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Abstract

Datasets with missing values can adversely affect the accuracy of any subsequent

decision making, for instance in condition- and performance-monitoring for en-

ergy efficient operations of ship systems. Missing data imputation is therefore,

a necessary step as it ensures that the data can reach their full knowledge-

extracting potential. This paper aims at developing a novel hybrid imputa-

tion method, which can be employed to condition data acquired from marine

machinery systems, thus increasing the quality of the original dataset and im-

proving the decision making for ship efficient operations. The paper includes

of all necessary imputation preparatory steps and further post-imputation pro-

cesses. The developed method employs a hybrid k-NN and MICE imputation

algorithm which combines data mining with first-principle knowledge. The pro-

posed hybrid approach is compared with the individual performance of k-NN

and MICE algorithms and is implemented in a dataset acquired from the main

engine system of an oceangoing vessel. It is shown that the hybrid approach

performs best, exhibiting an average error of 2.2% compared to the k-NN and

MICE algorithms with errors 5.6% and 3.3%, respectively, highlighting that the

small error of the proposed novel method improves the quality of data used in
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condition- and performance-monitoring.

Keywords: marine machinery, energy efficiency, data mining, data analytics,

missing data, imputation

1. Introduction

Shipping is undoubtedly one of the major driving forces of the global econ-

omy, as demonstrated by the yearly volume and value of the seaborne trade

(UNCTAD, 2017). Well maintained ships exhibit higher reliability, energy effi-

ciency, profitability and safety. Modern condition- and performance monitoring5

methods, based on both probabilistic and machine learning models (Mobley

et al., 2008; Kobbacy, 2008; Dikis et al., 2014; Beşikçi et al., 2016; Meng et al.,

2016; Lazakis et al., 2016, 2018a; Raptodimos and Lazakis, 2018; Lazakis et al.,

2018b), can help minimise ship machinery failures and promote energy efficient

operation of marine systems (Lazakis and Ölçer, 2014; Trodden et al., 2015;10

Lepistö et al., 2016).

The accuracy of any ship condition- and performance monitoring model de-

pends heavily, among other things, on the availability and quality of its input

data (Dikis, 2017; Mohanty, 2015). Improving the quality of a dataset, prior to

its use in a condition monitoring model, is a very important task, which includes15

treating the missing values (Kotsiantis et al., 2006; Tan et al., 2006; Interna-

tional Organization for Standardization, 2008; Han et al., 2012; Mohammed and

Wagner, 2014; Bokde et al., 2018). Missing values befall in most data-driven

research efforts and applications and involve the loss of relevant information.

If they are not dealt with in a case-appropriate manner, they can reduce the20

power of models, skew results, and lead to inefficient machinery operations. As

discussed by Banko and Brill (2001); Domingos (2012), reducing the number of

missing values has a positive effect on the accuracy of any following models (e.g.

decision making for energy efficiency).

In the maritime industry, there is a lack of a formalised approach for handling25

missing data (imputation), despite the increasing popularity of modern data
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analytics (Pampaka et al., 2016). This is a concerning phenomenon, as datasets

from marine machinery systems tend to contain from 4.4% to 26% missing

values, depending on each case (Tsitsilonis and Theotokatos, 2018; Lazakis et al.,

2018a). Also, the need for an imputation approach is becoming more prominent30

when considering the increased use of Machine Learning (ML) algorithms for

maritime condition monitoring and other purposes. The need for the above

can be seen from analogous efforts in other industries, including the offshore

wind industry as proposed by Martinez-Luengo et al. (2019). In the maritime

industry, a formalised and accurate approach for the imputation of missing data35

that includes all necessary imputation preparatory steps and any further post-

imputation processes has not yet been suggested.

To tackle the previously mentioned gaps, the novelty of this study lies within

the proposal of a new hybrid imputation method that combines data-driven so-

lutions with valuable First Principles (FP) domain knowledge, applicable to40

the efficient operations of marine machinery. This approach is shown to yield

more accurate results compared to traditional, application-agnostic, imputation

methods, as it will be shown in the following sections of the paper. More-

over, alongside the hybrid imputation method, all the needed pre-imputation

and post-imputation steps are covered. While this study is demonstrated on a45

marine main engine, it can be adapted to deal with any other physical system.

In the following paragraphs, section 2 provides the relative background, sec-

tion 3 presents the proposed methodology, section 4 demonstrates the results

of the methodology through a case-study of a marine main engine and finally

section 5 shows the conclusions drawn.50

2. Background

2.1. Peculiarities of shipping DAQ and data analysis

Advanced data analytics and ML tools have, so far, only limited applicability

in the maritime industry due to the lack of reliable and complete datasets. This

becomes even more prominent when considering methodologies for data pre-55
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processing and the imputation of missing data from marine machinery condition-

and performance monitoring. Any attempts for formalised data analysis in the

maritime industry, and especially for condition- and performance monitoring

purposes should take into consideration the plethora of different sensors from

different manufacturers, the fragile connection links, different sensor sampling60

rates, the frequent sensor malfunctions, and the inherent synchronisation issues.

Also, the engineering interconnection of the different measured systems may be

incorporated. The literature for data imputation in the maritime industry is

very limited and covers very few of its facets. For example, Claramunt et al.

(2017) proposed a methodology, which includes missing data handling, for the65

purpose of maritime traffic management under the scope of safety and security.

