national measurement standards, which are associated
with values of uncertainty and are used to calibrate
measuring instruments.

The calibration of measuring instruments ensures that
recorded measurements are of high quality and accuracy,
such that they are compared to a standard of higher
accuracy to identify errors in instrument readings. We
calibrate to meet quality audit requirements and ensure
reference designs, subsystems and integrated systems
perform as intended. A reliable measurement should be
recorded by instruments with low measurement uncer-
tainty and is traceable to corresponding SI units, to a
standard or reference method [3]. Traceability is at the
heart of measurements and is a basis for comparisons
against valid measurements. A measurement’s metrolog-
ical traceability is its property, such that the measurement
result is related to a stated reference, through an unbro-
ken chain of calibrations [4]. Shown in Figure 1 are paths
in a traceability chain. As demonstrated by the diagram,
each piece of end user equipment, hereafter referred to
as an end node, can be traced back along the path to
intermediary measurement facilities and ultimately to
NMIs — which refer to the SI units as the basis for
calibration. Each node in a path, being a NMI or in-
termediary facility, can branch out to other intermediary
or end nodes, such that each piece of equipment can be
used to calibrate a number of others.

Kaarls and Quinn state that a set of defined standard,
or reference, methods can be created such that primary
method(s) are used to validate or calibrate secondary or

Fig. 1: Traceability Chain Paths

tertiary methods, which can be linked to a working-level
method [5]. The use of primary methods are often time
consuming and costly. A trade-off for typical working-
level methods induce simplicity, but increases uncer-
tainty. de Castro et Al. state the measurement uncertainty
is an operationally defined method of detailing the level
of confidence associated with a measurement [3], offer-
ing advantages over other terms such as precision and
trueness.

III. PROTECTION REQUIREMENTS

Having noted that record-keeping around the cali-
bration process is a foundational challenge to high-
assurance IoT systems, several questions arise. What
new security problems and what protection opportunities
arise where the typical factory may have upwards of a
100,000 sensors, and thousands of such factories or labs
share a few hundred calibration facilities. Clearly a future
calibration framework will have to ensure good sepa-
ration between rivals while also supporting dependable
shared channels to ensure traceability chains back to a
root calibration unit. If some of the calibration units are
left on client facilities then are themselves susceptible to
occasional compromise.

Current calibration assumes that all actors will behave
themselves are thought to require little security. However
just like early security protocols has to evolve under
adversarial pressure, so too will calibration frameworks
that have been traditionally thought to require little at-
tention, have to change as we move towards the dynamic
case — internet-connected devices that are compromised
by malware and other attacks will require frequent
and full resets of all prior state including calibration
information. If the manufacturing facility comes under a
targeted attack, engineers will have to design calibration
frameworks that can deal with a stream of devices being
added and compromised.

Scale is another important factor that designers must
consider. As we move from the current deployment of



networks involving a few connected sensors to larger
networks with hundreds of thousands of sensors, we will
need to assume that a fraction of the sensors will be
compromised by insiders. Indeed the threat is no longer
restricted to outside the facility.

We argue that the threat model must assume that
the devices to be calibrated may be physically compro-
mised, whilst being subjected to attacks arising from
the combination of old software on newly-connected
devices resulting in their software being tampered and
therefore a fraction of the devices are rendered unsafe
for use at any given point of time. Some calibration
units especially those near the bottom of the hierarchy
may also be compromised. The communication channels
between various components of the calibration hierarchy
will be subjected to the same attacks resulting in a
fraction of compromised channels.

While the use of security techniques such as authen-
tication and transport security are obvious, experience
suggests that the likely challenges are going to be in
key generation, distribution, update, and revocation. The
foundational requirement is an authentication mechanism
that establishes a rigourous mantle upon which the rest
of the calibration record-keeping can be mounted. In
addition to the authentication infrastructure, a resilient
monitoring mechanism is a key requirement, which will
alert operators and take steps to isolate rogue calibration
units and end-devices.

The scale and complexity are significant. While con-
ventional calibration techniques involve manual record
keeping, a broad range of data can be monitored: we
can query an instrument, other instruments in its vicinity,
and their controllers; and we can also launch data plane
probes to cross-check. With a large corpus of live and
historical network data, the operator can make better
decisions when under attack.

A. Threat model

The current verification process for calibration infor-
mation has no associated threat model and thus to enable
the need for digitisation, a sound threat model is the first
step towards resilience. We believe there are at least four
types of threats to the calibration infrastructure.

