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Fibre Homogenisation

Shane Cooper and Marcus Waurick

Abstract

In this article we present a novel method for studying the asymptotic behaviour,

with order-sharp error estimates, of the resolvents of parameter-dependent operator

families. The method is applied to the study of differential equations with rapidly oscil-

lating coefficients in the context of second-order PDE systems and the Maxwell system.

This produces a non-standard homogenisation result that is characterised by ‘fibre-

wise’ homogenisation of the related Floquet-Bloch PDEs. These fibre-homogenised

resolvents are shown to be asymptotically equivalent to a whole class of operator fam-

ilies, including those obtained by standard homogenisation methods.

Keywords: resolvent estimates, fibre homogenisation, Gelfand transform, oscillating co-
efficients, second-order PDE systems, Maxwell’s equations

1 Introduction

This article is concerned with the asymptotic analysis of parameter-dependent operators
that admit a fibre decomposition. Such families appear for example in the asymptotic
analysis of differential operators with rapidly oscillating periodic coefficients Bε defined in the
whole space L2(Rd). In this example context, the period of the coefficients is the parameter
ε and a typical goal is to understand the behaviour of solutions uε, for a given force f , to

Bεuε = f

for small ε.
A well-known approach to determine the asymptotic behaviour of uε is the process of ho-
mogenisation (for which there is a vast body of literature available, see for example [1], [18]
for an introduction to the field). In this process, the sequence uε is typically determined to
converge, in an appropriate sense, to a limit u and then one aims to establish the existence
of an ‘homogenised’ operator for which the identity u = B−1f holds. Upon establishing the
homogenised operator, one can subsequently ask about the magnitude, in an appropriate
metric, of the difference uε − u = (B−1

ε − B−1)f . Quantifying this error, uniformly in ε
and f , is important, for example, in determining the asymptotic behaviour of the spectral
properties of the family Bε and in the study of evolution problems ( d

dt
)αuε + Bεuε = f ,

α ∈ {1, 2}.
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In the context of second-order differential periodic operators, error estimates of the order√
ε have been known for some time, see for example [18]. While, the expected (order-

sharp) order ε error estimates for L2(Rd) right-hand side where first obtained in the works
of Birman-Suslina [2]. Therein, they utilise the fact that L2(Rd) is unitarily equivalent,
via the Gelfand transform, to the space L2([−π, π)d;L2([0, 1)d)), and that the operator Bε

is unitarily equivalent to the fibre integral
∫ ⊕

Θ
Bε(θ)dθ where Bε(θ) is the second-order dif-

ferential operator accompanied with quasi-periodic boundary conditions. Their subsequent
analysis then focuses on this decomposition and a spectral study of the resolvents of Bε

in a neighbourhood of the bottom of the spectrum. The idea of a spectral study via the
Gelfand transform had been used previously in the works [5, 17] to obtain error estimates in
homogenisation; although these works did not obtain order-sharp estimates in the uniform-
operator topology. Very recently, in [11] the homogenisation with order-sharp operator-norm
error estimates is established for second-order periodic operators with non-selfadjoint coeffi-
cients that admit global slowly varying and local rapidly oscillating dependence. We mention
for completeness, that in context of second-order elliptic systems with periodic coefficients in
bounded domains, error estimates in homogenisation of the order ε| ln ε|α, α > 0, have been
obtained by different techniques in the works [8, 19]; order-sharp estimates were obtained
in bounded domains: for scalar equations using periodic unfolding in [7], and for systems,
using combinations of the techniques in [2] and [19], in [12, 13].

On the subject of evolution(ary) problems, we make comments relevant to this arti-
cle on the works [14, 15, 16]. In these works, the homogenised systems for various time-
dependent problems posed in bounded domains are obtained by an interesting projection
based technique. This projection technique was recently combined with the Gelfand trans-
form to provide order-sharp error estimates between resolvents of the full time-dependent
one-dimensional visco-elastic operator and its homogenised limit, see [4]. Therein, the
method of proof relied on the one-dimensional nature of the problem and the so-called
Schur complement.

In this article, our main focus of study is the behaviour of resolvents of parameter-
dependent families of fibre-integral operators

∫ ⊕

Θ
Bε(θ)dθ on a space

∫ ⊕

Θ
Hdθ, where

Bε(θ) =M(θ) + 1
ε
A(θ),

for bounded linear M(θ) and possibly unbounded linear skew-selfadjoint A(θ). We are in-
terested in studying the behaviour of Bε(θ)

−1 in the uniform-operator topology, uniform in
θ, for small ε. Unlike in standard homogenisation approaches, where one would determine
a so-called homogenised limit operator B for a given Bε and then determine bounds on the
difference B−1

ε − B−1 (via the fibre-integral representation or otherwise), we emphasise here
that we directly analyse the behaviour of Bε(θ)

−1 for sufficiently small, non-zero, ε. The rea-
son we adopt this approach is that, in general, the point-wise (in θ) homogenised limits (in
ε) of the operators Bε(θ) are not the uniform limits. As such, to obtain error estimates one
would need to come up with an approach to reconcile this difference and produce uniform
in θ error bounds. (We mention in passing that in the context of high-contrast homogenisa-
tion of second-order differential operators, order-sharp operator-norm error estimates where
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obtained, in [3], upon the recovery of uniform limits from point-wise limits by an operator-
theoretic analogue of matched asymptotic expansions.) Here, we develop a new method of
studying the uniform in fibre behaviour of resolvents to fibre-integral families in terms of the
small parameter. This method, exposed in Section 2, is based on the observation that the
lack of uniformity of the point-wise asymptotics of Bε(θ) is due to the fact that spectrum of
the operator family (A(θ))θ intersects zero for certain values of θ. Therefore, to study the
asymptotics, our method revolves around decomposing the underlying Hilbert space H into
a space R(θ) in which this operator A(θ) is uniformly invertible and its orthogonal comple-
ment N(θ). Subsequently, we can decompose the operator Bε(θ) into uniformly invertible
and singular parts; this decomposition is based on developing the projection technique used
in [14, 15, 16] and [4]. (We comment though that our approach does not need to rely on exis-
tence of the inverse to the Schur-complement. This improves the constants-of-error obtained
in the uniform-operator norm bounds.) Upon such a decomposition, it is a simple task to
then determine that the uniform leading-order behaviour, for small ε, of the family Bε(θ) in
the uniform-operator topology is given by the projection of Bε(θ) to N(θ), see Theorem 2.2
and Proposition 2.11. Remarkably, and the reason why we coin this method fibre homogeni-
sation, is that this projection in the context of differential operators with rapidly oscillating
coefficients gives rise to a fibre-dependent analogue to the standard homogenised coefficients,
from classical theory, that is asymptotically equivalent to but, in general, different to the
traditional homogenised matrix. This is the subject of Sections 3 and 4. Additionally, as a
bi-product of this analysis we determine a whole family of operators that are asymptotically
equivalent (in terms of resolvents) to the operator Bε; these operators are characterised by
being equal to Bε(θ) on the space N(θ); this statement is made precise in Theorem 2.4.

In closing, a consequence of the analysis in this article is that we present new results
which capture the leading-order singular behaviour, in operator-norm, of the resolvents of
fibre-integral operator families depending on a small parameter. These results in turn allow
one to describe a whole class of asymptotically equivalent operator families, including those
found by standard homogenisation methods (in the context of differential operators with
rapidly oscillating coefficients). The method presented in this article is not confined to the
study of self-adjoint operator families arriving from second-order PDE systems; the scheme
admits for example second-order PDE systems with non-selfadjoint coefficients, see Section
3 as well as the Maxwell system, see Section 5. Moreover, our study easily fits into the static
variants of the framework of evolutionary equations developed by Picard et al., see, e.g., [9,
Chapter 6] or [10]. In particular, we provide quantitative estimates for the first time to static
variants of the systems in [14, 15, 16].

2 Abstract fibre homogenisation

Let Θ be a non-empty set. For a given family of Hilbert spaces (Hθ)θ∈Θ, ε ∈ (0,∞),
M(θ) ∈ L(Hθ) with ‖M‖∞ := supθ∈Θ ‖M(θ)‖ < ∞, and A(θ) : dom(A(θ)) ⊆ Hθ → Hθ

densely defined and closed, we consider the operator family

Bε(θ) :=M(θ) + 1
ε
A(θ).
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Under the assumptions that there exists a c ∈ (0,∞) such that

∀ θ ∈ Θ : ReM(θ) := 1
2
(M(θ) +M(θ)∗) > c, and A(θ) = −A(θ)∗, (1)

the operator Bε(θ) is invertible for all ε, θ, cf. Lemma 2.5 below. Typically, in homogenisation
problems, fibre integral operators of the form

∫ ⊕

Θ
Bε(θ)dθ appear. For example via the

Gelfand transform for differential operators with periodic coefficients, see Sections 3 and 5.
A means to address the asymptotics, as ε tends to zero, of such operators is to consider the
behaviour of the resolvents for small ε. For this reason, we are interested in studying the
uniform in θ behaviour for small ε for the inverse operators Bε(θ)

−1.
We now provide a general set of assumptions that, if satisfied, allow one to construct

such asymptotics.

Hypothesis 2.1. Assume for all θ ∈ Θ, there exists a closed subspace N(θ) ⊆ Hθ with
R(θ) := N(θ)⊥ such that, for the canonical embeddings ιN(θ) : N(θ) →֒ Hθ, ιR(θ) : R(θ) →֒ Hθ

and the orthogonal projections πN(θ) := ιN(θ)ι
∗
N(θ) πR(θ) := ιR(θ)ι

∗
R(θ), the following conditions

hold:

(a) A(θ)πN(θ) is bounded for all θ ∈ Θ.
(b) πR(θ)A(θ) ⊆ A(θ)πR(θ) for all θ ∈ Θ.
(c) ι∗R(θ)A(θ)ιR(θ) is, uniformly in θ, boundedly invertible:

CR := sup
θ∈Θ

‖
(
ι∗R(θ)A(θ)ιR(θ)

)−1 ‖L(R(θ)) <∞. (2)

The main theorem of this section is as follows.

Theorem 2.2. Assume (1) and Hypothesis 2.1. Then, for all ε ∈
(
0, 1/2CR‖M‖∞

)
, θ ∈ Θ

one has
‖Bε(θ)

−1 −
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1‖ 6 κ(‖M‖∞, CR, c)ε,

where
κ(‖M‖∞, CR, c) := 2CR

(
1 + ‖M‖∞

c

)2
+ CR.

Remark 2.3.

(a) The existence of
(
πN(θ)M(θ)πN(θ)+

1
ε
A(θ)

)−1
is addressed in the proof of Theorem 2.2.

(b) For convenience of the reader and to keep the statements that follow as accessible as
possible, we do not record the explicit number κ(‖M‖∞, CR, c) in front of ε and just
write κ. We emphasise, however, the following asymptotic properties:

lim sup
c→0

c2κ(‖M‖∞, CR, c) = 2CR‖M‖∞ <∞,

lim sup
CR→∞

κ(‖M‖∞,CR,c)
CR

= 2
(
1 + ‖M‖∞

c

)2
+ 1 <∞, and

lim sup
‖M‖∞→∞

κ(‖M‖∞,CR,c)
‖M‖2∞

= 2CR

c2
<∞.
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Most prominently, the last equality becomes important, if one wants to study time-
dependent problems, see [4]. The decisive observation frequently used in the present
text is that κ(‖M‖∞, CR, c) is independent of ε > 0 (if sufficiently small) and all θ ∈ Θ.

(c) We remark here that ‖Bε(θ)
−1‖L(Hθ) 6 1/c, see Corollary 2.6 below. Moreover, it is

possible to show that ‖
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1‖ 6 max{1
c
, εCR} for all ε > 0 and

θ ∈ Θ, also see Proposition 2.9. Hence, it is possible to prove an estimate of the form

‖Bε(θ)
−1 −

(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1‖ 6 κ̃(‖M‖∞, CR, c)ε

with κ̃ satisfying a similar asymptotic behavior as κ:

lim sup
c→0

c2κ̃(‖M‖∞, CR, c), lim sup
CR→∞

κ̃(‖M‖∞,CR,c)
CR

, lim sup
‖M‖∞→∞

κ̃(‖M‖∞,CR,c)
‖M‖2∞

<∞.

For this reason, we may also drop the condition that ε has to be sufficiently small. We
choose to do this for the remainder of the manuscript.

Theorem 2.2 does not only provide us with leading-order asymptotics of B−1
ε , it presents a

way of comparing two operator families that ‘coincide’ on N(θ). More precisely, the following
result holds.

Theorem 2.4. Assume (1) and Hypothesis 2.1. Consider, for θ ∈ Θ, M̃(θ) ∈ L(Hθ) such

that ‖M̃‖∞ <∞, with ∀θ ∈ Θ : Re M̃(θ) > c. Furthermore, assume that

πN(θ)M(θ)πN(θ) = πN(θ)M̃(θ)πN(θ) (θ ∈ Θ).