Other maritime oriented studies that include missing data can be found in

Dobrkovic et al. (2018); Fruth and Teuteberg (2017); Iphar et al. (2015) studies

that deal with maritime barge logistics prediction, maritime logistics in general

and the Automated Identification System (AIS) respectively. It is becoming70

evident that there is very little work that provides the steps required for a

complete imputation methodology. Regarding the pre-processing of data from

marine machinery systems, the available literature is also limited. Currently,

the existing knowledge is limited to Original Equipment Manufacturer (OEM)

manuals, academic publications and industrial empirical knowledge.75

2.2. Imputation importance

Handling missing data is a very important part of data pre-processing as

many ML tools used in condition monitoring are restrictive to missing data.

More specifically, when unsupervised ML tools are used (e.g. clustering analysis)

in datasets with missing values, the models’ performance is adversely affected,80

as clustering algorithms do not have an internal way to manage missing data.

In such cases, most clustering algorithms will produce incomplete, and therefore

misguiding, results as instances with missing values will not get assigned into

clusters. This will reduce the accuracy of the clustering analysis as the infor-

mation in instance with missing data will be discarded and lost. Alternatively,85
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the clustering algorithms will simply fail when presented with missing values.

Similarly, supervised learning algorithms (e.g. regression, classification) are

adversely affected by missing data. For example, missing values in regression

analysis can result in poorly fitted models. Also, in most supervised learning

algorithms (e.g. classification) missing data can reduce the size of the training90

data and consequently hinder the models’ predictive power. This becomes even

more crucial during the deployment of supervised algorithms, as points with

missing features cannot be used as input. The issue of missing data is amplified

especially when data are limited.

In the maritime industry, and especially in the field of marine predictive95

maintenance, missing data can lead to inaccurate maintenance scheduling which

can cause machinery failures, accidents and risk harm to human life and the en-

vironment. There are many reasons that many lead in missing values, especially

in shipboard systems. Such factors can include the loss of calibration due to

external influences, the loss of sensor connectivity and the inherent difficulty to100

replace failed sensors. In the context of ship operations, planning, and main-

tenance missing data can occur in datasets representing equipment condition,

process or performance monitoring. Missing data can also be present in voyage

related datasets which can include environmental information and general ship

information (e.g. speed, propeller slip, currents speed, etc.).105

2.3. Missingness mechanisms

In the maritime industry, there are many factors that can make identify-

ing the missing mechanisms of data challenging. External and environmental

disturbances and the inherent sensitivity of marine Data Acquisition (DAQ)

systems can result in missing data with hybrid missing mechanisms (e.g both110

Missing Completely At Random (MCAR) and Missing At Random (MAR)).

Nonetheless, understanding the underlying causes of missing data is an impor-

tant step in data imputation, as it dictates the way the missing data can be

handled. Little and Rubin (2002) specifies three mechanisms that affect how

data are missing. The reader is also refered to (Rubin, 1976; Taylor and Rubin,115
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1996; Schafer, 1997).

The MCAR mechanism refers to cases where the missingness is independent

of the data. In that case, there is no correlation between the missing data and

the variables in the dataset, as the missingness is completely unsystematic. For

example, in the maritime domain, a random failure of the fuel flowmeter will120

lead to data that are MCAR.

MAR is when missing data are related to other observations. In other words,

the missingness is conditional on another variable. Even though MCAR and

MAR seem similar, they should not be used interchangeably as the key difference

lies in the condition of the missingness. For instance, if a Main Engine (M/E) is125

not operational, data from dependant systems may not be recorded, for example,

the turbocharger’s speed or the Exhaust Gas (EG) temperature.

Missing Not At Random (MNAR) refers to cases where the missingness of

an observation depends only on the variable with the missing data; that is, the

missingness is conditional to itself. This is inherently a very difficult mechanism130

to identify. For example, MNAR could result when missing data originate from

a M/E that is known to be malfunctioning at the time of the recording.

2.4. Missing data handling methodologies

Understanding the cause of missing data can dictate the strategy that is used

to impute them. Nonetheless, attributing all missing data in a dataset to a single135

missing data mechanism is a difficult task, as missing data do not only conform

to one missing mechanism. Generally, there are two broad missing data man-

agement methodologies. The simplest methodology includes techniques that

discard the missing data. These techniques are simple to implement and they

allow for a hastened initiation of the analysis. Such techniques, reduce the size140

of the dataset which reduces the computational requirements, but can also affect

the models’ accuracy.

Data retention methodologies have also been developed as an alternative

to avoid deleting data points and reducing the number of observations. There

are many different data retention techniques which range from very simple to145
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rather complex, all of which replace the missing values with an estimate. In data

science terminology all these approaches fall under the imputation umbrella.

2.5. Imputation techniques

Selecting the appropriate imputation technique is an important decision that

has to be made prior to the initiation of the analysis. In theory, the choice of150

the technique depends on the missing mechanism. Since most missing data do

not conform to only one missing mechanism, the selection of the best fitting

technique can be case-specific. Lately, it is becoming more common to use

hybrid approaches for the best predicting accuracy (Li et al., 2015), which will

be presented, among other things, in the following section.155

2.5.1. Complete-case and available-case analysis

Complete-case analysis is one of the simplest and easiest to use techniques,

which is applied in cases of limited missing values and it is usually employed

in purely MCAR data (Pigott, 2003). In complete-case analysis, instances with

missing data are excluded from the analysis; this is also known as listwise dele-160

tion. Listwise deletion reduces the statistical power of the model and can skew

the results significantly as shown in Marsh (1998); Wothke (2000); Graham

(2009).

Available-case analysis, or pairwise deletion, is an imputation technique

based on the erasure of missing instances. It is an approach which is easy165

to use but, has decreasing popularity. In pairwise deletion, only the missing

values are removed and not the entire instance. Pairwise deletion changes the

sample size of each variable and thus makes comparison difficult; it also skews

the results and reduces the efficiency of the model, as presented by Kim and

Curry (1997); Myers (2011). Figure 1 summarises the difference between the170

two methods. This approach is incompatible with most ML algorithms as these

require the same number of instances for all the variables.