Large-scale compromise: First, an intentional attack
by a state or state-sponsored group could discover sys-
temic weaknesses that compromises a large fraction of
the calibration infrastructure. These vulnerabilities could
be exploited by a capable attacker resulting in seeding
significant confusion in the best case. And, in the worst-
case scenario, entire batches of a production-cycle might

be compromised such as a whole batch of wrongly
proportioned paracetamol landing up on a supermarket
shelf.

Behavioural economics: Second, as the digital cali-
bration infrastructure develops into hierarchical trees of
substantial size with millions of participants, complex
behaviours may arise as a result of system economics.
For instance, selfish behaviours may manifest that op-
timises the costs of a fraction of the participant at the
expense of the rest of the calibration ecosystem.

Flying debris: Third, secondary impacts of attacks
directed at other targets may damage the calibration
infrastructure. For example, a DoS attack may cause
verification to fail if the network is shared with other
systems leading. If verification is substantially delayed,
it could make instruments uncontrollable triggering a
precautionary shutdown.

Insider threat: Fourth, an insider may sabotage the
calibration infrastructure. Although insiders are a persis-
tent threat who may execute traditional physical attacks,
cyber-security vulnerabilities give extra opportunities to
damage assets.

B. Security policy

Following the threat model, the next step is to develop
a security policy for the calibration system. A security
policy is a succinct description of information flow
constraints that stipulates the protection requirements to
be met by security mechanisms, in order to mitigate the
threats outlined in the threat model. Information flow
controls are important. A move from the current peer-
to-peer architecture underlying calibration devices and
field instruments, any of which will cause havoc if com-
promised, can bring real benefits. The natural hierarchy
within the calibration infrastructure when composed with
information flow controls can compartmentalise risk,
thus the compromise of a few units will do no more
than local damage.

We argue that the appropriate information flow control
for a calibration system is multi-level integrity, with
root-calibration units calibrated by primary methods and
references at the upper levels, field devices calibrated
by secondary methods and references at the middle
levels, and working level methods, references, and end-
user equipment situated at the bottom. Also known as
the BIBA model, this is similar to multi-level security
systems typically used by government systems to enforce
confidentiality by allowing information to flow from low-
confidentiality to high-confidentiality levels (Eg. Top-
secret to Secret to Confidential to Unclassified).



Fig. 2: Secure Calibration Architecture

The proposed security architecture for sensor and
device calibration is as illustrated in Figure 2, has upper
levels which consists of root-calibration units operated
and managed by NMIs such as the National Physical
Laboratory, each of which calibrate and manage the
accuracy of tens of level 1 calibration devices, and
each level 1 device in turn manages a few thousand
level 2 calibration devices, each of which manage the
calibration of tens of thousands of field level instruments.
By coupling the calibration hierarchy with information-
flow constraints, we can organise the measurement in-
frastructure so that only the compromise of top-level
calibration devices can cause erroneous measurement at
scale, thus reducing the number of critical components
at least by a factor of hundred. Furthermore, with the use
of appropriate controls at level 2, the compromise of a
level 2 calibration device does little damage outside of
its first-hop neighbours, then we can arrange to further
reduce the sites of critical failure by another factor of
ten. The calibration hierarchy can be readily extended,
without much imagination, to map the hierarchical levels
to local calibration components within a manufacturing
environment.

We assume the root (level 0) and level 1 calibration
devices can (rarely) suffer accidental configuration errors
but are otherwise trustworthy. On the other hand, level
2 calibration devices may suffer occasional compromise
and, as previously mentioned, a fraction of field instru-
ments may be compromised at any one time which might
misbehave, intentionally or otherwise.

C. Calibration levels and Measurement levels

We expect that most of the calibration work will be
carried out by one or more middle levels consisting

of mid-level calibration devices and calibrated field in-
struments that exist in the middle level. Level 1 and
2 organisations generally use master calibration units
to calibrate other devices. This allows other calibration
devices to be calibrated locally, reducing the time and
cost for calibrating at level 0, as only the master unit
needs to be sent to the level 0 organisation. Field devices
are sent to level 1 and 2 organisations for calibration.

On the other hand, all the measurement work will be
carried out by the field devices located at the bottom
(leaf position) of the hierarchy.

Let them out, but not in: As previously described, any
close-to-field calibration devices and field instruments
may become a point of compromise at any one time,
causing them to misbehave, intentionally or otherwise.
A newly established network architecture, to define and
constrain the behaviours — whether malicious or legiti-
mate — of field instruments and close-to-field calibration
devices, could invoke the use of refusing incoming con-
nections and only allowing outgoing connections. Field
instruments and close-to-field devices will be primarily
used to transmit outgoing data and not receive incoming
data.