Then, there exists κ > 0 such that for all θ ∈ Θ and ε > 0 one has

‖Bε(θ)
−1 −

(
M̃(θ) + 1

ε
A(θ)

)−1‖ 6 κε.

Proof. The operator B̃ε(θ) := M̃(θ) + 1
ε
A(θ) satisfies the assumptions of Theorem 2.2 and

then the desired result follows from the triangle inequality and the fact

πN(θ)(M(θ)− M̃(θ))πN(θ) = 0 (θ ∈ Θ).

The remainder of this section will be dedicated to the proof of Theorem 2.2. We begin
with providing a series of relevant preliminary results.

Lemma 2.5. Let H be a Hilbert space, M ∈ L(H) and A : dom(A) ⊆ H → H be skew-
selfadjoint. Assume that there exists c > 0 such that ReM > c. Then, the operator M + A
is continuously invertible and the inequality

‖(M + A)−1‖ 6
1
c

holds.

5



Proof. The observation that Re(M + A) = Re(M + A)∗ = ReM > c on dom(M + A) =
dom(A) = dom(A∗) = dom((M + A)∗) implies, via a simple application of the Cauchy-
Schwarz inequality, that the range of M + A is closed, M + A is boundedly invertible on
its range and the kernel of (M + A)∗ is trivial. Then, we conclude the assertion from the
orthogonal decomposition H = ran(M + A)⊕ ker(M + A)∗.

Corollary 2.6. Under the assumptions (1), Bε(θ) is boundedly invertible and the inequality

sup
θ∈Θ

‖Bε(θ)
−1‖ 6

1
c

holds.

Lemma 2.7. For a given Hilbert space H and A : dom(A)⊆H →H densely defined, assume
that there exists a closed subspace U ⊆ H such that πUA ⊆ AπU , where πU : H → H is the
orthogonal projection on U . Then, for πV := (1− πU) we obtain πVA ⊆ AπV and

πVAπU = πUAπV = 0.

Proof. We compute πVA = (1− πU)A = A− AπU ⊆ A(1− πU ) = AπV . Hence, we obtain

πVAπU ⊆ AπV πU = 0 and πUAπV ⊆ AπUπV = 0.

The assertion now follows from the fact that both πVAπU and πUAπV are densely defined;
indeed, the respective domains contain the domain of A.

Lemma 2.8. Let H be a Hilbert space and A : dom(A) ⊆ H → H skew-selfadjoint. Assume
that there exists U ⊆ H closed such that πUA ⊆ AπU and AπV bounded, where πU : H → H
denotes the orthogonal projection to U and πV := (1 − πU ). Then ι∗UAιU and ι∗VAιV are
skew-selfadjoint in U and V := U⊥, respectively, where ιU : U →֒ H, ιV : V →֒ H.

Proof. First of all, note that the assertion that ι∗UAιU (resp. ι∗VAιV ) is skew-selfadjoint is
equivalent to πUAπU (resp. πVAπV ) being skew-selfadjoint.

It is easy to see that πUAπU is skew-Hermitian. Moreover, the inclusion π2
UA ⊆ πUAπU

implies that πUAπU is densely defined and, thus, skew-symmetric.
By Lemma 2.7, the same reasoning applies to πVAπV . Thus, as AπV is bounded we

deduce that πVAπV is skew-selfadjoint.
We now prove that πUAπU is skew-selfadjoint. Note that ϕ ∈ dom(A) if, and only if,

πUϕ ∈ dom(A). Indeed, the necessary implication follows from πUA ⊆ AπU ; sufficiency
follows from AπV being bounded which, in turn, implies that πV ψ ∈ dom(A) for all ψ ∈ H .
Therefore, we infer that A = AπU + AπV , and consequently, upon utilising Lemma 2.7, we
calculate

A = (πU + πV )A(πU + πV ) = πUAπU + πVAπV .

Finally, since A and πVAπV are skew-selfadjoint, and πVAπV is bounded, it follows that
πUAπU is skew-selfadjoint.
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We now aim to provide a formula for Bε(θ)
−1, in terms of the space N(θ) and R(θ) =

N(θ)⊥, that will be utilised in the proof of Theorem 2.2. First, some a priori observations.

Proposition 2.9. Assume (1), Hypothesis 2.1 and recall CR from (2). Let Bε,N(θ) ∈
L(N(θ)), Bε,R(θ) ∈ L(R(θ)) be given by

Bε,N(θ) = ι∗N(θ)M(θ)ιN(θ) +
1
ε
ι∗N(θ)AιN(θ), and

Bε,R(θ) = ι∗R(θ)M(θ)ιR(θ) +
1
ε
ι∗R(θ)AιR(θ).

Then, the following assertions hold.
(a) Let ε0 := 1/(2CR‖M‖∞). Then, for all ε ∈ (0, ε0) and θ ∈ Θ, the operator Bε,R(θ) is

continuously invertible and

sup
θ∈Θ

‖Bε,R(θ)
−1‖ 6 2CRε.

(b) For all ε > 0 and θ ∈ Θ, the operator Bε,N(θ) is continuously invertible, and

sup
θ∈Θ

∥∥Bε,N(θ)
−1
∥∥ 6

1
c
.

Proof. For (a), we proceed as follows. By Hypothesis 2.1, the operatorAR(θ) := ι∗R(θ)A(θ)ιR(θ)

is continuously invertible. Hence, we obtain

Bε,R(θ) =
1
ε
AR(θ)

(
εAR(θ)

−1ι∗R(θ)M(θ)ιR(θ) + 1
)
.

From the inequality

‖εAR(θ)
−1ι∗R(θ)M(θ)ιR(θ)‖ 6 εCR‖M‖∞ 6

1
2
,

we deduce via a Neumann series argument, for the inverse of 1 + εAR(θ)
−1ι∗R(θ)M(θ)ιR(θ),

that

Bε,R(θ)
−1 = ε

∞∑

k=0

(
−εAR(θ)

−1ι∗R(θ)M(θ)ιR(θ)

)k
AR(θ)

−1.

Thus,

‖Bε,R(θ)
−1‖ 6 εCR

∞∑

k=0

1

2k
= 2CRε.

For the proof of (b), we observe that, by Lemma 2.8, the operator AN(θ) := ι∗N(θ)A(θ)ιN(θ) is

skew-selfadjoint. Hence, ReBε,N(θ) > c and, thus, Lemma 2.5 implies that Bε,N(θ)
−1 exists

with ‖Bε,N(θ)
−1‖ 6 1/c.

The following result holds.

Proposition 2.10. Assume (1), Hypothesis 2.1 and let ε0 be as in Proposition 2.9. Then,
for all ε ∈ (0, ε0) and θ ∈ Θ, the following assertions hold.
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(a) πN(θ)Bε(θ)
−1 = ιN(θ)Bε,N(θ)

−1
(
ι∗N(θ) − ι∗N(θ)M(θ)πR(θ)Bε(θ)

−1
)
;

(b) πR(θ)Bε(θ)
−1 = ιR(θ)Bε,R(θ)

−1
(
ι∗R(θ) − ι∗R(θ)M(θ)πN(θ)Bε(θ)

−1
)
.

Proof. Fix, ε, θ and f ∈ Hθ, and let u = Bε(θ)
−1f . Then u = ιN(θ)uN + ιR(θ)uR, where

uN = ι∗N(θ)u and uR = ι∗R(θ)u. Now, by Lemma 2.7, one has

πR(θ)A(θ) = πR(θ)A(θ)πR(θ), πN(θ)A(θ) = πN(θ)A(θ)πN(θ).

Consequently, with AR(θ) = ι∗R(θ)A(θ)ιR(θ)

πR(θ)f = πR(θ)Bε(θ)u

= πR(θ)M(θ)πN(θ)u+ πR(θ)M(θ)πR(θ)u+
1
ε
ιR(θ)AR(θ)uR

= πR(θ)M(θ)πN(θ)u+ ιR(θ)Bε,R(θ)uR

and, therefore,
uR = Bε,R(θ)

−1
(
ι∗R(θ) − ι∗R(θ)M(θ)πN(θ)Bε(θ)

−1
)
f.

Similarly, we deduce that

uN = Bε,N(θ)
−1
(
ι∗N(θ) − ι∗N(θ)M(θ)πR(θ)Bε(θ)

−1
)
f,

and the desired identities follow.

We are now in the position to study the behaviour of the inverse of Bε(θ) for small ε.

Proposition 2.11. Assume (1), Hypothesis 2.1 and let ε0 be as in Proposition 2.9. Then,
for all ε ∈ (0, ε0) and θ ∈ Θ, the inequality

‖Bε(θ)
−1 − ιN(θ)Bε,N(θ)

−1ι∗N(θ)‖ 6 2CR

(
1 + ‖M‖∞

c

)2
ε

holds. Here CR is given in Proposition 2.9 (a).

Proof. The inequalities in Corollary 2.6 and Proposition 2.9 (a) imply that

sup
θ∈Θ

‖ιR(θ)Bε,R(θ)
−1
(
ι∗R(θ) − ι∗R(θ)M(θ)πN(θ)Bε(θ)

−1
)
‖ 6 2CR

(
1 + ‖M‖∞

c

)
ε.

By Proposition 2.10 (b), Proposition 2.9 (b) and the above assertion, we deduce that

sup
θ∈Θ

‖ιN(θ)Bε,N(θ)
−1ι∗N(θ)M(θ)πR(θ)Bε(θ)

−1‖ 6
1
c
‖M‖∞2CR

(
1 + ‖M‖∞

c

)
ε.

The proof of the proposition now follows from Proposition 2.10 and the identity Bε(θ)
−1 =

(πN(θ) + πR(θ))Bε(θ)
−1.

Remark 2.12. Proposition 2.11 is one particular choice of the leading-order asymptotics
for the inverse Bε(θ)

−1 and could be taken in the place of those presented in Theorem 2.2.
That being said, the reason we choose to demonstrate the equivalent asymptotics given by
Theorem 2.2 is to present leading-order asymptotics for the resolvents of the operator Bε(θ)
that preserve A(θ).
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To complete the proof of Theorem 2.2 is now a simple task.

Proof of Theorem 2.2. To show that
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
exists, observe that

πN(θ)M(θ)πN(θ) +
1
ε
A(θ) =

(
ιN(θ) ιR(θ)

)(Bε,N(θ) 0
0 1

ε
AR(θ)

)(
ι∗N(θ)

ι∗R(θ)

)
, (3)

and that by Hypothesis 2.1, AR(θ) = ι∗R(θ)A(θ)ιR(θ) is continuously invertible on R(θ) and

by Proposition 2.9 (b), Bε,N is continuously invertible on N(θ) for all ε > 0 and θ ∈ Θ.
We compute with the help of (3)

πR(θ)

(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
= ειR(θ)AR(θ)

−1ι∗R(θ), and

πN(θ)

(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
= ιN(θ)Bε,N(θ)

−1ι∗N(θ).

Then, the proof of the theorem follows by Hypothesis 2.1 (c) and Proposition 2.11.

Remark 2.13. Note that as an upshot of the method of proof, we observe that the leading-
order asymptotics are in fact determined by the behaviour of the resolvent on the space N(θ)
only, cf. Proposition 2.11. In particular, it is possible to replace AR(θ)

−1 by any uniformly
bounded linear operator acting in R(θ) in order to obtain an asymptotically equivalent
answer to the assertion in Theorem 2.2. In order to see this, one has to simply refer to (3).
In more formal terms, we have also proven the following result: Let (Tθ)θ be a family acting
in (L(Hθ))θ be such that supθ∈Θ ||ι∗R(θ)T (θ)ιR(θ)|| <∞. Then, for all ε > 0 small enough and
θ ∈ Θ we have

∥∥∥∥Bε(θ)
−1 −

(
ιN(θ) ιR(θ)

)(Bε,N(θ)
−1 0

0 ει∗R(θ)T (θ)ιR(θ)

)(
ι∗N(θ)

ι∗R(θ)

)∥∥∥∥

6

(
2CR(1 +

‖M‖∞
c

)2 + sup
θ∈Θ

||ι∗R(θ)T (θ)ιR(θ)||
)
ε.

In applications it may happen that A(θ) and M(θ) are realisations of a direct-fibre de-
composition. Such a case presents no additional difficulty from the perspective of the above
approach and one can argue in a similar manner as follows.