Listwise and pairwise deletion are both valid techniques for managing miss-

ing data in many different applications. However, listwise and pairwise deletion
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Figure 1: Visual representation of listwise and pairwise deletion. Missing values are depicted

using the symbol –, and the × symbol represents observations to be deleted.

should not be used for machinery performance and condition data. In fact,175

listwise and pairwise deletion should not be used in the following situations. In

multivariate datasets with synchronised sampling, pairwise deletion may cause

synchronisation issues. For instance, in the case of examining the synchronised

measurements from a motor coupled to a pump, applying pairwise deletion will

cause the data synchronisation to be lost, as each instance of measurements for180

the two pieces of equipment should correspond to the same time-stamp. Also,

listwise and pairwise deletion should not be used in datasets representing sys-

tems with different operational profiles. Both listwise and pairwise deletion will

create an artificial operating profile. For example, removing data samples from

a vector containing the power of the main engine will create an operating profile185

which is not representative of the M/E operating profile.

2.5.2. Vertical imputation

Vertical imputation is a group of easy deterministic techniques that use in-

formation from the same column as the one of the missing value (Pigott, 2003).

One common deterministic strategy is to carry forward the last value. In that190

way, the last known value before a missing point is carried forward to replace

it. Another approach is to impute using the mean of the observed values. This

approach can be useful when it is used to impute isolated points in uncorrelated

variables (e.g lubricating oil pressure of a turbocharger). Vertical imputation

can also use other descriptive metrics such as the median and the mode. In195

general, vertical imputation is not suitable for successive missing points as it ar-
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tificially increases the observations’ frequency, underestimates the variability of

the results and biases the results (Donders et al., 2006; Pigott, 2003). However,

McKnight et al. (2007) states that vertical imputation is an intuitive method

that can perform well if combined with other, more sophisticated, approaches.200

2.5.3. Horizontal imputation

An alternative to vertical imputation is to impute the missing values with

ones from similar parameters, or by using other logical rules. This is commonly

known as horizontal imputation as information from the same record is used.

Under the scope of the maritime sector, this approach could be used to treat205

missing values between two identical pieces of machinery (e.g. pumps). The main

drawback of this approach is that there may not be two similar parameters in

the available dataset, therefore this approach is not always viable (Longford,

2005; Gibert, 2014).

2.5.4. Hot-deck imputation210

Hot-deck imputation is an approach that is based on the similarity of a miss-

ing instance with a complete one, as initially suggested by Ford (1983); Rizvi

(1983); Roth (1994). Hot-deck imputation is more complicated compared with

complete-case, available-case and vertical imputation. This approach matches

donors (i.e., instances with observed values) with recipients (i.e., instances with215

missing values). A pool of possible donors is formed based on the similarity

between the recipient and the complete instances. The similarity is quantified

using a variety of different metrics, including the Euclidean distance, Manhattan

distance, Mahalanobis distance and maximum deviation. Figure 2 demonstrates

the working principle of hot-deck imputation. Depending on the donor selec-220

tion, hot-deck can be considered both deterministic and stochastic, (Andridge

and Little, 2010; Myers, 2011). Deterministic hot-deck imputation is a non-

probabilistic approach. A single donor is selected from the donor pool based on

the similarity criteria previously discussed. Alternatively, the imputation can

be facilitated by using a summary value (mean, median, and mode) from the225
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donor pool. Stochastic hot-deck imputation is a probabilistic approach. From

the donor pool, a single donor is selected at random and its value is parsed on

the missing instance. The benefit of stochastic imputation is that it accounts for

uncertainty in a more realistic way. The most common implementation of hot-

deck is through the use of k-Nearest Neighbours (k-NN) (Batista and Monard,230

2002), further discussed in section 3.

Figure 2: Visual representation of hot deck imputation, applied to a Z-dimensional dataset.

The main benefit of hot-deck imputation is that it does not rely on param-

eter specific models, hence the imputation is not influenced by any parameter

selection. Also, as the imputation is based on actual values the dataset is not

completed by artificial ones. However, even though hot-deck is suitable for dif-235

ferent missing mechanisms (MCAR, MAR, MNAR) when it is used in single

imputation, it fails to account for the uncertainty in an efficient way. More so,

there is no explicit mathematical model behind the hot-deck methodology.

2.5.5. Regression-based imputation

Fitting a regression model to appropriate instances with recorded values is240

another widely used imputation method. Regression-based imputation is more

complicated compared with complete-case, available-case and vertical imputa-

tion. A regression model is fitted between the target variable (i.e. variable with

missing data) and the selected independent variables. The regression model can
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be linear, polynomial, or of another type, depending on the dataset. The re-245

sulting regression equation is then used to impute instances with missing points

in the target variable. In principle, regression-based imputation can be both

stochastic and deterministic based on how uncertainty is factored in. Determin-

istic regression can lead to inaccuracies, as it does not account for uncertainty

and it artificially reinforces linear relationships. Instead, exact predictions are250

used without considering the error term(Enders, 2001). On the other hand,

stochastic regression is more common and realistic, as it accounts for the error.

Nonetheless, stochastic regression can be more complicated as the distribution

of the error term has to be taken into account (Lang and Little, 2016).

As shown by Longford (2005) the general form of stochastic imputation,

between the associated variables Y (with missing instances) and W (complete

data set), is provided by:

Y = f(W ) + ε (1)

In the equation 1, f(W ) is some appropriate function (e.g. linear, polynomial,255

etc.) and ε is the error term which is used to account for the uncertainty.