Enforcing non-repudiation: As well as constraining
the behaviour of field instruments and close-to-field
devices, a discussion of mitigating possible compromise
is necessary. An important point for mitigation is to
ensure that instruments and devices are accountable for
transmitted data, such as measurements field instruments
may take and results from calibration units. The data
should be recorded such that it can be traced back to the
unit itself. This aids in the isolation of a device in the
event of compromise.

Access granted: Across factory premises and different
sites, what shared and private states are practical to
hold and will any limitations be imposed as a result of
state? A suitable access control policy should be defined
such that calibration information can be made public
by default, with organisations enabling an option to not
publicly display this if they consider the information
to be private. However, the discussion of privatising
calibration information imposes a degree of difficulty
on enabling the traceability of measurements associated
with the privatised information. Therefore, to aid in
reducing the difficulty of this process, the calibration
framework could support an anonymised base system
which also allows revocation. A set of scopes can be
defined for the nodes in the traceability chain as shown
in Figure 1, which determine the access constraints for
data contained within the scope, whilst a general access



policy can be used to cover data in a general scope.

D. Monitoring

Monitoring is a logical service in the network. The
purpose of monitoring is to collect statistics from both
calibration and measurement levels. Monitoring makes
available its information to relevant users and operators
so they can watch and intervene if needed. This ser-
vice can perform both passive and active monitoring.
Passively, it can measure statistics such as the number
of measurements that match a certain pattern, the ex-
tent of traceability up the calibration hierarchy, or per-
instrument error margins. Actively, it can interrogate
a field instrument by sending a measurement request
and observe the the instrument output. Monitoring also
exposes a new level of control to the calibration infras-
tructure. The potential of using this for auditing and
information flow analysis is immense. Among others,
this makes available an interesting potential for tackling
malware outbreaks as well as adapting and reacting to
other forms of network attacks. The monitoring level also
feeds data back into the measurement level.

E. Protection mechanism

To achieve the protection requirements described in
the previous section, it is natural to consider the use
of a blockchain as a solution. In accordance with our
protection requirements for maintaining high integrity,
the nature of a blockchain structure is ready to ac-
complish such. Through the use of strong cryptographic
links among blocks, as well as a distributed network for
storage and consensus, it would be extremely hard to
tamper with or delete data from the blockchain. This
not only aids in fulfilling our integrity requirement, but
also enforces non-repudiation. Since the blockchain is a
ledger keeping records of all transactions, we can ensure
that devices cannot deny interactions or data production,
and can thus be held accountable for their actions.

Although the blockchain is definitely impressive in
terms of fulfilling our requirements thus far, we must
consider what will be stored on the blockchain to aid
with functions such as verifying the completeness of
traceability chains in order to accept valid measurements,
as well as providing a way to trace measurements back
to field devices. From the calibration hierarchy, we know
that all devices and units are associated with a cali-
bration report, which outlines information about parent
calibration units, operating ranges with a measurement
uncertainty (MU), among other things. Figure 3 depicts
an example calibration report. As well as this, the report

will also detail the calibration technician who performed
the calibration on the device or unit. Therefore, for
completeness, storing reports as well as technicians on
the chain is ideal. This will enable the contract to
verify the calibration status of each device by looking
up its associated parent unit(s), to trace upwards to the
master calibration device (root) unit. The result is written
to the chain, which enables the device user to check
whether the device is calibrated against the root units
that establish the gold standard. The use of ECDSA
signatures prevents an adversary from forging calibration
reports into the blockchain (explained in detail below).
Also, to prevent the unauthorised use of valid calibration
devices, the traceability-check contract verifies the sig-
nature of technicians all along the calibration hierarchy.
A valid technician’s signing keys must be signed by the
calibration organisation’s root signing key, and in turn
signed by the NMI, which is the root of trust.

Fig. 3: Example Calibration Report

Considering the trace back to the calibration tech-
nician, we would also want to know what organisa-
tion certified the technician to perform calibration, and
therefore we must also store the organisations in the
calibration hierarchy, to allow for complete audit trails
in the event of disaster which stems from invalid or
improper calibration.

Now that we have established what will be stored
on the chain, we must understand how we can use the
blockchain for traceability verification checks. Popular
implementations, such as Ethereum, use smart contracts
to execute code and interact directly with the blockchain.
To perform traceability verification, within a secure boot
process (i.e. when the sensor starts up), we can use a
smart contract. The smart contract will execute code
that will verify whether or not there is a complete
traceability chain, with each unit in the chain having
valid calibration, before the sensor is allowed to start
capturing data (Figure 4).