Hypothesis 2.14. Let H0 be a Hilbert space, Θ ⊆ R
d measurable. For each θ ∈ Θ let Hθ be

a Hilbert space and assume there exists a Hilbert space H such that H0 =
∫ ⊕

Θ
H and Hθ ⊆ H

closed; set ιθ : Hθ →֒ H . For every θ ∈ Θ, let M(θ) ∈ L(Hθ), A(θ) : dom(A(θ)) ⊆ Hθ → Hθ.
We assume the following properties:
(a) for all θ ∈ Θ, A(θ) = −A(θ)∗,
(b) ReM(θ) > c for all θ ∈ Θ,
(c) A(θ), θ ∈ Θ, satisfies Hypothesis 2.1,

(d) assume that θ 7→ ιθ
(
M(θ) + 1

ε
A(θ)

)−1
ι∗θ is weakly measurable.

For ε > 0, consider

Cε :=
∫ ⊕

Θ

ιθ
(
M(θ) + 1

ε
A(θ)

)−1
ι∗θdθ.

9



Theorem 2.15. Assume Hypothesis 2.14. Then, there exists κ > 0 such that for all ε > 0,
the following inequality

∥∥∥∥Cε −
∫ ⊕

Θ

ιθ
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
ι∗θdθ

∥∥∥∥ 6 κε

holds.

Proof. The proof follows from Theorem 2.2. In fact, note that

Cε −
∫ ⊕

Θ

ιθ
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
ι∗θdθ

=

∫ ⊕

Θ

ιθ
(
M(θ) + 1

ε
A(θ)

)−1
ι∗θdθ −

∫ ⊕

Θ

ιθ
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
ι∗θdθ

=

∫ ⊕

Θ

ιθ

((
M(θ) + 1

ε
A(θ)

)−1 −
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1
)
ι∗θdθ.

Thus, the asymptotic analysis requires estimating

(
M(θ) + 1

ε
A(θ)

)−1 −
(
πN(θ)M(θ)πN(θ) +

1
ε
A(θ)

)−1

uniformly in θ, which is done in Theorem 2.2.

The analogue of Proposition 2.11 is as follows.

Theorem 2.16. Assume Hypothesis 2.14. Then, there exists κ > 0 such that for all ε > 0,
the following inequality

∥∥∥∥Cε −
∫ ⊕

Θ

ιθιN(θ)

(
ι∗N(θ)

(
M(θ) + 1

ε
A(θ)

)
ιN(θ)

)−1
ι∗N(θ)ι

∗
θdθ

∥∥∥∥ 6 κε

holds.

Proof. Arguing as in the proof of Theorem 2.15, the asymptotic analysis requires estimating
the difference

(
M(θ) + 1

ε
A(θ)

)−1 − ιN(θ)

(
ι∗N(θ)

(
M(θ) + 1

ε
A(θ)

)
ιN(θ)

)−1
ι∗N(θ),

uniformly in θ, which is given by Proposition 2.11.

3 Fibre homogenisation of second-order PDE systems

with rapidly oscillating periodic coefficients

In order to put the abstract result exposed in Section 2 into perspective, we shall study
a classical example of homogenisation theory: an elliptic system of n equations posed on
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R
d with rapidly varying periodic coefficients. For this, we denote Y := (0, 1)d, and for a

vector space V , denote 1V := (V ∋ v 7→ v ∈ V ). For a subspace V ⊆ L2(Y ) and functions
g, h ∈ L2(Y ), we denote

g⊥h :⇔ 〈g, h〉L2(Y ) = 0, and V⊥h := {v ∈ V ; 〈v, h〉L2(Y ) = 0}.

We set

M#
n,d :=

{
a ∈ L∞(Rd;L(Cn×d)) ; a(·+ k) = a(·) (k ∈ Z

d), ∃ν > 0 : Re a > ν1Cn×d

}
,

S#
n,d :=

{
s ∈ L∞(Rd;L(Cn)) ; s(·+ k) = s(·) (k ∈ Z

d), ∃ν > 0 : Re s > ν1Cn

}
,

aijkl := 〈aei ⊗ ej, ek ⊗ el〉Cn×d ∈ L∞(Rd) (a ∈ M#
n,d, i, k ∈ {1, . . . , n}, j, l ∈ {1, . . . , d}),

and
sij := 〈sei, ej〉Cn ∈ L∞(Rd) (s ∈ S#

n,d, i, j ∈ {1, . . . , n}),

where ej is the j-th Euclidean basis vector.

For given a ∈ M#
n,d, s ∈ S#

n,d, f ∈ [L2(Rd)]n and ε > 0, we consider the elliptic problem

{
find uε ∈ [H1(Rd)]n such that

− div a
(
·
ε

)
grad uε + s

(
·
ε

)
uε = f.

(4)

Let Uε be the Gelfand transform, see Definition 3.3, and divθ and gradθ denote the diver-
gence and gradient differential operators, respectively, on function spaces of θ-quasi-periodic
Sobolev functions, see Definition 3.4. Then, the main result of the section for the class of
problems (4) is as follows.

Theorem 3.1 (Fibre homogenisation theorem). Let a ∈ M#
n,d, s ∈ S#

n,d. Then, there exists
κ > 0 such that for all ε > 0, the inequality

∥∥∥
(
− div a

(
·
ε

)
grad+s

(
·
ε

) )−1 − U−1
ε

∫ ⊕

Θ

(
− ε−2 divθ a

hom(θ) gradθ +m(s)
)−1

dθUε

∥∥∥ 6 κε

holds. The constant matrix m(s) ∈ S#
n,d and constant fourth-order tensor ahom(θ) ∈ M#

n,d,

θ ∈ Θ := [−π, π)d, are given as follows:

m(s)ij :=

∫

Y

sij(y) dy (i, j ∈ {1, . . . , n}),

and

ahomijrs (θ) :=

n∑

k=1

d∑

l=1

∫

Y

aijkl
(
∂lN

(rs)
θk (y) + eıθ·yδkrδls

)
e−ıθ·y dy

(i, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , d}),
(5)

11



where N
(rs)
θ ∈ [H1

θ (Y ) ⊥ eı〈θ,·〉Cd ]n uniquely solves

〈a[∇N (rs)
θ + eı〈θ,·〉Cder ⊗ es],∇ϕ〉 = 0, (ϕ ∈ [H1

θ (Y ) ⊥ eı〈θ,·〉Cd ]n) (6)

with er = (δri)i∈{1,...,n} and es = (δsj)j∈{1,...,d}.

Remark 3.2.

(a) The well-posedness of (4) follows from noting the equivalence of this problem with a
first-order formulation, see Proposition 2.15 below, and Lemma 2.5.

(b) The well-posedness of (6) is presented for the reader’s convenience at the end of the
section, cf. Proposition 3.18.

(c) It is instructive to compare the homogenisation result here to the standard result

available in the literature; the standard result states that
(
−div a(·/ε) grad+s(·/ε)

)−1

is ε-close in operator-norm to
(
− div ahom grad+m(s)

)−1
where

ahomijrs :=
n∑

k=1

d∑

l=1

∫

Y

aijkl
(
∂lN

(rs)
k (y) + δkrδls

)
dy (i, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , d}),

for N (rs) ∈ [H1
#(Y ) ⊥ 1]n the unique solution to

〈a[∇N (rs)
# + er ⊗ es],∇ϕ〉 = 0, (ϕ ∈ [H1

#(Y ) ⊥ 1]n).

A quick inspection determines the equality ahom = ahom(θ)|θ=0, and one can deduce
that the equivalent leading-order asymptotics presented in Theorem 3.1 lead to the
standard homogenisation result by comparing the difference ahom(θ) − ahom(0) with
respect to θ. This is the subject of Section 4.

The remainder of this section is dedicated to the proof of Theorem 3.1. The general
strategy we follow is to first reformulate (4) in the framework presented in Section 2; this
is done in Proposition 3.8. Then we show that, in this setting, Hypothesis 2.14 (a)-(c) (in
particular (1) and Hypothesis 2.1) holds and, therefore, Theorem 2.2 follows; this is done in

Propositions 3.10 and 3.11. Next, we show that M̃(θ) = ahom(θ) satisfies the assumptions
of Theorem 2.4; this is identity (15). Lastly, we aim to use Theorem 2.15 to establish
Theorem 3.1. This requires proving the weak measurability assumption: Hypothesis (d);
this is Theorem 3.14. Bearing this strategy mind, most of the work of this section will be in
establishing Hypothesis 2.14.

Let us begin with the reformulation of (4) via an application of the Gelfand transform:

Definition 3.3. For ε > 0, f ∈ [Cc(R
d)]n, we define

Uεf(θ, y) :=
( ε

2π

)d/2 ∑

k∈Zd

f
(
ε(y + k)

)
e−iθ·k (θ ∈ Θ, y ∈ Y ).

It is well-known, see for example [1, Section 3.2, pg. 615], that Uε extends to a unitary
operator from [L2(Rd)]n into [L2(Θ;L2

θ(R
d))]n, where L2

θ(R
d) := {f ∈ L2

loc(R
d); f(· + k) =

eıθ·kf(·) (k ∈ Zd)}(∼= L2(Y )). Henceforth, we identify L2(Y ) with L2
θ(R

d).
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Definition 3.4. We define

grad: [H1(Rd)]n ⊆ [L2(Rd)]n → [L2(Rd)]n×d, (ϕi)i∈{1,...,n} 7→ (∂jϕi)i∈{1,...,n},j∈{1,...,d},

gradθ : [H
1
θ (Y )]

n ⊆ [L2(Y )]n → [L2(Y )]n×d, (ϕi)i∈{1,...,n} 7→ (∂jϕi)i∈{1,...,n},j∈{1,...,d},

where H1
θ (Y ) is the Sobolev space of θ-quasi-periodic functions taken to be the closure, with

respect to the H1(Y ) norm, of C∞
θ (Y ): smooth functions ϕ that satisfy ϕ(·+ k) = eıθ·kϕ(·),

k ∈ Zd. We also introduce

div := − grad∗, and divθ := − grad∗
θ,

as well as
grad# := grad0, div# := div0 and H1

#(Y ) = dom(grad#).

The operators just introduced are closed. Indeed, the divergence operators are skew-
adjoints of the densely defined gradient operators. The operator gradθ is closed, since grad :
[H1(Y )]n ⊆ [L2(Y )]n → [L2(Y )]n×d is closed, gradθ ⊆ grad and H1

θ (Y ) ⊆ H1(Y ) is, by
definition, closed.

For the convenience of the reader, we now gather some well-known properties on the
interplay between the Gelfand transform and the differential operators introduced above.
As is customary in PDE-theory, we employ a slight abuse of notion by not distinguishing
between gradθ acting on L

2(Y ) and the corresponding gradient (acting as differentiation with
respect to y) in L2

(
Θ;L2(Y )

)
.

Proposition 3.5. Let ε > 0, a ∈ M#
n,d, s ∈ S#

n,d. The following statements hold:

(a) Uε grad = 1
ε
gradθ Uε,

(b) Uε div = 1
ε
divθ Uε,

(c) for all (θ, y) ∈ Θ× Y we have (Uεa(·/ε)f)(θ, y) = a(y)(Uεf)(θ, y) and
(Uεs(·/ε)f)(θ, y) = s(y)(Uεf)(θ, y).

Proof. The proof of (c) easily follows from the explicit formula for the Gelfand transformation
for f ∈ [Cc(R

d)]n and the periodicity of a and s. The statement in (b) follows from (a) upon
using the definition of div and divθ as, respectively, being skew-adjoints of grad and gradθ

along with the fact Uε is unitary. Thus, it remains to demonstrate (a). For this, we observe
that

Uε gradϕ = 1
ε
gradθ Uεϕ

holds for ϕ ∈ [C∞
c (Rd)]n. Therefore, we deduce grad ⊆ U−1

ε
1
ε
gradθ Uε by taking into account

the facts that grad and gradθ are closed, Uε is unitary, and that [C∞
c (Rd)]n is a core for grad.

Similarly, as C∞
θ (Y ) is a core of gradθ we obtain

U−1
ε

1
ε
gradθ ⊆ gradU−1

ε ,

and the assertion follows.
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Proposition 3.5 implies that u ∈ dom
(
div a( ·

ε
) grad

)
solves (4) if, and only if, Uεu ∈

dom
(
divθ a gradθ

)
solves

− 1
ε2
divθ a gradθ Uεu+ sUεu = Uεf. (7)

For the final step to cast the problem in the form discussed in Section 2, we introduce the
spaces

P (θ) := eı〈θ,·〉CdCn×d ⊕
{
gradθ u ; u ∈ [H1

θ (Y ) ⊥ eı〈θ,·〉Cd ]n
}

(θ ∈ Θ), (8)

where here, and throughout, ei〈θ,·〉CdCn×d is the space obtained by multiplying each compo-
nent of vectors in C

n×d by Y ∋ y 7→ ei〈θ,y〉Cd .
In order to properly establish and formulate the first order perspective we have in mind

we first demonstrate that ran(gradθ) and P (θ) are closed. Both results are a consequence of
the following standard argument.