2.5.6. Multiple imputation

Multiple Imputation (MI) represents a modern and more sophisticated ap-

proach to imputation. MI can increase the accuracy of the imputation, while

reducing the bias. As discussed by Azur et al. (2011), using a MI approach al-260

lows for better accountability of the statistical uncertainty, as opposed to single

imputations. The MI approach is based on the improved use of predominant

imputation techniques. Assuming an incomplete dataset Y, MI follows the sub-

sequent steps (Figure 3):

1. Impute the missing values of Y m times.265

2. Analyse separately the m different datasets.

3. Merge the m different results into one dataset.

MI depends on certain user specified selection steps. Initially, the imputa-

tion method has to be specified; selection can include deterministic or stochastic
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methods. Next, the number of imputation cycles must be identified. Increasing270

the number of cycles can increase the model’s accuracy, however, this comes

at a computational cost. The final selection involves the determination of the

concluding missing values from m different datasets. The selection can be fa-

cilitated in either a deterministic (mean, median) or a stochastic (random or

probabilistic selection) way. All of the above choices are case- and application-275

dependant. Through the recent literature, it is seen that the Multiple Impu-

tation by Chained Equations (MICE) approach, further discussed in section

3, is one of the most promising and accurate implementation of multiple MI

(Royston, 2004; Royston and White, 2015).

Figure 3: Visual representation of the generalised process of multiple imputation.

2.6. Comparison280

Table 1 provides a qualitative summary of the above imputation techniques.

From 1 it can be observed that both the hot-deck and regression imputation

techniques exhibit the best overall quality (Hron et al., 2010; Templ et al., 2011;

Srebotnjak et al., 2012; Sullivan and Andridge, 2015). Both approaches retain

the size of the database which is a big advantage, especially when dealing with285

limited data. Similarly, both approaches can account for uncertainty in their

predictions, which is not easily possible with other techniques and especially

vertical imputation. Lastly, both hot-deck and regression imputation populate

the dataset with plausible values, especially in hot-deck imputation where the
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predictions are based on actual observations. When selecting imputation ap-290

proaches, another consideration should be the ability to combine engineering

knowledge with the imputation model. In hot-deck imputation, this is facili-

tated as the donors for the imputation can be specified by the researcher. This

means that when there is a missing value in a specific variable, the donor is

selected based on the variables’ interconnection within the engineering system.295

The same philosophy can be applied to regression imputation when specifying

the target-independent variables pair. Taking into account the merits of hot-

deck imputation, it is worth examining in greater detail its most useful and

widespread implementation, k-NN. Not only, k-NN is an effective imputation

tool on its own, but it can easily be used in hybrid models (Batista and Monard,300

2003; Armina et al., 2017). Similarly, considering the enhanced capabilities of

MI (Schafer and Olsen, 1998; Ibrahim et al., 2005) and the merits of regression

based approaches (Batista and Monard, 2003) it is worth examining MICE,

which represents an ideal combination of the two approaches (Corben, 1954).

MICE, like k-NN, is an approach that can be successfully used in hybrid models305

(Armina et al., 2017). Moreover, a novel hybrid methodology combining the

merits of k-NN and MICE will be demonstrated, filling the gap of a formalised

approach for handling missing data in the maritime industry.

Table 1: Summary of key findings, comparing different imputation techniques against four

criteria.

Imputation method Easy to

use

Retains

dataset size

Populates with

plausible values

Accounts for

uncertainty

Listwise/pairwise deletion 3 7 7 7

Vertical 3 3 7 7

Horizontal 7 3 7 7

Hot-deck 7 3 3 3

Regression 7 3 3 3
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3. Methodology

The focus of this study is the development of a novel hybrid imputation310

methodology for the maritime industry, through the assessment and perfor-

mance evaluation of different state-of-the-art imputation approaches. As men-

tioned above, this is the first step towards an advanced framework which will

employ a novel data condition and performance imputation method for energy

efficient operations of marine systems. The established approach is holistic and315

includes all the necessary steps for successful imputation, including pre- and

post-imputation steps, which, as shown in the previous sections of this paper, is

currently missing from the maritime industry. It has to be kept in mind that the

selected imputation approach must cater to the specific needs of the maritime

industry (i.e. subsequent use of data in condition or performance monitoring).320

The necessary steps to achieve this are included in the following distinctive

processes:

1. Data collection: including the data gathering effort.

2. Preliminary analysis: including form handling, data synchronisation, data

filtering and correlation examination.325

3. Imputation process: including the implementation and assessment of the

different imputation approaches by examining theAbsolute Percentage Er-

ror (APE), Mean Absolute Percentage Error (MAPE) and standard devi-

ation of error (σ).

4. Operational analysis: including the correction of variables based on rele-330

vant manufacture’s guidelines.

The proposed methodology is shown in Figure 4, in which the assessed im-

putation approaches including k-NN, MICE and the novel hybrid method are

described in more detail together with the preliminary analysis and operational

analysis.335
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Figure 4: Flowchart of the novel proposed methodology.
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3.1. Data collection

The data collection step includes the required activities and efforts to gather

the data used in the methodology. The collected data originate from a marine

commercial DAQ system installed onboard a merchant navy vessel. In general,

data collection is not restricted to only commercial DAQ systems, as it can be340

facilitated from numerous other sources including log-books and other archives

(e.g noon-reports, spread-sheets, etc.). However, commercial DAQ systems of-

fer great advantages with regards to the ease of their use and their increased

accuracy.

3.2. Preliminary analysis345

Preliminary analysis is an essential preparatory step for the implementa-

tion and assessment of the hybrid imputation approach. It includes the form

handling, synchronisation, filtering and correlation examination of the data and

variables of the given dataset.