Algorithm 1 Trace Creation
1: procedure TRACECAL WRITE(device id)
2: . Get certifying organisation of device
3: org name = getCertifyingOrg(reports[

TraceCal READ(device id)].device id)
4: if org name == NPL then
5: . Set the trace to valid
6: traces[device id].device id = device id
7: traces[device id].trace complete = true
8: traces[device id].valid report = true
9: else

10: . Trace is invalid
11: traces[device id].device id = device id
12: traces[device id].trace complete = true
13: traces[device id].valid report = false
14: end if
15: end procedure

Fig. 4: Sensor Traceability Verification using a Smart
Contract

Specifically, the contract will take the sensor’s device
ID as input to the smart contract, which will execute
a function to verify it has complete traceability, as
described in Algorithm 1. The algorithm will use another
function to retrieve the root (calibration) report of the
device’s traceability chain, which retrieves the parent
report from the chain, verifies signatures, and loops until
there are no parents (Algorithm 2). It will then check
the final device’s certifying organisation to see if it is
an NMI, in our case NPL, and if so, the traceability
chain is valid and complete, and thus return a verified
result to the device. Likewise, if there is no NMI root,
the trace will complete but will return a non-verified
result to the device. Furthermore, to retrieve a certificate
itself, the smart contract will interact with the PKI
system (depicted in Figure 2) to retrieve the certificate.
In the algorithm, the signatures will be verified before
accepting the parent identifier. The public key of the
technician who calibrated the device is not that of the
one who signed the parent, then the verification will fail
and return a null result (ultimately resulting in invalid
traceability), and otherwise will continue looping until
the NMI root.

Algorithm 2 Trace Verification
1: procedure TRACECAL READ(device id)
2: device report = reports[device id]
3: parent cert =

certificates[device report.parent id]
4: technician cert =

certificates[device report.technician id]
5: . If report is not signed by parent device, then

fail
6: if !(key verify(device report, parent cert))

then
7: return null
8: end if
9: . If report is not signed by technician, then fail

10: if !(key verify(device report, technician cert)
then

11: return null
12: end if
13: org cert = certificates[technician cert.org id]
14: if verify signature(technician cert, org cert) ==

false then
15: return null
16: end if
17: if check chain of trust(org cert, ROOT CERT ) ==

false then
18: return null
19: end if
20: . Report now verified, now verify there is a root
21: root report id = device id
22: parent = reports[root report id].parent device
23: . Loop until there is no parent
24: while bytes(parent).length > 0 do
25: . Verify parent report is signed by parent

device
26: if key verify(parent,
27: certificates[parent].parent device)

then
28: if key verify(parent, technician cert)

then
29: root report id = parent
30: parent =

reports[root report id].parent device
31: else
32: return null
33: end if
34: else
35: return null
36: end if
37: end while
38: return reports[root report id]
39: end procedure



Upon calibration, the device will be imprinted with a
ECDSA public and private keypair, which are signed by
the certified technician, establishing a chain of trust. The
technician’s keys used to sign the device’s calibration
report and are in turn signed by the organisation’s keys
who certified the technician (Figure 5), such that we can
verify that the technicians themselves are not fake.

Fig. 5: Signing Calibration Certificates

Certified calibration organisations will be associated
with their own keypair, which will be used to sign all
calibration technician keys they wish to certify.

IV. EVALUATION

In order to better understand the natural consideration
of blockchains as a solution to fulfil our protection
requirements, we must evaluate an implementation that
can verify the completeness of traceability chains at any
stage in the calibration hierarchy.

A. Blockchain Environment

For our blockchain implementation we used the
Ethereum blockchain [6], a Turing-complete, decen-
tralised value-transfer system which facilitates the use
of smart contracts, written in Solidity, to interact with
the blockchain. The programming language in Ethereum
is implemented as a set of 140 opcodes which all nodes
execute deterministically. The opcodes are condensed
to form a bytecode string which can be published on
the network, in the form of a smart contract. During
deployment, a transaction is created by the account
deploying the contract, and the contract is given its own
unique address. When this transaction is accepted, the
smart contract persists in the network. The contract may
have various functions, and can also allocate persistent
memory on the network. Any account which wants to
interact with it uses the contract’s address to call its
various functions. The contract may contain two types
of functions, including transactions and calls. Transac-
tions are those which modify the persistent memory of
the contract. They are called transactions specifically
because they need to be run by all nodes to ensure
synchronicity, and thus cost computational power. Calls

merely read the persistent memory and can be run locally
as well, and hence are free of cost. Since each transaction
function requires computational resources based on the
bytecode executed, there must be a way to charge each
operation. Thus, every opcode is assigned a fixed cost
which was tabulated when the network was deployed,
and this cost is measured by units of gas.