Lemma 3.6. Let H0, H1 be Hilbert spaces and B : dom(B) ⊆ H0 → H1 closed. Assume that
B is one-to-one and dom(B) →֒ H0 is compact. Then, there exists c > 0 such that

‖ϕ‖H0 6 c‖Bϕ‖H1 .

In particular, ran(B) ⊆ H1 is closed.

Proof. Assume that the inequality does not hold for any positive constant. Then, there
exists a sequence (ϕk)k∈N such that ‖ϕk‖H0 = 1 and

‖Bϕk‖H1 <
1
k

(k ∈ N).

As (ϕk)k∈N is bounded in dom(B), and dom(B) →֒ H0 is compact, we deduce that there
exists a H0-convergent subsequence of (ϕk)k with (Bϕk)k weakly converging, which we do
not relabel. Let ϕ := limk→∞ ϕk ∈ H0. By passing to the limit k → ∞, in the inequality
‖Bϕk‖H1 < 1/k, we deduce that

‖ (weak)- lim
k→∞

Bϕk‖H1 6 lim inf
k→∞

‖Bϕk‖H1 = 0,

and therefore ϕ ∈ dom(B) with Bϕ = 0. As B is one-to-one, it follows that ϕ = 0 which
contradicts ‖ϕ‖H0 = limk→∞ ‖ϕk‖H0 = 1. Hence, the desired inequality holds.

The fact that the range of B is closed is a straightforward consequence of the now
established inequality and the fact that B is closed.

Proposition 3.7. Let θ ∈ Θ = [−π, π)d. Then, the following assertions hold:
(a) ran(gradθ) ⊆ [L2(Y )]n×d is closed,
(b) P (θ) ⊆ [L2(Y )]n×d, introduced in (8), is closed.

Proof. Note that ran(gradθ) = ran(gradθ |ker(gradθ)
⊥). To establish (a) we aim to apply Lemma

3.6 for B = gradθ |ker(gradθ)
⊥ , H0 = [L2(Y )]n and H1 = [L2(Y )]n×d. B is easily shown to be

one-to-one and closed. By Rellich’s selection theorem H1(Y ) →֒ L2(Y ) is compact. Hence,
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since dom(B) = H1
θ (Y ) ∩ ker(gradθ)

⊥ ⊆ H1(Y ) is closed, we deduce that dom(B) →֒ L2(Y )
is compact. Thus, (a) follows from Lemma 3.6.

In order to prove (b), we observe that eı〈θ,·〉CdCn×d is finite-dimensional. Thus, we are left
with proving that {

gradθ u ; u ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n

}

is closed. We demonstrated above that Lemma 3.6 holds for B = gradθ |ker(gradθ)⊥, H0 =
[L2(Y )]n and H1 = [L2(Y )]n×d. Consequently, the inequality in Lemma 3.6 holds and, to
prove the above space is closed, we only need to establish that if (ϕk)k∈N is a convergent
sequence in H1

θ (Y ) with limit ϕ ∈ H1
θ (Y ) satisfying

〈ϕk, e
ı〈θ,·〉

Cd 〉L2(Y ) = 0 (k ∈ N),

then ϕ ⊥ eı〈θ,·〉Cd . This is an easy consequence of the fact that (ϕk)k∈N strongly converges in
L2(Y ).

We introduce
ιθ : P (θ) →֒ [L2(Y )]n×d (θ ∈ Θ).

By Proposition 3.7 (b) we have that P (θ) ⊆ [L2(Y )]n×d introduced in (8) is closed. Thus,
ι∗θ : [L

2(Y )]n×d → P (θ) is the well-defined adjoint operator and πP (θ) := ιθι
∗
θ is the orthogonal

projection onto P (θ). The following result holds.

Proposition 3.8. Let ε > 0, θ ∈ Θ, a ∈ M#
n,d, s ∈ S#

n,d and g ∈ [L2(Y )]n. Then, the
following conditions are equivalent:
(i) u ∈ dom

(
divθ a gradθ

)
satisfies

− 1
ε2
divθ a gradθ u+ su = g.

(ii) u ∈ dom(gradθ) and q ∈ dom(divθ ιθ) satisfy

[(
s 0
0 (ι∗θaιθ)

−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

)](
u
q

)
=

(
g
0

)

Proof. Before we prove the equivalence, we note that

divθ a gradθ = divθ ιθι
∗
θaιθι

∗
θ gradθ, (θ ∈ Θ). (9)

Indeed, note that ran(gradθ) ⊆ P (θ): This is obvious for θ = 0, so let us consider θ 6= 0.
Since {eı〈(θ+2πz),·〉

Cd}z∈Zd forms a complete orthonormal system for L2(Y ), then

u(y) =
∑

z∈Zd

c(z)eı〈(θ+2πz),y〉 (y ∈ Y, c(z) ∈ C
n),

and

gradθ u(y) =
∑

z∈Zd

c(z)⊗ (ıθ+2πz)eı〈(θ+2πz),y〉 = c(0)⊗ ıθeı〈θ,y〉+gradθ v(y), (y ∈ Y, c(0) ∈ C
n),
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for some v ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n.

Next, as ker(divθ)
⊥ = ran(gradθ) ⊆ P (θ), we obtain P (θ)⊥ ⊆ ker(divθ). In particular, we

infer
ιθι

∗
θ gradθ = gradθ and divθ(1− ιθι

∗
θ) = 0.

Hence, (9) follows.
For (i)⇒(ii), we set q := 1

ε
ι∗θaιθι

∗
θ gradθ u. Then (ii) follows from (9). Note that, for a ∈

M#
n,d, ι

∗
θaιθ is continuously invertible. Indeed, multiplication with a can be identified as an

operator in L(L2(Y )n×d). Moreover, as a ∈ M#
n,d then Re a > ν1[L2(Y )]n×d and consequently

Re ι∗θaιθ > ν1P (θ) for some ν > 0. This yields the continuous invertibility of ι∗θaιθ.
The implication (ii)⇒(i) also follows from (9). Note that u ∈ dom(divθ a gradθ) follows

from the fact that q ∈ dom(divθ ιθ), u ∈ dom(ι∗θ gradθ) and the second row of the system
(ii).

Now, we aim to apply Theorem 2.15 to the system (ii) in Proposition 3.8. For this, we
use the following setting:

H0 = L2(Θ× Y )2n+d, Θ = [−π, π)d,
Hθ = [L2(Y )]n ⊕ P (θ), H = [L2(Y )]n ⊕ [L2(Y )]n×d,

M(θ) =

(
s 0
0 (ι∗θaιθ)

−1

)
, A(θ) =

(
0 − divθ ιθ

−ι∗θ gradθ 0

)
,

N(θ) = eı〈θ,·〉CdCn ⊕ eı〈θ,·〉CdCn×d.

(10)

We also set
N1(θ) := eı〈θ,·〉CdCn, and N2(θ) := eı〈θ,·〉CdCn×d (11)

The following result holds.

Theorem 3.9. With the setting (10), Hypothesis 2.14 holds.

We begin with verifying the conditions (a) and (b) of Hypothesis 2.14 as well as (a) and
(b) of Hypothesis 2.1.

Proposition 3.10. Assume the setting (10). For each θ ∈ Θ, the following statements hold:
(a) A(θ) is skew-selfadjoint;
(b) ReM(θ) > ν/(‖a‖2 + 1), where ν > 0 is such that Re a > ν1Cn×d and Re s > ν1Cn;
(c) πN(θ)A(θ) ⊆ A(θ)πN(θ);
(d) A(θ)πN(θ) is bounded.

Proof. The first assertion follows from the fact that divθ ιθ = −
(
ι∗θ gradθ

)∗
. For the second

statement, we observe that Re s > ν1Cn >
(
ν/(‖a‖2 + 1)

)
1Cn . Moreover, note that Re a >

ν1Cn×d implies ι∗θaιθ > ν1P (θ) and, thus,

Re(ι∗θaιθ)
−1

>
(
ν/(‖ι∗θaιθ‖2)

)
1P (θ) >

(
ν/(‖a‖2 + 1)

)
1P (θ).

The third assertion is easy to see upon the decomposition [L2(Y )]n = eı〈θ,·〉CdCn ⊕ [L2(Y ) ⊥
eı〈θ,·〉Cd ]n. The fourth assertion is a consequence of the above decomposition of [L2(Y )]n and
the finite dimensionality of N(θ).
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Proof of Theorem 3.9 – Part 1. The assertions (a) and (b) of Hypothesis 2.14 and (a) of
Hypothesis 2.1 clearly follow from Proposition 3.10. Assertion Hypothesis 2.1 (b) follows
from Proposition 3.10 (c) and Lemma 2.7 upon setting H =Hθ, U =N(θ) and A = A(θ).

We now turn to complete the proof of (c) of Hypothesis 2.14, which results from a
quantified version of Proposition 3.7 (see also Lemma 3.6).

Proposition 3.11. Assume the setting (10). Then, the following assertions hold.
(a) For all θ ∈ Θ and u ∈ [H1

θ (Y ) ⊥ eı〈θ,·〉Cd ]n we have

‖u‖[L2(Y )]n 6 π−1‖ gradθ u‖[L2(Y )]n×d.

(b) For all θ ∈ Θ, we have

R(θ) = N(θ)⊥ = (eı〈θ,·〉CdCn)⊥ ⊕ {gradθ u; u ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n}.

(c) Let ιR(θ) : R(θ) →֒ Hθ be the canonical embedding. For all θ ∈ Θ, the operator
ι∗R(θ)A(θ)ιR(θ) is continuously invertible and

sup
θ∈Θ

∥∥(ι∗R(θ)A(θ)ιR(θ))
−1
∥∥ 6 π−1.

Proof. To prove (a), we argue, as in the proof of Proposition 3.8, that {eı〈θ+2πz,·〉
Cd}z∈Zd is an

orthonormal basis for L2(Y ) and utilising the fact that ui ⊥ eı〈θ,·〉Cd , i ∈ {1, . . . , n}, one has

u =
∑

z∈Zd

z 6=0

c(z)eı〈θ+2πz,·〉
Cd , gradθ u =

∑

z∈Zd

z 6=0

eı〈θ+2πz,·〉
Cdc(z) ⊗ ı(θ + 2πz), c(z) ∈ C

n.

Then

‖ gradθ u‖2[L2(Y )]n×d =
∑

z∈Zd

z 6=0

‖c(z) ⊗ ı(θ + 2πz)‖2
Cn×d > π2

∑

z∈Zd

z 6=0

‖c(z)‖2Cn = π2‖u‖2[L2(Y )]n .

The statement in (b) immediately follows from the definition of P (θ), see (8). For the proof
of statement (c), we set

R1(θ) := (eı〈θ,·〉CdCn)⊥, and R2(θ) := {gradθ u; u ∈ [H1
θ (Y )⊥eı〈θ,·〉Cd ]n}.

Thus, for the canonical embeddings ιR1(θ) : R1(θ) →֒ [L2(Y )]n, ιR2(θ) : R2(θ) →֒ P (θ), we
obtain

ιR(θ) =

(
ιR1(θ) 0
0 ιR2(θ)

)
,

and

ι∗R(θ)A(θ)ιR(θ) =

(
0 −ι∗R1(θ)

divθ ιθιR2(θ)

−ι∗R2(θ)
ι∗θ gradθ ιR1(θ) 0

)
.
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Next, we observe that ι∗R2(θ)
ι∗θ projects onto R2(θ). By (a) it follows that gradθ ιR1(θ) is one-

to-one, and therefore we obtain that ι∗R2(θ)
ι∗θ gradθ ιR1(θ) is a bijection. Therefore, it follows

that (
ι∗R2(θ)ι

∗
θ gradθ ιR1(θ)

)∗
= −ι∗R1(θ) divθ ιθιR2(θ)

is a bijection. In particular, by (a), we calculate

∥∥(ι∗R1(θ)
divθ ιθιR2(θ)

)−1∥∥ =
∥∥(ι∗R2(θ)

ι∗θ gradθ ιR1(θ)

)−1∥∥ 6 π−1.

Hence, ∥∥(ι∗R(θ)A(θ)ιR(θ)

)−1∥∥ 6 π−1,

and we conclude the proof of assertion (c).

Proof of Theorem 3.9 – Part 2. The assertion (c) of Hypothesis 2.14 follows from Proposi-
tion 3.11(c).

To complete the proof of Theorem 3.9, it remains to prove Hypothesis (d). For this, we
make some preliminary observations. The proof of the next result is demonstrated by direct
calculation and is therefore omitted.