The preliminary analysis initiates with the form handling of data. This is350

a simple yet important step, as data are tabulated in the appropriate form for

the next steps of the methodology.

Next, the data are synchronised using linear interpolation (Equation 2); a

process that is necessary as the DAQ sensors do not have exactly the same

sampling rate.

y2 =
(x2 − x1)(y3 − y1)

(x3 − x1)
+ y1 (2)

In equation 2, x represents the different time stamps and y the variables’ values.

Subscripts 1 refers to values before the selected timestamp, subscripts 2 refers

to values at the synchronisation point and subscripts 3 refer to values after355

the selected timestamp. The synchronisation of the data ensures that there is

consistency among them and they are harmonized over time. It is an especially

important process when using similarity-based imputation approaches. This

is necessary, as all the measurements from a potential imputation donor must

correspond to a single time-stamp.360
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Data filtering is a very important process that prepares the dataset for im-

putation. This process determines the points that need to be imputed, by

determining if a sensor reading is missing, or it has an illogical value. The

assessment of whether a recorded value is logical or not depends on the engi-

neering knowledge of the variable being measured. To determine if an instance365

has an illogical value (e.g. negative exhaust gas temperatures), sources from the

equipment’s manufacturer or the results from the commissioning tests (e.g sea

trials) are used.

The last step of the preliminary analysis is the correlation examination of

the variables. This is a common step in most data driven applications, as it370

gives a better understanding of the data. Identifying the correlation between

the different variables makes imparting FP knowledge to the imputation process

easier. The correlation of the available data was examined by using the Pear-

son correlation coefficient and cross-referencing the results with FP engineering

knowledge. The Pearson correlation coefficient ranges between -1 (perfect nega-375

tive linear correlation) and 1 (perfect positive linear correlation) while 0 denotes

no linear correlation.

3.3. Imputation process

Following the preliminary analysis step, the imputation process takes place

which includes the implementation of the novel hybrid method and its compari-380

son with the identified state-of-the-art MICE and widely used k-NN algorithms.

The assessment includes the application of the different imputation approaches

to the required points (as identified during data filtering) in the dataset and

the evaluation of the results using residual errors. For the hot-deck imputation

approach the k-NN algorithm is used. This is a very popular tool for value385

prediction and it has widespread applicability in imputation. The k-NN algo-

rithm is intuitively easy to understand and produces accurate results (Zhang,

2012; Huang et al., 2017; Zhang et al., 2018) For the regression based approach

the MICE algorithm is selected. The MICE algorithm is a very effective tool

in predicting values in multivariate datasets as it incorporates the benefits of390
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MI with regression. This algorithm is relatively new, compared to the more

traditional imputation approaches (e.g. vertical imputation) (van Buuren and

Oudshoorn, 1999; White et al., 2011). The hybrid approach that is presented

is a novel tool that incorporates the benefits of k-NN and MICE while avoiding

their respective shortcomings. In detail the hybrid approach has the following395

unique benefits:

1. Provides realistic imputations due to the use of the k-NN algorithm.

2. Provides easy incorporation of FP knowledge due to the use of the k-NN

algorithm.

3. Is based on the widely recognized k-NN algorithm.400

4. Takes advantage of the non-artificial replication of values offered by MICE.

5. Takes advantage of the flexible implementation of MICE.

MICE is a flexible and state-of-the-art, as already discussed, approach that

avoids bias in the results by fitting a series of regression models in the data set

(Shah et al., 2014). MICE is used to assess the effectiveness of the proposed novel405

hybrid imputation method. This approach is considered as an implementation

of MI which uses linear regressions to help in the estimate of the missing values.

For the rest of the section, let Y and K be variables with observed (Yobs, Kobs)

and missing points (Ymiss, Kmiss) and Z a set of complete variables with Zobs

and Zmiss corresponding to the observed and missing points of Y and K. MICE410

calculates the missing points by using a Bayesian approach to update prior

distributions of the variables. The Y and K variables are assumed random and

prior distributions are assigned (usually an uninformative one). By taking into

account the Z variables posterior distributions are obtained. The steps for the

application of MICE are the following.415

1. Impute all the missing points of Y and K with the means of the Yobs and

Kobs (Equations 3 and 4); nY obs and nKobs represent the total number of
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observations for the Y and K variables respectively.

Ŷmiss,i =

∑
Yobs,i

nY obs
(3)

K̂miss,i =

∑
Kobs,i

nKobs
(4)

These initial estimates (Ŷmiss,i, K̂miss,i) are placeholders and they only

facilitate the initiation of the process.

2. Set the placeholders of one of the variables (e.g. Ŷmiss,i) back to missing

3. Fit a linear regression model (Equation 5) between the observed points

of the target variable (Yobs) and the appropriate independent variables

(either all, or a subset of Z).

Ŷmiss,i = θTZ (5)

In equation 5, Z is a column vector of the independent variables and θ is

row vector of the regression parameters. The Ŷmiss,i parameter represents420

the imputation estimates produced by the regression model.

4. Find the row vector θ by minimising the mean squared error (Equation

6).

MSE =
1

nY obs

nY obs∑
i=1

(Yobs,i − Ŷobs,i)2 (6)

The row vector θ can be calculated based on two different approaches. If

the dataset is large, then an optimasation approach can be used (e.g. gradi-

ent decent) to fit the regression model and find the row vector θ. However,

due to the size of the dataset used, an algebraic method was employed to425

fit the regression model and find the row vector θ. Generally, if the dataset

is relatively small algebraic methods can be used, as they offer greater sim-

plicity. As the size of the dataset increases, optimisation approaches are

used as they offer a significant reduction in the required computational

time.430
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5. Use Equation 5 to impute the missing points of the Y variable.