1) Smart Contracts: The purpose of our smart con-
tract is to define the functions of our protection mech-
anism, described in Section III-E, to interact with the
blockchain to read and write data. In our smart con-
tract, we defined functions for declaring aspects of the
calibration hierarchy, as well as those for traceability
verification. Specifically, we defined functions for cre-
ating and retrieving calibration organisations, certified
calibration technicians and calibration reports, as well as
creating traceability chains (traces) and verifying them.
Table I describes the primary functions within our smart
contract. Smart contracts are deployed and tested on
private Ethereum blockchain (Ganache) as well as public
Testnet (Ropsten Testnet) with the help of truffle testing
framework.

2) Calibration Hierarchy and Traceability: To meet
the definition of our protection mechanism, the smart
contract should effectively be able to create the calibra-
tion hierarchy as well as provide methods to verify the
metrological traceability of a given device or calibration
unit. As previously described, we define functions to
create calibration organisations and certified calibration
technicians who will oversee and perform calibration of
these devices, as well as providing two distinct functions:
TraceCal WRITE and TraceCal READ to create and
verify (read) traceability chains. These functions are
described in detail in Algorithms 1 and 2, respectively.

3) Ropsten Test Network: In order to properly evalu-
ate how our protection mechanism performs in a realistic
environment, we deployed our implementation on the
Ropsten test network [7]. Also known as the Ethereum
Testnet, the Ropsten test network is the largest Ethereum
test network and runs the same proof-of-work (PoW)
protocol as Ethereum, but is designed for testing smart
contracts before deploying them on the main Ethereum
network. It uses a form of Ether, Ethereum’s currency,
called rEth which costs no real money. However, this
can also be produced from Mining and can be received
from faucets for testing transactions without imposing a
legitimate cost.

In comparison with other Ethereum testnets such as
Kovan [8] or Rinkeby [9], which use an alternative
Proof-of-Authority (PoA) consensus protocol and have



Function Description
createOrganisation Accepts an ID and a name, and creates an organisation on the blockchain
createTechnician Requests an Ethereum address and an organisation id, and will create a technician on the blockchain

createReport Accepts a number of parameters, such as the device id and technician id, and creates a calibration-report object on the blockchain
TraceCal WRITE Checks traceability for a specific device by checking if the technician who completed it is an NMI and writes the result to the chain.
TraceCal READ Accepts a device ID and returns a root calibration-report if it has one, else returns the calibration-report of the device itself.
getParentReport Accepts a device and returns its direct parent’s calibration-report or NULL.

getOrgName Accepts an organisation ID and returns the name of the organisation
getTechnicianOrganisation Returns the organisation ID of the organisation who certified the technician

TABLE I: List of Implementation Functions

lower block confirmation times, the PoW Ropsten testnet
best reproduces the current Ethereum production envi-
ronment conditions and is useful for testing our protec-
tion mechanism against realistic transaction rates/times,
number of nodes/miners, and gas prices, compared to
those on the main Ethereum network.

B. Functionality Testing

The aim of our first set of experiments was to deter-
mine whether or not our protection mechanism functions
as intended. Specifically, our functions to set up organi-
sations, technicians and calibration-reports must properly
create their respective objects, with the appropriate input
parameters, and raise errors when these parameters are
invalid.

1) Creating organisations, technicians and reports:
When our smart contract is executed, we instantiate
the calibration hierarchy with NPL as the root NMI
organisation. From this, we tested creating organisations,
with each certifying several technicians. These were
created using the createOrganisation and createTech-
nician functions. These technicians would then go on
to calibrate field devices and calibration units, which
produces a calibration report upon completion of cali-
bration; which ultimately need to be placed on the chain.
To create a report, we use the createReport function
in the smart contract. As expected, all our tests were
successful, with the appropriate objects created on the
chain. Appropriately, we also defined functions for data
retrieval, such as getTechnicianOrganisation which gets
the certifying organisation of a technician, for which all
tests returned expected results.

2) Creating and verifying traces: Once we had con-
firmed that organisations, technicians and calibration
reports were created and stored on the chain successfully,
we developed functions for creating traceability chains,
hereafter referred to as traces. For valid traces, a device
or unit must have a series of antecedent parent units
which ends at an NMI root, in our case NPL. The

TraceCal WRITE() function in our smart contract is
used to check that there is a root report and that the
certified technician who completed the trace is at the
NMI root. The details of this algorithm are described
in Algorithm 1. For devices that have a valid trace, the
result should display that it has a valid calibration report,
and invalid for those that do not have a valid trace.
The result is then written to the chain, confirming that
there is a valid/invalid trace corresponding to a particular
device. Our unit tests for creating traces were successful
in meeting our expected results.