Proposition 3.12. Let ϕ ∈ [L2(Y )]n×d, θ ∈ Θ. Then,

πP (θ)ϕ = 〈ϕ, eı〈θ,·〉Cd〉eı〈θ,·〉Cd −
∑

z∈Zd\{0}

(θ + 2πz)(θ + 2πz)T

|θ + 2πz|2 c(z)ϕ eı〈θ+2πz,·〉
Cd ,

where
c(z)ϕ := 〈ϕ, eı〈θ+2πz,·〉

Cd〉.
Proposition 3.13. Let (θk)k∈N be a convergent sequence in Θ, θ := limk→∞ θk. Let (uk)k∈N
in [L2(Y )]n, and (qk)k∈N in [L2(Y )]n×d weakly convergent sequences with limits u and q.
Then, the following assertions hold.
(a) πP (θk)qk ⇀ πP (θ)q.
(b) Assume, in addition, that qk ∈ P (θk), k ∈ N, as well as (gradθk uk)k∈N and (divθk qk)k∈N

are bounded. Then u ∈ dom(gradθ), q ∈ dom(divθ) and

gradθk uk ⇀ gradθ u, and divθk qk ⇀ divθ q.

Proof. For the proof of (a), we use Proposition 3.12. Indeed, we obtain for all k ∈ N with

c
(z)
qk = 〈qk, eı〈θk+2πz,·〉

Cd〉 and that

πP (θk)qk = 〈qk, eı〈θk,·〉Cd 〉eı〈θk,·〉Cd −
∑

z∈Zd\{0}

(θk + 2πz)(θk + 2πz)T

|θk + 2πz|2 c(z)qk
eı〈θk+2πz,·〉

Cd .

As (qk)k converges weakly to q, we obtain that

(θk + 2πz)(θk + 2πz)T

|θk + 2πz|2 c(z)qk
eı〈θk+2πz,·〉

Cd → (θ + 2πz)(θ + 2πz)T

|θ + 2πz|2 c(z)q eı〈θ+2πz,·〉
Cd
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as k → ∞. Thus, by the dominated convergence theorem, we infer

πP (θk)qk ⇀ 〈q, eı〈θ,·〉Cd〉eı〈θ,·〉Cd −
∑

z∈Zd\{0}

(θ + 2πz)(θ + 2πz)T

|θ + 2πz|2 c(z)q eı〈θ+2πz,·〉
Cd = πP (θ)q.

Hence, (a) follows.
The second statement is proved in a similar manner and so we will just sketch the

argument. Upon decomposing uk with respect to the basis {eı〈θ+2πz,·〉
Cd}z∈Zd, decomposing

qk as above, one computes

gradθk
uk =

∑

z∈Zd

ı(θk + 2πz)⊗ c(z)uk
eı〈θk+2πz,·〉

Cd ,

divθk qk = ıθTk 〈qk, eı〈θk,·〉Cd 〉eı〈θk,·〉Cd −
∑

z∈Zd\{0}

(θk +2πz)T
(θk + 2πz)(θk + 2πz)T

|θk + 2πz|2 c(z)qk
eı〈θk+2πz,·〉

Cd .

Then, utilising the assumption that both the sequences (gradθk uk)k∈N and (divθk qk)k∈N are
bounded, we can pass to the limit in the above equations and characterise them as gradθ u
and divθ q respectively.

Theorem 3.14. Let s ∈ S#
n,d, a ∈ M#

n,d, and ε ∈ (0,∞). Assume setting (10). Consider
T : Θ → L(H) be given by

θ 7→ ι̃θ

((
s 0
0 (ι∗θaιθ)

−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃θ
∗.

Then, T is weakly continuous.

Proof. Before we prove the statement, we observe that there exists c > 0 such that for all
θ ∈ Θ one has

Re s > c1Cn, and Re ι∗θaιθ > c1P (θ).

Hence, by Lemma 2.5, we deduce that
∥∥∥∥∥

((
s 0
0 (ι∗θaιθ)

−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃θ
∗

∥∥∥∥∥ 6
1
c
. (12)

Moreover, it is clear that

sup
θ∈Θ

∥∥∥∥∥

(
0 − divθ ιθ

−ι∗θ gradθ 0

)((
s 0
0 (ι∗θaιθ)

−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃θ
∗

∥∥∥∥∥
<∞.

(13)

For the proof of the statement, we let (θk)k∈N be a convergent sequence in Θ; denote by θ
its limit. Let f ∈ [L2(Y )]n, g ∈ [L2(Y )]n×d and define (uk, qk) := T (θk)(f, g). Then, by (12)
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and (13), we obtain that (uk)k, (qk)k, (divθ ιθqk)k, and (gradθ uk)k are bounded. Without
loss of generality, we may assume that (uk)k and (qk)k converge weakly to some u and q
respectively. Thus, by the definition of uk and qk, we obtain for all k ∈ N that

f = suk − divθk ιθkqk,

ι∗θkaιθkπP (θk)g = qk − ι∗θkaιθkι
∗
θk
gradθk

uk.

By Proposition 3.13, as k → ∞, we obtain that the weak limits of the above equations are

f = su− divθ ιθq,

ι∗θaιθπP (θ)g = q − ι∗θaιθι
∗
θ gradθ u.

These in turn imply that (u, q) = T (θ)(f, g) which identifies the limit and the assertion
follows.

Remark 3.15. With a rationale similar to the one used in [6] and utilising that the em-
bedding H1

θ (Y ) →֒ L2(Y ) is compact, it can be shown that the mapping in Theorem 3.14 is
even continuous in operator-norm.

Proof of Theorem 3.9 – Part 3. It remains to prove assertion (d) of Hypothesis 2.14. This

is true as θ 7→ ιθ
(
M(θ) + 1

ε
A(θ)

)−1
ι∗θ is weakly continuous, see Theorem 3.14, and, therefore,

weakly measurable.

We are now in the position to provide a proof of the main result of this section.

Proof of Theorem 3.1. Let ι̃θ : [L2(Y )]n ⊕ P (θ) →֒ [L2(Y )]n ⊕ [L2(Y )]n×d. Theorem 3.9
implies that the assumptions of Theorem 2.15 hold for the setting (10). Therefore, we
deduce that there exists a κ > 0 such that for all ε > 0, we obtain

∥∥∥
∫ ⊕

Θ

ι̃θ

((
s 0
0 (ι∗θaιθ)

−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃θ
∗dθ

−
∫ ⊕

Θ

ι̃θ

(
πN(θ)

(
s 0
0 (ι∗θaιθ)

−1

)
πN(θ) +

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃θ
∗dθ

∥∥∥

6 κε.

(14)

We shall prove below the homogenisation formulae

ι∗N(θ)

(
s 0
0 (ι∗θaιθ)

−1

)
ιN(θ) =

(
m(s) 0
0 ahom(θ)−1

)
. (15)

Now, clearly the right-hand side of (15) satisfies the assumptions of Theorem 2.4 and we
deduce that

∥∥∥
∫ ⊕

Θ

ι̃θ

((
m(s) 0
0 ahom(θ)−1

)
+

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃∗θdθ

−
∫ ⊕

Θ

ι̃θ

(
πN(θ)

(
s 0
0 (ι∗θaιθ)

−1

)
πN(θ) +

1

ε

(
0 − divθ ιθ

−ι∗θ gradθ 0

))−1

ι̃∗θdθ
∥∥∥

6 κε. (16)
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The above assertions prove the desired result. Indeed, after having applied the unitary
Gelfand transformation, Proposition 3.5 implies the equivalence of problems (4) and (7).
Then, Proposition 3.8 establishes the equivalence between the first and second-order formu-
lations, and finally (14), (16) imply the required asymptotics for the first-order problem.

It remains to prove (15). We use N(θ) = N1(θ) ⊕ N2(θ), see (11). First, we establish
that

πN1(θ)sπN1(θ) = m(s) =

∫

Y

s(y)dy (θ ∈ Θ). (17)

This is a simple calculation:

〈seı〈θ,·〉Cdα, eı〈θ,·〉Cdβ〉 =
∑

i,j∈{1,...,n}

(∫

Y

sij

)
αiβj, (α, β ∈ C

n).

Let us now prove that

ι∗N2(θ)
(ι∗θaιθ)

−1ιN2(θ) = ahom(θ)−1 (θ ∈ Θ), (18)

with Re ahom(θ)−1 > ν‖a‖−21N2(θ).
Fix β ∈ Cn×d. Since eı〈θ,·〉CdCn×d ⊆ P (θ), and ι∗θaιθ : P (θ) → P (θ) is invertible, there

exists γ ∈ Cn×d and Nθγ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n such that

ι∗θaιθ(e
ı〈θ,·〉

Cdγ + gradθNθγ) = eı〈θ,·〉Cdβ. (19)

Next, we compute for all q ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n that

0 = 〈eı〈θ,·〉Cdβ, gradθ q〉 =
〈
ι∗θaιθ(e

ı〈θ,·〉
Cdγ + gradθNθγ), gradθ q

〉

=
〈
a(gradθNθγ + eı〈θ,·〉Cdγ), gradθ q

〉
.

That is, (Nθγk)k∈{1,...,n} =
(∑n

r=1

∑d
s=1N

(rs)
θk γrs

)
k∈{1,...,n}

, where N
(rs)
θ uniquely solves (6).

Furthermore, since eı〈θ,·〉CdCn×d ⊆ P (θ), (19) implies that

〈β, η〉Cn×d = 〈eı〈θ,·〉Cdβ, eı〈θ,·〉Cdη〉 =
〈
ι∗θaιθ(e

ı〈θ,·〉
Cdγ + gradθNθγ), e

ı〈θ,·〉
Cdη

〉

=
〈
a(gradθNθγ + eı〈θ,·〉Cdγ), eı〈θ,·〉Cdη

〉
= 〈ahom(θ)γ, η〉Cn×d, (η ∈ C

n×d). (20)

That is γ =
(
ahom(θ)

)−1
β, where ahom(θ) is given by (5). Hence,

eı〈θ,·〉Cd
(
ahom(θ)

)−1
β = ei〈θ,·〉Cdγ = ι∗N2(θ)e

ı〈θ,·〉
Cdγ

= ι∗N2(θ)
(gradθNθγ + ei〈θ,·〉Cdγ) = ι∗N2(θ)

(ι∗θaιθ)
−1(eı〈θ,·〉Cdβ)

= ι∗N2(θ)
(ι∗θaιθ)

−1ιN2(θ)(e
ı〈θ,·〉

Cdβ),

that is, we have shown (18) holds. The claimed properties of ahom(θ) in the theorem state-
ment are demonstrated in Proposition 4.2 in Section 4.
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In the proof of Theorem 3 we proved the following result about the asymptotic behaviour
of the fluxes.

Proposition 3.16. For F ∈ [L2(Y )]n, let

uε,θ =
(
− ε−2 divθ a gradθ +s

)−1
F,

and
vε,θ =

(
− ε−2 divθ a

hom(θ) gradθ +m(s)
)−1

F.

Then,
‖ε−1πθa gradθ uεθ − ε−1πθa

hom(θ) gradθ vε,θ‖[L2(Y )]n×d 6 κε‖F‖[L2(Y )]n.

Proof. This follows from inequalities (14), (15) and (16) for right-hand side U−1
ε (F, 0)T .

Another implication of Theorem 3.9, which we use in the next section, is the analogue of
Theorem 2.16 that reads as follows.

Theorem 3.17. Let a ∈ M#
n,d, s ∈ S#

n,d. Consider the setting (10) and let ι̃θ : [L2(Y )]n ⊕
P (θ) →֒ [L2(Y )]n ⊕ [L2(Y )]n×d, ι : [L2(Rd)]n →֒ [L2(Rd)]n ⊕ {0} ⊆ [L2(Rd)]n ⊕ [L2(Rd)]n×d.
Then, there exists κ > 0 such that for all ε > 0, one has

∥∥∥
(
− div a

(
·
ε

)
grad+s

(
·
ε

) )−1 − ι∗U∗
ε

∫ ⊕

Θ

ι̃θιN(θ)

(
πN(θ)

[(
m(s) 0
0 ahom(θ)−1

)

+
1

ε

(
0 − divθ ιθ

−ιθ gradθ 0

)]
πN(θ)

)−1

ι∗N(θ) ι̃θ
∗dθUει

∥∥∥ 6 κε.

For completeness, we shall end this section with the well-posedness proof of (6).

Proposition 3.18. Let a ∈ M#
n,d. Then, for all θ ∈ Θ and γ ∈ Cn×d there exists a uniquely

determined Nθγ ∈ [H1
θ (Y )⊥eı〈θ,·〉Cd ]n such that

〈a(gradθNθγ + eı〈θ,·〉Cdγ), gradθ ϕ〉 = 0, (ϕ ∈ [H1
θ (Y )⊥eı〈θ,·〉Cd ]n). (21)

Furthermore, the inequality
‖ gradθNθγ‖ 6

‖a‖
ν
‖γ‖

holds. Here, ν is such that Re a > ν.

Proof. For this note that by Proposition 3.11(b), we have

R2(θ) := {gradθ ϕ;ϕ ∈ [H1
θ (Y )⊥eı〈θ,·〉Cd ]n} ⊆ L2(Y )n×d closed.