6. Repeat steps 2, 3, 4, and 5 for every variable with missing points in the

dataset

7. Reaching step 6 is one cycle. The entire process is repeated for a predeter-

mined number of cycles (usually 10 repetitions is an empirically accepted435

number).

In summary, MICE uses linear regression in an iterative manner. The process

initiates by using mean imputation. Every variable with missing values is used

in a regression model to update the initial mean imputation.

The second algorithm that is implemented and assessed isk-NN (k-Nearest

Neighbours). k-NN is used to assess the effectiveness of the proposed novel

hybrid imputation method. In k-NN, k stands for a specified number of instances

(nearest neighbours) that will be considered. This is a non-parametric and

lazy algorithm as it does not take into account the distribution of the data in

the examined vectors and it has no explicit training phase (Zhang and Zhou,

2007). As with any hot-deck approach, k-NN is based on the similarity between

features. There is no standard number for the k hyperparameter, it depends on

the field of application and it selection lies with the researcher. In general, a

small k will restrict the algorithm to a small region of the data and as a result it

will produce results with low bias and high variance. A very small k (e.g. k = 1)

creates models sensitive to outliers, noise and anomalous data, as the model is

overfitted and not generalised enough for use in out-of-sample data. Conversely,

a high k (e.g. k = 20) will create overgeneralised models, as it averages more

possible donors, generating results with low variance and an increased bias. The

similarity of the instances is assessed by the Minkowski distance (Equation 7).

D = (

n∑
i=1

| xi − yi |p)1/p (7)

In equation 7 the p hyperparameter is set to 2 which transforms D to the440

Euclidean distance, the most common distance metric (Groenen and Jajuga,

20



2001). Similarly, xi and yi represent the examined instances. In addition to the

distance metric, a weight is also assigned to each possible donor based on its

distance. By doing so, closer neighbouring points (i.e. similar and most recent

operating conditions) have greater influence over the instance to be predicted.445

This is a very important feature as it allows taking into account the actual

operation of the system under examination.

Lastly, a hybrid approach combining k-NN and MICE is applied and assessed

against the state-of-the-art MICE and widely used k-NN algorithms. The k-NN

component is based on FP. This approach begins with the correlation analysis450

where the systemic correlation between the variables is specified. In the hybrid

approach, each vector in the dataset is examined in turn. When an instance

with a missing value is identified, the k-NN algorithm is deployed. However, the

algorithm searches for possible donors only in correlated variables; as determined

during the correlation analysis. By doing so, the entire process is executed455

quicker because only certain vectors of the dataset are examined. Also, the

predictive power of the model is enhanced as only correlated variables are used

to predict missing points. This process is repeated until no further changes occur

to the data set. In many cases, the cessation of the k-NN algorithm signifies

its incapacity to impute any more missing points as points from the correlated460

vectors may be missing simultaneously. In that case, the remaining missing

points are predicted using the aforementioned MICE approach. The structure

of the proposed novel hybrid methodology is demonstrated in Algorithm 1.

For the assessment of the different imputation tools the APE (Equation 8),

MAPE (Equation 9) and the standard deviation of the error (σ) (equation 10)465

are calculated for each case. The goal is to select the imputation approach with

minimum MAPE and σ. The APE and MAPE are selected as they are common

and easy to understand metrics for the evaluation of the model’s performance

(Bryne, 2012). The standard deviation of the error was used to determine

the possibility of introducing outliers within the predictions. In the following470

equations, xi and x̂i represent the actual value of the variable and the predicted
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Algorithm 1 Hybrib novel imputation method using a combination of k-NN

and MICE
Require: filtered dataset x of dimension m× n

1: modif flag ← 1

2: while modif flag == 1 do . Check x was updated in prev. loop

3: modif flag ← 0

4: for i = 1, 2, . . . , n do

5: temp column ← i-th column of x

6: corr columns ← columns correlated with temp column

7: for j = 1,2, . . . , m do

8: if j-th element of temp column does not exist then

9: if j-th element of corr columns exists then

10: j-th element of temp column← k-NN imputation

11: modif flag ← 1

12: end if

13: i-th column of x← temp column

14: end if

15: end for

16: end for

17: end while

18: x← MICE imputation

19: return x
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value respectively.

APE =| xi − x̂i
xi

| (8)

MAPE =
100

n

n∑
i=1

APE (9)

σ =

√∑
(APEi −MAPE)2

n
(10)

In summary, a total of three different approaches are implemented and as-

sessed. The first one is MICE, which is applied to the entire dataset until no

missing points were left. The MICE approach uses the computational valid-475

ness of regression with the similarity considerations of the hot-deck approaches

and it was implemented in a data driven manner. The second approach that

is tried is the k-NN. This approach is applied to the entire dataset, without

taking into consideration any systemic correlations, until all the missing points

in the dataset are imputed. Lastly, the hybrid approach is tested which com-480

bines k-NN with FP analysis and MICE. The k-NN algorithm is deployed by

taking into account systemic interdependencies between variables. Then, the

MICE algorithm is used to impute any missing points that the FP k-NN cannot

predict.

3.4. Operational analysis485

The operational analysis is the last step of the developed methodology and

includes the correction of the variables to account for ambient conditions. This

step ensures that the data are prepared for subsequent analysis, for example,

condition monitoring. To account for the ambient conditions, various sources

are taken into including international standards and the manufacturers’ rec-490

ommendations. Accounting for ambient conditions is a common step in many

applications, as it ensures that the affected variables are adjusted accordingly.