C. Scalability Testing

For our next set of tests, we must evaluate how
our protection mechanism scales with the ubiquitous
nature and vast size of the calibration hierarchy. As
well as this, we also evaluated how the addition of
signatures, used for signing calibration reports (among
others as described in Section III-E), affects how well our
protection mechanism scales. The following tests which
involve contract executing times have been run on a local
blockchain using Ganache as the provider, and the Remix
IDE to run the contract calls. We use Ganache to get
the contract executing time as the contract is executed
immediately, whereas on the main Ethereum network
other contracts may be executed in the same block
and measuring the execution time would be difficult.
Likewise, we measured gas cost in the following experi-
ments using the Ropsten network as Ganache provides an
environment for testing contracts without costs, whereas
Ropsten imposes gas and Ether costs like the main
network but for free.

1) Impact of #Devices on Execution Time for Traces:
For our first set of experiments, we measured the impact
the number of devices in the calibration hierarchy has on
the execution time of the smart contract for traceability
verification. Firstly, to match the calibration hierarchy,
we used varying numbers of field devices n as a baseline.
From this, we deduce the number of levels as log(n),



such that if we have 100 field devices, the calibration
hierarchy will consist of two levels as well as the root
NMI. Furthermore, we map the number of organisations
in the calibration hierarchy as log2(n− 1), such that for
100 field devices there will be 4 organisations.

Next, we define the scope of our first set of exper-
iments for n in the range 10 ≤ n ≤ 106. As shown
in Figure 6a, we observed the effect of n field devices
on the contract execution time for creating (write) and
verifying (read) traces. We observed that as the number
of field devices and levels increase, the time for veri-
fying traces increases. Similarly, the execution time for
creating traces also increases with levels. In comparison
with the verification times, creation times are at least 0.2
seconds more, as creating the traces involves retrieving
the root calibration report and certificate, which our
verification function uses as well.

Furthermore, we also observed the impact of adding
signatures in our protection mechanism. For verification,
the addition of signatures in the verification of traces
more than doubles the contract execution time. Similarly,
we also notice a similar increase in execution time for
trace creation with signatures. Although this may seem
a lot, if we consider the case of 1, 000, 000 devices, the
execution times are still only just over a single second.
If we compare these times to what we would expect
from the paper-based current state-of-the-art, they are an
extremely significant improvement.

2) Impact of #Devices on Gas Cost for Traces:
Using the Ethereum blockchain only imposes a gas
cost when writing transactions and not reading from the
blockchain. Based on this, it is interesting to observe
how the imposed gas cost correlates with the number of
devices (levels and organised further deduced from this).
Observing the results from this experiment, depicted in
Figure 6b, we can see that the gas cost increases linearly.
However, this linear increase is relatively smaller in
comparison to the increase in gas costs when we add
signatures. Since gas costs correlate with the effort re-
quired to execute the smart contracts, our results suggest
that the addition of signatures increase the effort required
to execute the contract function.

In addition to gas costs, if we compare these results
with those of the previous experiment, we observe that
there is a correlation between execution time and gas
cost. This relationship suggests that gas costs increases
with contract execution time, and ultimately the amount
of effort required to execute the contract.

As a point of further comparison, we also evalu-
ated the contract execution times and gas consumed

(a) Impact of # Devices on Execution Time

(b) Impact of # Devices on Gas Cost

Fig. 6: Impact of # Devices on Execution Time and Gas
Cost

for the other creation functions in our smart contract,
specifically: createOrganisation, createTechnician and
createReport. From the results in Table II, we can see
that the completion time for these functions is rela-
tively low compared to creating traces. This is because
our trace creation function which includes looping an-
tecedent levels of the hierarchy to reach the root, and
verifying the calibration technician. With the addition of
signatures, we notice that the completion time increases
by roughly 0.3s in each case. Similarly with the creation
of traces, the effort required to execute contracts with
the addition of signatures increases, and thus the gas
cost increases as well.

3) Impact of #Levels on Execution Time and Gas
Cost: In our previous experiments, we derived the num-
ber of levels based on the number of field devices, n,
as the primary variable. Realistically, there may be more
than log(n) levels, and it is interesting to evaluate how



Function Completion Time (s) Gas Consumed
No Sig Sig No Sig Sig

createOrganisation() 0.5 0.84 87,282 172,890
createTechnician() 0.23 0.54 66,374 152,447

createReport() 0.43 0.80 114,095 293,771

TABLE II: Completion Time and Gas Costs for Creation
Functions

the number of levels impacts the execution time and
gas cost. In this experiment, we measured the impact
of the number of levels on execution times for creating
and verifying traces, as well as the imposed gas cost
on the creation of traces (as gas does not apply to
reads). As shown in the results of this experiment in
Figure 7a, the contract execution time increases in all
cases as the number of levels increases. As both the
creation and verification functions require reaching the
root certificate, the time spent for both functions will
increase as the number of antecedent units in a device’s
trace also increases.