We denote, as usual, by ιR2(θ) and πR2(θ) the canonical embedding from R2(θ) and the
orthogonal projection to R2(θ).
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Next, we shall reformulate (21): Nθγ ∈ Hθ := [H1
θ (Y )⊥eı〈θ,·〉Cd ]n satisfies (21), if, and only

if, for all ϕ ∈ Hθ one has

〈a gradθNθγ , gradθ ϕ〉 = 〈−aeı〈θ,·〉Cdγ, gradθ ϕ〉
= 〈−aeı〈θ,·〉Cdγ, πR2(θ) gradθ ϕ〉
= 〈−aeı〈θ,·〉Cdγ, ιR2(θ)ι

∗
R2(θ)

gradθ ϕ〉
= 〈−ι∗R2(θ)

aeı〈θ,·〉Cdγ, ι∗R2(θ)
gradθ ϕ〉.

Next, since

〈a gradθNθγ , gradθ ϕ〉 = 〈aιR2(θ)ι
∗
R2(θ)

gradθNθγ, ιR2(θ)ι
∗
R2(θ)

gradθ ϕ〉
= 〈ι∗R2(θ)aιR2(θ)ι

∗
R2(θ) gradθNθγ, ι

∗
R2(θ) gradθ ϕ〉,

we deduce that (21) is equivalent to stating that

〈ι∗R2(θ)
aιR2(θ)ι

∗
R2(θ)

gradθNθγ, ι
∗
R2(θ)

gradθ ϕ〉 = 〈−ι∗R2(θ)
aeı〈θ,·〉Cdγ, ι∗R2(θ)

gradθ ϕ〉 (ϕ ∈ Hθ),

which, due to the fact that the operator gradθ : Hθ → R2(θ) is a bijection, is equivalent to
stating

ι∗R2(θ)
aιR2(θ)ι

∗
R2(θ)

gradθNθγ = −ι∗R2(θ)
aeı〈θ,·〉Cdγ.

The coerciveness of a implies that ι∗R2(θ)
aιR2(θ) is coercive. Hence,

ι∗R2(θ)
gradθNθγ = −

(
ι∗R2(θ)

aιR2(θ)

)−1
ι∗R2(θ)

aeı〈θ,·〉Cdγ.

The last equation determines gradθNθγ uniquely, and the desired assertion follows by ob-
serving that Nθγ ∈ Hθ and that gradθ : Hθ → R2(θ) is bijective.

To prove the inequality, we note that since Re a > ν1Cn×d then we obtain Re(ι∗θaιθ) >
ν1P (θ). Therefore,

‖(ι∗θaιθ)−1‖ 6 ν−1,

and we calculate

‖ι∗R2(θ)
gradθNθγ‖ 6 ν−1‖ι∗R2(θ)

aeı〈θ,·〉Cdγ‖ 6
‖a‖
ν
‖γ‖.

4 Properties of the fibre-homogenised matrix ahom(θ)

and comparisons to classical results

In the whole section, we adopt the setting (10). In Section 3, we established

U−1
ε

∫ ⊕

Θ

(
− ε−2 divθ a

hom(θ) gradθ +m(s)
)−1

dθUε

to be non-standard leading-order asymptotics in ε > 0, uniform in θ ∈ Θ, for the operator
family

(
(− div a(·/ε) grad+s)−1

)
ε
. This section is devoted to comparing these asymptotics

to the classical ones found in the literature, see Remark 3.2. We end the section with an
example of when Ahom(θ) 6= Ahom(0). The main result of the section is as follows.
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Theorem 4.1. Let a ∈ M#
n,d, s ∈ S#

n,d. Then, there exists a constant κ > 0 such that for all
ε > 0, the inequality

∥∥∥
(
− div a

(
·
ε

)
grad+s

(
·
ε

) )−1 −
(
− div ahom(0) grad+m(s)

)−1
∥∥∥ 6 κε

holds. The constant matrix m(s) ∈ S#
n,d and constant fourth-order tensor ahom(0) ∈ M#

n,d,
are given in Theorem 3.1.

Before proving this result, we introduce some related auxiliary results.

Proposition 4.2. Let θ ∈ Θ, a ∈ M#
n,d and ν > 0 such that Re a > ν1Cn×d . Then, the

following assertions hold:
(a) for all X ∈ C

n×d with NθX :=
∑n

r=1

∑d
s=1N

(rs)
θ Xrs

〈ahom(θ)X,Z〉Cn×d = 〈a(gradθNθX + eı〈θ,·〉CdX), gradθNθZ + eı〈θ,·〉CdZ〉 (X,Z ∈ C
n×d);

(b) for all X ∈ Cn×d

Re〈ahom(θ)X,X〉Cn×d

= inf
N∈[H1

θ
(Y )⊥e

ı〈θ,·〉
Cd ]n

Re〈a(gradθNθ + eı〈θ,·〉CdX), gradθNθ + eı〈θ,·〉CdX〉;

(c) we have
ι∗N2(θ)

(ι∗θaιθ)
−1 ιN2(θ) = ahom(θ)−1;

(d) Re ahom(θ) > ν1Cn×d ;
(e) ‖Re ahom(θ)‖ 6 ‖Re a‖;
(f) ‖ahom(θ)‖ 6

‖a‖2

ν
;

(g) if aijkl ∈ C (i, k ∈ {1, . . . , n}, j, l ∈ {1, . . . , d}), then ahom(θ) = a (θ ∈ Θ).

Proof. To prove (a), we use (20) and observe that

〈a(gradθNθX + eı〈θ,·〉CdX), gradθNθZ〉 = 0

as NθX ∈ [H1
θ (Y )⊥eı〈θ,·〉Cd ]n. Next, the claim in (b) follows from the observation that (6) is

the Euler–Lagrange equation corresponding to the problem of finding the minimiser of the
non-negative functional

[H1
θ (Y )⊥eı〈θ,·〉Cd ]n ∋ N 7→ Re〈a(gradθNθ + eı〈θ,·〉CdX), gradθNθ + eı〈θ,·〉CdX〉.

The assertion (c) is shown in (18). For the proof of (d), we let X ∈ Cn×d and use (a) to
obtain

Re〈ahom(θ)X,X〉Cn×d = Re〈a(gradθNθX + eı〈θ,·〉CdX), gradθNθX + eı〈θ,·〉CdX〉
> ν〈gradθNθX + eı〈θ,·〉CdX, gradθNθX + eı〈θ,·〉CdX〉
= ν(‖ gradθNθX‖2 + ‖X‖2)
> ν‖X‖2,
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where we used Pythagoras’ identity as gradθNθX⊥eı〈θ,·〉CdX .
In order to prove (e), we shall use (b). Indeed, for all X ∈ Cn×d, we obtain

Re〈ahom(θ)X,X〉Cn×d = inf
N∈[H1

θ
(Y )⊥e

ı〈θ,·〉
Cd ]n

Re〈a(gradθNθ + eı〈θ,·〉CdX), gradθNθ + eı〈θ,·〉CdX〉

6 Re〈aeı〈θ,·〉CdX, eı〈θ,·〉CdX〉 6 ‖Re a‖‖X‖2

The proof of (f) uses (c). From the inequality Re a > ν1Cn×d , we infer that Re ι∗θaιθ > ν1Cn×d .
Hence, Re(ι∗θaιθ)

−1 > ν/(‖a‖2)1Cn×d . Thus,

‖ahom(θ)‖ =
∥∥∥
(
ahom(θ)−1

)−1
∥∥∥ 6

‖a‖2

ν
.

The last assertion follows from the observation that a constant a leaves N2(θ) and, hence,
P (θ) invariant. Therefore, we obtain

ahom(θ)−1 = ι∗N2(θ)(ι
∗
θaιθ)

−1ιN2(θ)

= ι∗N2(θ)ι
∗
θιθa

−1ιN2(θ)

= ι∗N2(θ)
ι∗θιθιN2(θ)a

−1

= a−1

Proposition 4.3. There exists κ > 0 such that for all θ ∈ Θ

‖ahom(θ)− ahom(0)‖N2(θ) 6 κ|θ|.

Proof. As N
(rs)
θ solves (6), then Proposition 3.11 (a) and Proposition 3.18 imply that

‖N (rs)
θ ‖[H1(Y )]n 6

(
π−2 + 1

)1/2 ‖a‖
ν
, (θ ∈ Θ, r ∈ {1, . . . , n}, s ∈ {1, . . . , d}). (22)

Using the notation in Proposition 4.2, assertion (20) implies that

〈ahom(θ)X,Z〉N2(θ) = 〈a(gradθNθX + eı〈θ,·〉CdX), eı〈θ,·〉CdZ〉 (X,Z ∈ C
n×d);

This identity yields

〈
(
ahom(θ)− ahom(0)

)
X,Z〉N2(θ) = 〈a(gradθNθX − grad#N0X), e

ı〈θ,·〉
CdZ〉

+ 〈a grad#N0X , (e
ı〈θ,·〉

Cd − 1)Z〉 (X,Z ∈ C
n×d).

Consequently

‖ahom(θ)− ahom(0)‖ 6 ‖a‖‖ gradθNθX − grad#N0X‖+ |θ|‖a grad#N0X‖.

Recalling (22), we observe that to prove the proposition it remains to demonstrate

∃κ > 0 ∀θ ∈ Θ ‖ gradθNθX − grad#N0X‖ 6 κ|θ|‖X‖. (23)
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By (6), one has for NθX =
∑n

r=1

∑d
s=1N

(rs)
θ Xrs that

〈a gradθNθX , gradθ ϕ〉 = −〈aeı〈θ,·〉CdX, gradθ ϕ〉, (ϕ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n),

and

〈a grad#N0X , grad# ϕ0〉 = −〈aX, grad# ϕ0〉, (ϕ0 ∈ [H1
#(Y ) ⊥ 1]n).

Fix ϕ0 ∈ [H1
#(Y ) ⊥ 1]n, and set ÑθX = e−ı〈θ,·〉

CdNθX , ϕ = eı〈θ,·〉Cdϕ0. Clearly ÑθX belongs to

[H1
#(Y )⊥ 1]n and ϕ ∈ [H1

θ (Y )⊥ eı〈θ,·〉Cd ]n. By the identity gradθ e
ı〈θ,·〉

Cd = eı〈θ,·〉Cd (grad# +ıθ),

and the equation for NθX , we calculate that ÑθX solves

〈a grad# ÑθX , grad# ϕ0〉 = −〈a grad# ÑθX , ıθϕ0〉 − 〈a(ıθÑθX +X), (grad# +ıθ)ϕ0〉.

Therefore,
〈a grad#[ÑθX −N0X ], grad# ϕ0〉 = Rθ(ϕ0), (24)

where

Rθ(ϕ0) := −〈a grad# ÑθX , ıθϕ0〉 − 〈aıθÑθX , (grad#+ıθ)ϕ0〉 − 〈aX, ıθϕ0〉.

Utilising (22) and Propostion 3.11 (a) gives

|Rθ(ϕ0)| 6 κ|θ|‖X‖‖ϕ0‖[H1(Y )]n 6 κ(1 + π−2)1/2|θ|‖X‖‖ grad# ϕ0‖[L2(Y )]n×d ,

By setting ϕ0 = ÑθX − N0X , and recalling that Re a > ν1Cn×d gives the inequality (23).
Hence, the proposition is proved.

The last step in proving Theorem 4.1 is contained in the next proposition.

Proposition 4.4. There exists a constant κ > 0 such that, for all θ ∈ Θ, ε > 0, and f ∈ Cn,
fθ := eı〈θ,·〉Cdf with

(
βθ
Mθ

)
:=

((
m(s) 0
0 ahom(θ)−1

)
− 1

ε
ι∗N(θ)

(
0 − divθ ιθ

−ι∗θ gradθ 0

)
ιN(θ)

)−1(
fθ
0

)
,

(
β ′
θ

M ′
θ

)
:=

((
m(s) 0
0 ahom(0)−1

)
− 1

ε
ι∗N(θ)

(
0 − divθ ιθ

−ι∗θ gradθ 0

)
ιN(θ)

)−1(
fθ
0

)

the following inequality
‖βθ − β ′

θ‖ 6 κε‖fθ‖

holds.
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Proof. Fix θ ∈ Θ. Recall that

N(θ) = N1(θ)⊕N2(θ), N1(θ) := eı〈θ,·〉CdCn, and N2(θ) := eı〈θ,·〉CdCn×d.

By direct calculation, it follows that ran(divθ |N2(θ)) ⊆ N1(θ), ran(gradθ |N1(θ)) ⊆ N2(θ) and
that

ι∗N(θ)

(
0 − divθ ιθ

−ι∗θ gradθ 0

)
ιN(θ)

(
eı〈θ,·〉Cdβ
eı〈θ,·〉CdM

)
= −

(
eı〈θ,·〉CdM ıθ
eı〈θ,·〉Cdβ ⊗ ıθ

)
, (β ∈ C

d,M ∈ C
n×d).