23



4. Case study

4.1. Preliminary Analysis

The described methodology is applied in the case of a chemical tanker with495

length LOA=183 m and deadweight 38,000 tonnes, in the Turbocharger (T/C)

and M/E system. The selection of the system is based on its criticality and

overall importance, as discussed by Harrington (1986); Taylor; Cheliotis and

Lazakis (2018). The T/C in question is the TCA66-20032 by MAN B&W and

has a maximum speed rating of 16000 rpm; it is connected to the M/E 6S50MC-500

C which has a Maximum Continuous Rating (MCR) of 9600 kW at 127 rpm.

TC

Air filter

Air cooler Air receiver Main engine unit

Scav. air

Exh. gas

Figure 5: Diagram of a Main Engine system showing the physical interconnections between

the measured parameters (the compressor is represented with C and the turbine with T).

The variables available for the analysis, as supplied by a marine DAQ, are:

M/E power in kW, M/E speed in rpm, T/C inlet EG temperature in ◦C, T/C

outlet EG temperature in ◦C, T/C speed in rpm, T/C Lubricating Oil (LO)505

inlet pressure in bar and T/C LO outlet temperature ◦C. Also, the engine room

air and the air cooler cooling water temperatures are recorded.

As mentioned in the methodology, the first step of the preliminary analysis

is the form handling of the dataset. The variables in the dataset are tabulated
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and a uniform format is given. Then, the data are synchronised (Equation 2)510

to harmonize them over time. After the synchronisation, the dataset is filtered

to determine the points that need to be imputed. Table 2 shows the limits

used for data filtration. The entire dataset is scanned based on limits shown

in Table 2; in any instance with values outside of the range specified in Table

2, the values are treated as missing points. The descriptive statistics of the

Table 2: M/E and T/C parameter limits used for the data filtering and identification of

points for imputation.

Parameter Units Lower Limit Upper Limit Source

M/E Power kW 0 10600 100% load from M/E shop test

M/E Speed rev/min 0 131 100% load from M/E shop test

M/E Scav. Air Press. bar 0 3.14 100% load from M/E shop test

M/E T/C EG Inlet Temp. ◦C 35 650 From ambient temperature and 130% of the T/C OEM Limit

T/C EG Outlet Temp. ◦C 35 650 From ambient temperature and 130% of the T/C OEM Limit

T/C LO Inlet Press. bar 0 3.6 150% of the M/E shop test

T/C LO Outlet Temp. ◦C 35 123 130% of the T/C OEM Limit

T/C Speed rev/min 0 17600 110% of the T/C OEM Limit

Amb. Air Temp. ◦C -20 50 Ambient conditions range

Amb. Sea Temp. ◦C -5 40 Ambient conditions range

515

synchronised, uniform and filtered data are shown in Table 3. The final step

Table 3: Descriptive statistics of the recorded dataset.

Main Engine parameters T/C parameters

Power

(kW)

Speed

(rpm)

Scav. air

press. (bar)

EG inlet

temp. (◦C)

EG outlet

temp. (◦C)

LO inlet

press. (bar)

LO outlet

temp. (◦C)

Speed

(rpm)

count 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.00 1336.0

mean 4029.0 98.0 0.9 325.3 289.5 2.0 54.98 9493.6

std 1003.5 13.3 0.3 32.2 25.6 0.1 4.23 1994.7

min 9.0 5.0 0.0 53.6 142.2 1.6 35.40 67.9

25% 3809.5 96.8 0.7 318.9 278.6 1.9 53.00 9087.8

50% 4264.0 101.7 0.9 333.8 292.5 2.1 54.70 9878.8

75% 4680.2 104.5 1.2 339.5 304.5 2.2 58.90 10896.8

max 5876.0 126.1 1.6 364.8 345.5 2.8 63.00 12258.2

of the preliminary analysis is the correlation examination of the variables. For

that reason, the Pearson correlation coefficient is initially calculated (Figure 6).

The results of the table 6 are cross-referenced with the engineering knowledge

of the M/E and T/C systems.520

For example, it is known, that the T/C LO inlet pressure and T/C LO outlet
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Figure 6: Heat-map showing the Pearson correlation coefficient of the M/E and T/C variables.

temperature are among the uncorrelated variables due to the fact that the T/C

LO system is independent and does not come to contact with areas of the M/E or

the T/C where the working processes occur. On the other hand, the T/C speed

and the M/E power have the biggest correlation. The T/C speed is influenced525

by many factors. It is correlated with the temperature drop of the exhaust gases

in the T/C. The T/C speed is also correlated with the M/E power and M/E

speed, which in turn influences the temperature of the exhaust gases. It should

be noted that there are other variables that influence the T/C speed, M/E power

and the temperature of the exhaust gases. For example, such variables are the530

combustion pressure and the back-pressure of the T/C. The combustion pressure

influences the power output and subsequently the temperature of the exhaust

gases. On the other hand, the back-pressure of the T/C can affect (reduce) the

T/C speed, as the back-pressure can restrict the flow of the gases (Hountalas

et al., 2014; Guan et al., 2015). Even though these parameters are identified for535

their importance, they are not included in the selected dataset for the analysis.
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This is due to the fact that the DAQ used for the measuring of the parameters

is not capable of recording them. Comparing the results from Figure 6 and

the engineering knowledge of the M/E and T/C systems, the final correlation

between variables is obtained (Table 4). As it can be observed, Table 4 shows

Table 4: Resulting correlation based on the integration of the data-driven Pearson coefficient

and the first-principle domain knowledge.