Noticeably, the gas cost increases relatively linearly as
shown in Figure 7b, which is similar to the results shown
in Figure 6b, where an increasing number of devices also
increases the gas consumed. Since the increase is linear,
there is no significant impact on gas consumption due to
the number of levels (nor devices). With the addition of
signatures, the increase in gas cost is still linear, which
shows that the number of levels still has no impact on gas
cost, but the addition of signatures increases the effort
required to execute the contract and such increases the
gas cost. With respect to contract execution time, the
addition of signatures seems to have little impact with
a small number of levels, but increases significantly as
the number of levels increase, taking around 7 seconds
to create traces at 50 levels.

4) Impact of #Levels on Mining Time: Aside from
the impact the number of levels has on increasing
contract execution times and gas costs, it is interesting to
consider the impact on mining time. When transactions
are written, they are added to a list of recent transactions
known as a block. This block will be added to the chain
once verified by miners (proof of work), and thus there
is a time for the miners to verify the transaction. Unlike
using Ganache to measure the execution times, we used
the Ropsten test network to measure the mining time.
This is because there is no mining involved in the local
Ganache Ethereum blockchain. As shown in Figure 8,
the mining times fluctuate as we increase the number of
levels with its lowest just under 20 seconds and near 140

(a) Impact of # Levels on Execution Time

(b) Impact of # Levels on Gas Cost

Fig. 7: Impact of # Levels on Execution Time and Gas
Cost

seconds at its worst. This shows that there is no clear
correlation between the number of levels and mining
times, and thus we deduce that this factor is irrelevant
to consider. Furthermore, due to there being no clear
correlation, we did not find it reasonable to evaluate the
impact of added signatures on mining time.

5) Impact of #Traces Per Day: For our final experi-
ment, we wanted to calculate the gas usage per day, in
the event of traces being crated multiple times. In our
experiments, we noticed that the number of organisations
did not have an impact on completion time or the gas
cost imposed. Thus, if we had to run trace creations
once an hour per day (M = 24), the time taken to
complete the function should be consistent for one device
at a particular level. The gas cost, however, will vary as
it is measured as a quantity of runs. In our tests, we
found that for level 3 devices 81, 241 units of gas were
consumed, and for level 6 devices it costs 84, 992 units.



Fig. 8: Impact of Number of Levels on Mining Time for
Trace Creation

Furthermore, with the addition of signatures, the gas
costs increased by over 100, 000 units in both cases, with
200, 126 gas consumed for level 3 devices, and 322, 942
units consumed for level 6 devices.

Fig. 9: Impact of Number of Trace Creations on Gas
Usage Per Day

From these results, we experimented with the impact
on the number of trace creations per day, on the gas
consumed, for devices at level 3 and 6. As shown
in Figure 9, we observed that the gas costs increase
exponentially with the number of trace verifications per
day. In the worst case of our tests, with 24 verifications
per day (i.e. 1 per hour), roughly 15.5m gas units were
consumed. Usually, we will perform a trace verification
during secure boot and as such, only a small number of

gas units are consumed. With the addition of signatures,
we notice a larger exponential increase, but a relatively
similar gas consumption at a single trace verification per
day.

V. DISCUSSION

As we start to use connected devices to perform
critical tasks, such as performing surgical procedures
on humans or other high assurance activities, ensuring
that the system can operate safely whilst being robust
to attacks is important. Additionally, we also require a
strong tamper-resistant trail of recorded activity to enable
system forensics that will withstand hostile scrutiny in
a court of law. Indeed operational safety breakdowns
resulting in injury to humans working alongside con-
nected collaboration-robots (cobots) has been the subject
of much litigation. These cases are illustrative of the
significant liabilities involved and the stakes involved
in ensuring safety within Industrial IoT settings. It is
natural to pursue the development of safety assurance
system that can provide data traceability, support deci-
sion forensics, and manage measurement uncertainty.