Let us now prove the desired assertion. For f ∈ Cn, consider the problem: Find (β,M) ∈
Cn ⊕ Cn×d = N(0) such that

(
m(s) 0
0 ahom(θ)−1

)(
eı〈θ,·〉Cdβ
eı〈θ,·〉CdM

)
− 1

ε

(
eı〈θ,·〉CdM ıθ
eı〈θ,·〉Cdβ ⊗ ıθ

)
=

(
eı〈θ,·〉Cdf

0

)
,

equivalently M = 1
ε
ahom(θ)β ⊗ ıθ, and

ε−2ahom(θ)(β ⊗ θ)θ +m(s)β = f.

By taking the inner product on both sides of the above identity with β, we calculate
(
ε−2ν|θ|2 + ν

)
‖β‖ 6 ‖f‖, (25)

where ν > 0 is such that for all θ ∈ Θ we have Re ahom(θ) > ν1Cn×d, and Rem(s) > ν1Cn ;
note that such ν exists by Proposition 4.2.

Now, let β ′ ∈ Cn solve

ε−2ahom(0)(β ′ ⊗ θ)θ +m(s)β ′ = f.

It follows that

ε−2ahom(0)((β − β ′)⊗ θ)θ +m(s)(β − β ′) = ε−2(ahom(0)− ahom(θ))(β ⊗ θ)θ.

Therefore, arguing as in the derivation of inequality (25) with ahom(0) instead of ahom(θ) and
f = ε−2(ahom(0)− ahom(θ))(β ⊗ θ)θ, we deduce that

(
ε−2ν|θ|2 + ν

)
‖β − β ′‖ 6 ‖ε−2[ahom(0)− ahom(θ)](β ⊗ θ)θ‖

6 ε−2‖ahom(0)− ahom(θ)‖|θ|2‖β‖.
Consequently, by considering Proposition 4.3 and (25) for arbitrary f ∈ Cn again, we deduce
that

‖β − β ′‖ 6 κ ε−2|θ|3

ν2
(
ε−2|θ|2+1

)2‖f‖ 6 Cε‖f‖

for C = κ supt∈R
t3

ν2(1+t2)2
. Hence, Proposition 4.4 holds.

Proof of Theorem 4.1. In Proposition 4.2 we established that ahom(θ) ∈ M#
n,d and that if

a ∈ M#
n,d is constant then ahom(θ) = a for all θ ∈ Θ. Furthermore, if s ∈ S#

n,d is constant
then it clearly follows that m(s) = s. Thus, by utilising Theorem 3.17 twice, once for a and
s, and again for ahom(0) and m(s), we conclude that Theorem 4.1 follows from Proposition
4.4.
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An example of when ahom(θ) 6= ahom(0).

Let us recall the well-known result that if a ∈M#
n,d is self-adjoint and satisfies the assumption

aX ∈ ker(div#) for all X ∈ Cn×d then

ahom(0) = ahom = 〈a〉 :=
∫

Y

a(y)dy.

For the reader’s convenience we shall reprove this result here (for further information see for
example [18, Section 1.6]). The claimed identity can be immediately seen by noting that,

for such an a, problem (6) takes the form: Find N
(rs)
0 ∈ [H1

#(Y ) ⊥ 1]n such that

〈a grad#N (rs)
0 , grad# ϕ〉 = 0, (ϕ ∈ [H1

#(Y ) ⊥ 1]n),

Indeed, this follows from

〈aer ⊗ es, grad# ϕ〉 = −〈div# aer ⊗ es, ϕ〉 = 0, (ϕ ∈ [H1
#(Y ) ⊥ 1]n),

Consequently, N
(rs)
0 = 0 and from (5) we deduce that ahom(0) = 〈a〉.

We shall use this observation to demonstrate that in general ahom(θ) 6= ahom(0) for θ 6= 0.
Indeed, the following result holds.

Proposition 4.5. Assume a ∈ M#
n,d is self-adjoint with aX ∈ ker(div#) for all X ∈ Cn×d.

Then,
ahom(θ) = ahom(0) (θ 6= 0)

if, and only if, a is constant.

Remark 4.6. For the case n = d = 1, then the condition aX = a · X ∈ ker(div#) for
all X ∈ C (i.e. a ∈ ker(div#)) automatically implies that a is constant. In fact, for the
one-dimensional scalar case one does not require the assumption a ∈ ker(div#) to deduce

that ahom(θ) = ahom(0). That is, for any a ∈ M#
1,1, one can show by direct calculation that

ahom(θ) = ahom(0) for all θ ∈ Θ.

Proof of Proposition 4.5. Fix θ ∈ Θ\{0}, X ∈ Cd. Let NθX ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n solve

〈a(gradθNθX + eı〈θ,·〉CdX), gradθ ϕ〉 = 0, (ϕ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n). (26)

Recalling Proposition 4.2 (a) we deduce that

〈ahom(θ)X,X〉Cn×d = 〈a gradθNθX , e
ı〈θ,·〉

CdX〉+ 〈aeı〈θ,·〉CdX, eı〈θ,·〉CdX〉
= 〈a gradθNθX , e

ı〈θ,·〉
CdX〉+ 〈a〉X ·X

= 〈a gradθNθX , e
ı〈θ,·〉

CdX〉+ 〈ahom(0)X,X〉.
(27)

Therefore, the identity ahom(θ) = ahom(0) holds if, and only if, 〈a gradθNθX , e
ı〈θ,·〉

CdX〉 = 0.
Note, from the assumptions a = a∗ and aX ∈ ker(div#) for all X ∈ Cn×d, and the identity

eı〈θ,·〉Cd grad# e
−ı〈θ,·〉

Cd = gradθ +ıθ,
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we deduce that

〈a gradθ ϕ, eı〈θ,·〉CdX〉 = −〈aıθϕ, eı〈θ,·〉CdX〉, (ϕ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n). (28)

Then, from the above assertion it follows that

〈a gradθNθX , e
ı〈θ,·〉

CdX〉 = −〈aıθNθX , e
ı〈θ,·〉

CdX〉.

If we assume a is constant, then the term on the right-hand side of the above equation
vanishes because NθX ⊥ eı〈θ,·〉CdCd. Therefore, ahom(θ) = ahom(0).

Let us assume that ahom(θ) = ahom(0). We shall now prove that a must necessarily be
constant. By (27) it follows that

〈a gradθNθX , e
ı〈θ,·〉

CdX〉 = 0. (29)

Equation (29), the fact a∗ = a and setting ϕ = NθX in (26), gives

〈a gradθNθX , gradθNθX〉 = 0.

That is, NθX = 0 and (26) takes the form

〈aeı〈θ,·〉CdX, gradθ ϕ〉 = 0, (ϕ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n).

This in turn, combined with (28) and the fact a = a∗ implies that

〈aeı〈θ,·〉CdX, ıθϕ〉 = 0, (ϕ ∈ [H1
θ (Y ) ⊥ eı〈θ,·〉Cd ]n).

That is,
aeı〈θ,·〉CdX ıθ ∈ eı〈θ,·〉CdCd

which can only be true if a is constant.

Example 4.7. We give a small concrete example that the set of a satisfying the conditions
imposed in Proposition 4.5 is non-trivial. For this, let n = 1, d = 2. Take ϕ, ψ ∈ C∞

c (0, 1;R)
with ϕ, ψ > 0. Then define

b : Y ∋ (y1, y2) 7→
(
ϕ(y2) 0
0 ψ(y1)

)
.

As the entries of b are non-negative, a := b+ 1C3 ∈ M#
1,2. Moreover, a = a∗. The divergence

condition, that is both of the columns of a are in the kernel of div#, is easy to see.
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5 Application of fibre homogenisation to equations of

Maxwell type

In this section, we shall demonstrate the utility of our approach in the context of Maxwell’s
equations. That is to say, we shall treat the following static variant of Maxwell’s equations:

((
ε
(
·
η

)
0

0 µ
(
·
η

)
)
+

(
0 − curl

curl 0

))(
Eη

Hη

)
=

(
J
0

)
on R

3.

For consistency with notation in the literature, where ε is often reserved for the dielectric
permittivity, we denote η ∈ (0,∞) to be the parameter. Here, J , ε, µ are given and the
unknowns Eη, and Hη are the electric and magnetic fields respectively. A system of the type
may occur, for example, when considering the resolvent problem for the Maxwell system in
the frequency domain at a fixed frequency. The operator curl is acting as

curl(Ej)j∈{1,2,3} :=



∂2E3 − ∂3E2

∂3E1 − ∂1E3

∂1E2 − ∂2E1




realised as an operator in [L2(R3)]3. Note that curl, thus defined, is selfadjoint.
Henceforth, we consider ε, µ ∈ M#

1,3, that is we assume that

ε, µ ∈ L∞(R3;L(C3))

are Y -periodic and satisfy Re ε(x),Reµ(x) > ν for some ν > 0 and a.e. x ∈ R3. As the
operator curl is selfadjoint, then by Lemma 2.5, we deduce that for a given J ∈ [L2(R3)]3

there exists a unique pair (Eη, Hη) ∈ [dom(curlθ)]
2 to the above Maxwell system. The rest

of the section focuses on describing the small η behaviour of this solution via the approach
described in Section 2.

Let Uη be the Gelfand transform introduced in Section 3, Definition 3.3. The following
result states that Uη interacts with curl in a similar way to its interaction with grad and div.

Proposition 5.1. For all η > 0, we have

Uη curlU−1
η =

∫ ⊕

[−π,π)3

1
η
curlθ dθ,

where curlθ := curl |[H1
θ
(Y )]3 with the closure performed as an operation within [L2(Y )]3.

As the proof of this fact is analogous to the proof of Proposition 3.5 it is omitted.
The anticipated homogenisation theorem we deduce as a consequence of following our

general abstract procedure reads as follows:
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Theorem 5.2. Let ε, µ ∈ M#
1,3. Then, there exists κ > 0 such that for all η > 0 we have

∥∥∥∥∥

((
ε
(
·
η

)
0

0 µ
(
·
η

)
)
+

(
0 − curl

curl 0

))−1

−

U−1
η

∫ ⊕

[−π,π)3

((
πn(θ)επn(θ) 0

0 πn(θ)µπn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1

dθUη

∥∥∥∥∥ 6 κη,

where
n(θ) = eı〈θ,·〉C3C3 ⊕ {gradθ p; p ∈ H1

θ (Y )⊥eı〈θ,·〉C3}.
Unlike in the case of second-order elliptic systems with rapidly oscillating coefficients

presented in Section 3, in general the object πn(θ)aπn(θ), a ∈ M#
1,3, cannot be expressed as

the fibre-homogenised matrix given in Section 4. Such a comparison in the Maxwell setting
only occurs for a particular choice of right-hand side. Namely, the following result holds.

Theorem 5.3. Let η > 0, ε, µ ∈ M#
1,3, F ∈ ker(div). Then

U−1
η

∫ ⊕

[−π,π)3

((
πn(θ)επn(θ) 0

0 πn(θ)µπn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1

dθUη

(
F
0

)

= U−1
η

∫ ⊕

[−π,π)3

((
εhom(θ)πn(θ) 0

0 µhom(θ)πn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1

dθUη

(
F
0

)
.

In particular, from these two results, and the fact that M̃(θ) =

(
εhom(θ) 0

0 µhom(θ)

)

satisfies the assumptions of Theorem 2.4, we deduce the following result.

Corollary 5.4. Assume ε, µ ∈ M#
1,3 and F ∈ ker(div). Then, there exists κ > 0 such that

for all η > 0 we have
∥∥∥∥∥

((
ε
(
·
η

)
0

0 µ
(
·
η

)
)
+

(
0 − curl

curl 0

))−1(
F
0

)
−

U−1
η

∫ ⊕

[−π,π)3

((
εhom(θ) 0

0 µhom(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1

dθUη

(
F
0

)∥∥∥∥∥ 6 κη‖F‖.

Remark 5.5. In fact, Theorem 5.3 holds if F ∈ [L2(R3)]3 is such that, for each θ ∈ Θ,
UηF (θ, ·) is an element of {gradθ p; p ∈ H1

θ (Y )⊥eı〈θ,·〉C3}⊥. This is a consequence of Lemma
5.14 below. It is clear that ker(div) is a strict subset of such fields.

The next few paragraphs focus on a proof of Theorem 5.2. For this we will be applying
Theorem 2.15, to the following setting

H = Hθ = [L2(Y )]6, N(θ) = [n(θ)]2 = [eı〈θ,·〉C3C3 ⊕ {gradθ p; p ∈ H1
θ (Y )⊥eı〈θ,·〉C3}]2,

A(θ) =

(
0 − curlθ

curlθ 0

)
, M(θ) =

(
ε 0
0 µ

)
, Θ := [−π, π)3.

(30)
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Before we prove that Hypothesis 2.14 holds in this setting, let us study more closely the
operator curlθ. For this we introduce the following transformation.

Definition 5.6. Let θ ∈ Θ. We define

Vθ : L
2(Y ) → ℓ2(Z3), u 7→

(
〈u, eı〈θ+2πz,·〉

C3〉
)
z∈Z3 .

Note that Vθ is unitary with

V−1
θ

(
c(z)

)
z∈Z3 =

∑

z∈Z3

c(z)eı〈θ+2πz,·〉
C3 ,

and the sum being convergent in L2(Y ).
In the following, we will employ the slight abuse of notation and reuse Vθ to denote the

corresponding unitary operator from [L2(Y )]3 to [ℓ2(Z3)]3, which acts component-wise as in
the previous definition.

Lemma 5.7. Let θ ∈ Θ. Then

Vθ curlθ V−1
θ

(
c(z)

)
z
=

(
ı(θ + 2πz)× c(z)

)
z
.

In particular, curlθ = curl∗θ.

Proof. The unitary equivalence follows by direct computation. The fact curlθ is selfadjoint
now follows from the fact that the multiplication operator

(
c(z)

)
z
7→

(
(θ + 2πz)× c(z)

)
z

is skew-selfadjoint.

We now gather several relevant auxiliary results. For θ ∈ Θ, recall

n(θ) = eı〈θ,·〉C3C3 ⊕ {gradθ p; p ∈ H1
θ (Y )⊥eı〈θ,·〉C3},

and set
n1(θ) := eı〈θ,·〉C3C3, r(θ) := n(θ)⊥[L2(Y )]3 .

As usual, let ιn(θ), ιr(θ) be the canonical embeddings and πn(θ), πr(θ) the orthogonal projections.

Lemma 5.8. Let θ ∈ Θ, u =
∑

z∈Z3 c(z)eı〈θ+2πz,·〉
C3 ∈ [L2(Y )]3. Then

u ∈ r(θ) ⇐⇒ c(0) = 0 & ∀z ∈ Z
3 : c(z)⊥(θ + 2πz).
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Proof. Let u ∈ r(θ). Then, clearly c(0) = 0. Moreover, we compute for z ∈ Z
3 \ {0}:

〈c(z),−ı(θ + 2πz)〉 =
3∑

j=1

〈c(z)j ,−ı(θ + 2πz)j〉

=
3∑

j=1

〈〈uj, eı〈θ+2πz,·〉
C3〉,−ı(θ + 2πz)j〉

= 〈u, ı(θ + 2πz)eı〈θ+2πz,·〉
C3〉

= 〈u, gradθ eı〈θ+2πz,·〉
C3〉

= 0.

On the other hand, assume that the Fourier coefficients satisfy the properties mentioned on
the right-hand side of the claimed equivalence. Then c(0) = 0 implies 〈u, eı〈θ,·〉C3γ〉 = 0 for all

γ ∈ C
3. Next, let p ∈ H1

θ (Y )⊥eı〈θ,·〉C3C3. From the identity p =
∑

z∈Z3\{0} c
(z)
p eı〈θ+2πz,·〉

C3 ∈
H1

θ (Y )⊥eı〈θ,·〉C3 we deduce that

〈u, gradθ p〉[L2(Y )]3 = 〈u, gradθ
∑

z∈Z3\{0}

c(z)p eı〈θ+2πz,·〉
C3〉

= 〈u,
∑

z∈Z3\{0}

ı(θ + 2πz)c(z)p eı〈θ+2πz,·〉
C3 〉

=
∑

z∈Z3\{0}

〈c(z), ı(θ + 2πz)〉c(z)p

= 0,

which establishes the claim.

Proposition 5.9. Let θ ∈ Θ. Then

curlθ πn(θ) = ıθ × πn1(θ).

Moreover, we have
πn(θ) curlθ ⊆ curlθ πn(θ).

Proof. Let u ∈ [L2(Y )]3. Then

u = πn(θ)u+ πr(θ)u = eı〈θ,·〉C3γ + gradθ p+ πr(θ)u,

for some γ ∈ C3 and p ∈ H1
θ (Y )⊥eı〈θ,·〉C3 . Since ran(gradθ) ⊆ ker(curlθ), we obtain that

πn(θ)u ∈ dom(curlθ). Moreover, we compute

curlθ πn(θ)u = curlθ
(
eı〈θ,·〉C3γ + gradθ p

)
= ıθ × eı〈θ,·〉C3γ = ıθ × πn1(θ)u.

This shows the first desired assertion.
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Next, assume in addition that u ∈ dom(curlθ). Then, πr(θ)u ∈ dom(curlθ) and

curlθ u = ıθ × πn1(θ)u+ curlθ πr(θ)u = ıθ × eı〈θ,·〉C3γ + curlθ πr(θ)u.

From ıθ × eı〈θ,·〉C3γ ∈ n1(θ) ⊆ n(θ), we infer that

πr(θ) curlθ u = πr(θ) curlθ πr(θ)u.

Lemma 5.7 implies that there exists some (c(z))z∈Z3 in C3 such that

curlθ πr(θ)u =
∑

z∈Z3\{0}

ı(θ + 2πz)× c(z)eı〈ı(θ+2πz),·〉
C3 .

Furthermore, since 〈(θ + 2πz), ı(θ + 2πz) × c(z)〉 = 0, it follows from Lemma 5.8 that
curlθ πr(θ)u ∈ r(θ). Hence,

πr(θ) curlθ u = πr(θ) curlθ πr(θ)u = curlθ πr(θ)u,

which together with Lemma 2.7, for H = [L2(Y )]3, A = curlθ and U = r(θ), yields the second
desired assertion.

Proposition 5.10. Let θ ∈ Θ, u ∈ dom(curlθ) ∩ r(θ). Then

‖u‖ 6
1
π
‖ curlθ u‖.

Proof. There exists (c(z))z∈Z3 in C3 with u =
∑

z∈Z3 c(z)eı〈θ+2πz,·〉
C3 . By Lemma 5.8, we have

that c(0) = 0 and c(z)⊥θ + 2πz for all z ∈ Z3. In particular, we get

‖(θ + 2πz)× c(z)‖ = ‖(θ + 2πz)‖‖c(z)‖ > π‖c(z)‖ (z ∈ Z
3 \ {0}).

Thus, by Lemma 5.7,

‖ curlθ u‖2 =
∥∥∥

∑

z∈Z3\{0}

ı(θ + 2πz)× c(z)eı〈θ+2πz,·〉
C3

∥∥∥
2

=
∑

z∈Z3\{0}

∥∥ı(θ + 2πz)× c(z)eı〈θ+2πz,·〉
C3
∥∥2

=
∑

z∈Z3\{0}

∥∥(θ + 2πz)× c(z)
∥∥2

> π2
∑

z∈Z3\{0}

∥∥c(z)
∥∥2

= π2‖u‖2.

In the setting (30), with the Propositions 3.7 (b), 5.9 and 5.10, we can readily demonstrate
Hypothesis 2.14 (a)-(c) for the setting (30). In particular, the assumptions of Theorem 2.2
hold. To argue as in the proof of Theorem 3.1 and obtain a proof for Theorem 5.2, it remains
to prove Hypothesis (d).
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Proposition 5.11. Let (θk)k∈N be a convergent sequence in Θ, θ := limk→∞ θk. Let (uk)k∈N
in dom(curlθk) ⊆ [L2(Y )]3 weakly converge to some limit u. Assume that (curlθk uk)k∈N is
bounded. Then u ∈ dom(curlθ) and

curlθk uk ⇀ curlθ u.

Proof. Recalling Definition 5.6, we have

uk = V−1
θk

(
c
(z)
k

)
z∈Z3 =

∑

z∈Z3

c
(z)
k eı〈θk+2πz,·〉

C3 , u = V−1
θ

(
c(z)

)
z∈Z3 =

∑

z∈Z3

c(z)eı〈θ+2πz,·〉
C3 ,

for
(
c
(z)
k

)
z∈Z3 =

(
〈uk, eı〈θk+2πz,·〉

C3〉
)
z∈Z3 ,

(
c(z)

)
z∈Z3 =

(
〈u, eı〈θ+2πz,·〉

C3〉
)
z∈Z3 ∈ ℓ2(Z3). Lemma

5.7 states that
Vθk curlθk uk =

∑

z∈Z3

ı(θk + 2πz)× c
(z)
k eı〈θk+2πz,·〉

C3 .

Passing to the point-wise limit above, we determine that

Vθk curlθk uk →
∑

z∈Z3

ı(θ + 2πz)× c(z)eı〈θ+2πz,·〉
C3 ,

as k → ∞. This, plus the assumption that (curlθk uk)k∈N is bounded, implies the desired
assertion.

Proposition 5.12. Let ε, µ ∈ M#
1,3, and η > 0. Assume setting (30). Let T : Θ →

L([L2(Y )]6) be given by

θ 7→
((

ε 0
0 µ

)
+

1

η

(
0 − curlθ

curlθ 0

))−1

.

Then, T is weakly continuous.

Proof. Let (θk)k∈N be convergent in Θ to some limit θ. We need to prove that for f ∈ [L2(Y )]6,
then the sequence (T (θk)f)k∈N is weakly convergent in [L2(Y )]6 to the limit T (θ)f .

By Lemma 2.5,
sup
θ∈Θ

‖T (θ)‖ 6
1
ν
,

where ν > 0 is such that Re ε > ν1C3 , Reµ > ν1C3 . Therefore, (T (θk)f)k∈N weakly converges,
up to a subsequence, to some u. Moreover,

sup
k∈N

∥∥∥
(

0 − curlθ
curlθ 0

)
T (θk)f

∥∥∥ <∞,

and therefore, by Proposition 5.11, we deduce that u = T (θ)f . Since u is unique, the whole
sequence (T (θk)f)k∈N weakly converges and the proof is established.
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The proof of Hypothesis 2.14 (d) now follows from Proposition 5.12, as T is weakly
continuous and therefore weakly measurable.

We conclude this section by proving Theorem 5.3. This result is a consequence of the
following proposition and the assertion Uη div =

∫ ⊕

Θ
divθ dθUη:

Proposition 5.13. Let η > 0, ε, µ ∈ M#
1,3, f ∈ ker(divθ). Then

((
πn(θ)επn(θ) 0

0 πn(θ)µπn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1(
f
0

)

=

((
εhom(θ)πn(θ) 0

0 µhom(θ)πn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))−1(
f
0

)
.

For the proof of this proposition, we will utilise the following result.

Proposition 5.14. Let θ ∈ Θ, ε ∈ M#
1,3, E ∈ n(θ) and f ∈ n1(θ)⊕ r(θ). Then

πn(θ)εE = f ⇐⇒ εhom(θ)E = f.

Proof. Let n2(θ) := n(θ)⊖ n1(θ) = {gradθ p; p ∈ H1
θ (Y )⊥eı〈θ,·〉C3}. Assume that πn(θ)εE = f .

Then, for all ϕ ∈ n2(θ) we deduce that

〈πn(θ)εE, ϕ〉 = 〈f, ϕ〉 = 0.

Hence, as πn(θ)ϕ = ϕ for all ϕ ∈ n2(θ) we obtain

〈εE, ϕ〉 = 0 (ϕ ∈ n2(θ)).

Moreover, projecting on r(θ) reveals that

πr(θ)f = πr(θ)πn(θ)εE = 0.

Thus, f = πn1(θ)f and so
〈εE, ϕ〉 = 〈f, ϕ〉 (ϕ ∈ n(θ)),

which readily gives
εhom(θ)E = f.

The other implication is similar.

Proof of Proposition 5.13. Let (E,H) ∈ [dom(curlθ)]
2 be such that

((
πn(θ)επn(θ) 0

0 πn(θ)µπn(θ)

)
+

1

η

(
0 − curlθ

curlθ 0

))(
E
H

)
=

(
f
0

)
.

Equivalently,

πn(θ)επn(θ)E − 1
η
curlθH = f, πn(θ)µπn(θ)H + 1

η
curlθ E = 0.
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Let us focus on the first equation. One implication of this equations is that curlθH ∈
n1(θ)⊕ r(θ). Thus, for f̃ := f + 1

η
curlθH and Ẽ := πn(θ)E, we have

πn(θ)εẼ = f̃ ∈ n1(θ)⊕ r(θ),

and Proposition 5.14 implies
εhom(θ)Ẽ = f̃ .

The argument for the second equation is completely analogous. Thus, the desired assertion
holds.

The proof of Theorem 5.3 now follows by applying Proposition 5.13 pointwise for any
θ ∈ Θ.
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