Our evaluation shows that the contract execution time
for traceability verification has a linear increase in
cost with the number of levels. Realistically though,
the time required for contract execution will depend
on the dynamics of miner availability and competing
transactions. Further, the time required for the PoW
scheme is two orders of magnitude (tens to hundreds
of seconds) larger than the average verification time (a
few hundred ms). As the most significant of all costs
involved, mining time plays a crucial role given its
variance. We note however, that this is primarily due
to the widely acknowledged inefficiency of the PoW
scheme used currently by Ethereum. In due course, it is
expected that other mainstream blockchain technologies
will be available, that utilise other consensus approaches
that enable scaling of the mining process and with
higher efficiency. We have therefore computed the time
consumed for contract execution, separate from mining
and block confirmation times, with emphasis on contract
execution. Based on our scalability tests it is clear that
contract execution scales rather well, and the inefficiency
of mining is a significant barrier to the frequency of on-
the-fly calibration checks that an IoT device can afford.

VI. CONCLUSION

An open challenge within industrial IoT processes is
maintaining the integrity of calibration under adversarial
pressure. Whilst there are many factors which contribute



to this, including software patches to secure data storage,
an important foundational requirement is to secure the
calibration mechanism itself. In particular, the need for
a mechanism that is: highly available, verifiable and
tamper-resistant, for verifying traceability is becoming
clear. While there is a natural hierarchy found in the
calibration ecosystem, with a clear order of entities to
which calibration and measurement information flows, it
is unclear as how to best logically order actors in the con-
nected world. In our research, we propose a mechanism
that successfully establishes traceability chains, to ensure
we can maintain valid calibration and rapidly attend to
errors that may persist in high-assurance activities. Fur-
thermore, we show that blockchains can provide a highly
available tamper-resistant chain of evidence, which we
can rely on in the event of catastrophe. Ultimately, we
note that safety assurance relate to security, as much as
managing stochastic interference, when we consider high
assurance IoT to be connected.

VII. ACKNOWLEDGEMENTS

The authors are grateful for the support by En-
gineering and Physical Sciences Research Council
(11288S170484-102), National Physical Laboratory,
Keysight Inc (6017), UKIERI-2018-19-005, and the De-
partment of Science and Technology (DST), Govt. of
India.

REFERENCES

[1] Mark A Talamini, S Chapman, S Horgan, and William Scott
Melvin. A prospective analysis of 211 robotic-assisted surgical
procedures. Surgical Endoscopy and Other Interventional Tech-
niques, 17(10):1521–1524, 2003.

[2] Davide Quarta, Marcello Pogliani, Mario Polino, Federico
Maggi, Andrea Maria Zanchettin, and Stefano Zanero. An
experimental security analysis of an industrial robot controller.
In 2017 IEEE Symposium on Security and Privacy (SP), pages
268–286. IEEE, 2017.

[3] CA Nieto de Castro, MJV Lourenço, and MO Sampaio. Calibra-
tion of a dsc: its importance for the traceability and uncertainty
of thermal measurements. Thermochimica Acta, 347(1-2):85–91,
2000.

[4] JCGM JCGM. 200: 2012international vocabulary of metrology-
basic and general concepts and associated terms (vim). Technical
report, Technical Report, 2012.

[5] R Kaarls and TJ Quinn. The comité consultatif pour la quantité
de matière: a brief review of its origin and present activities.
metrologia, 34(1):1, 1997.

[6] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–
32, 2014.

[7] Ethereum Foundation. Ropsten testnet pow chain. https://github.
com/ethereum/ropsten.

[8] Kovan. Kovan - stable ethereum public testnet. https://github.
com/kovan-testnet/proposal.

[9] Rinkeby. Rinkeby: Ethereum testnet. https://www.rinkeby.io/.

https://github.com/ethereum/ropsten
https://github.com/ethereum/ropsten
https://github.com/kovan-testnet/proposal
https://github.com/kovan-testnet/proposal
https://www.rinkeby.io/

	I Introduction
	II Background
	III Protection requirements
	III-A Threat model
	III-B Security policy
	III-C Calibration levels and Measurement levels
	III-D Monitoring
	III-E Protection mechanism

	IV Evaluation
	IV-A Blockchain Environment
	IV-A1 Smart Contracts
	IV-A2 Calibration Hierarchy and Traceability
	IV-A3 Ropsten Test Network

	IV-B Functionality Testing
	IV-B1 Creating organisations, technicians and reports
	IV-B2 Creating and verifying traces

	IV-C Scalability Testing
	IV-C1 Impact of #Devices on Execution Time for Traces
	IV-C2 Impact of #Devices on Gas Cost for Traces
	IV-C3 Impact of #Levels on Execution Time and Gas Cost
	IV-C4 Impact of #Levels on Mining Time
	IV-C5 Impact of #Traces Per Day


	V Discussion
	VI Conclusion
	VII Acknowledgements
	References