Main Engine parameters T/C parameters

Power

(kW)

Speed

(rpm)

Scav. air

press. (bar)

EG inlet

temp. (◦C)

EG outlet

temp. (◦C)

LO inlet

press. (bar)

LO outlet

temp. (◦C)

Speed

(rpm)

M/E Power (kW) 3 3 3 7 7 7 3

M/E Speed (rpm) 3 7 3 7 7 7 3

M/E Scav. air press. (bar) 3 7 7 7 7 7 3

T/C EG inlet temp. (◦C) 3 3 7 3 7 7 7

T/C EG outlet temp. (◦C) 7 7 7 3 7 7 3

T/C LO inlet press. (bar) 7 7 7 7 7 7 7

T/C LO outlet temp. (◦C) 7 7 7 7 7 7 7

T/C Speed (rpm) 3 3 3 3 3 7 7

540

only the presence of correlation between variables and not the magnitude of the

correlation, as required by the hybrid method (it requires only the presence of

correlation between variables, and not the magnitude).

4.2. Imputation process

Following the completion of the preliminary analysis step, the implemen-545

tation and assessment of the different imputation approaches take place. The

results from the discussed imputation approaches are presented in Figures 7-14.

For each case, a histogram depicting the APE, and a scatter plot, depicting each

prediction are shown. In the scatter plot, the line y = x, representing perfect

accuracy, is plotted to help the determination of the accuracy of each prediction.550

Figure 7 shows the imputed values and APE for the T/C LO inlet pressure.

Through the histogram, it is noted that all the approaches produce equally good

predictions. Also from the histogram, it is observed that the approaches produce

predictions with APE ranging from 0-35%. Through the scatter plot, it is ob-

served that the k-NN algorithm produces the results with the biggest standard555

deviation (sparsity), which can introduce outliers in the dataset. As afore-

mentioned, all three approaches produce results with errors. This behaviour is
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attributed to the fact that T/C LO inlet pressure does not have a substantial

correlation with the other variables. It has to be kept in mind that all of the

imputation approaches are based, to some extent, on the correlation between560

the variables. he errors produced are justified, due to the T/C LO inlet pressure

not following this assumption.
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Figure 7: T/C LO inlet pressure imputation performance comparing the MICE, k-NN and

hybrid methods.

Figure 8 shows the imputed values and APE for the T/C LO outlet temper-

ature. Through the histogram, it is noted that the hybrid method has the best

performance with the majority of the predictions having less than 1% APE.565

Also from the histogram, it is observed that the approaches produce predictions

with APE ranging from 0-8%. Through the scatter plot, it is observed that

both k-NN and MICE algorithms produce results with large sparsity, which can

introduce outliers in the dataset. The hybrid approach performs the best, as it

closely follows the y = x line.570

Figure 9 shows the imputed values and APE for the M/E power. Through
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Figure 8: T/C LO outlet temperature imputation performance comparing the MICE, k-NN

and hybrid methods.

the histogram, it is noted that the hybrid method has the best performance

with the majority of the predictions having less than 1% APE. Also from the

histogram, it is observed that the approaches produce predictions with APE

ranging from 0-12%. Through the scatter plot, it is observed that the MICE575

algorithm produces results with large sparsity, which can introduce outliers

in the dataset. As the M/E power is a highly correlated variable, the FP

component of the hybrid method contributes to making it perform the best.

Figure 10 shows the imputed values and APE for the M/E speed. Through

the histogram, it is noted that the hybrid method has the best performance580

with the majority of the predictions having less than 1% APE. Also from the

histogram, it is observed that the approaches produce predictions with APE

ranging from 0-8%. Through the scatter plot, we observe that the MICE algo-

rithm produces results with large sparsity, which can introduce outliers in the

dataset. It is observed that all the tools produce more accurate predictions from585
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Figure 9: M/E Power imputation performance comparing the MICE, k-NN and hybrid meth-

ods.

100 rpm and above. At lower speeds, many of the predictions are relatively in-

accurate, with the MICE tool predicting possible outliers. As with the previous

cases, the hybrid approach follows the y = x line the closest.

Figure 11 show the imputed values and APE for the M/E scavenging air

pressure. Through the histogram, it is noted that the hybrid method has the590

best performance with the majority of the predictions having less than 1% APE.

Also from the histogram, it is observed that the approaches produce predictions

with APE ranging from 0-35%. Through the scatter plot, it is observed that

the k-NN algorithm produces results with large sparsity, which can introduce

outliers in the dataset. In this variable, all of the imputation methods produce595

results very close to the actual values. The variation of the predictions from

MICE and the hybrid tool are quite low and they both follow closely the y = x

line.

Figure 12 shows the imputed values and APE for the T/C EG inlet temper-
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Figure 10: M/E Speed imputation performance comparing the MICE, k-NN and hybrid meth-

ods.

ature. Through the histogram, it is noted that the hybrid method has the best600

performance with the majority of the predictions having less than 1% APE. Also

through the histogram, it is noted that the hybrid method has the best perfor-

mance with the majority of the predictions having less than 1% APE Through

the scatter plot, it is observed that the MICE algorithm produces results with

large sparsity, which can introduce outliers in the dataset. The T/C EG inlet605

temperature exhibits a similar behaviour with the M/E Speed. The predictions

of all the tools are relatively inaccurate at lower temperatures. However, this

behaviour is reverted at higher temperatures, with the hybrid method following

the y = x line the closest.

Figure 13 shows the imputed values and APE for the T/C EG outlet tem-610

perature. Through the histogram, it is noted that the hybrid method has the

best performance with the majority of the predictions having less than 1% APE.

Also from the histogram, it is observed that the approaches produce predictions
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Figure 11: M/E scavenging air pressure imputation performance comparing the MICE, k-NN

and hybrid methods.

with APE ranging from 0-10%. Through the scatter plot, it is observed that

the MICE algorithm produces results with large sparsity, which can introduce615

outliers in the dataset. In general, the hybrid method displays consistently good

predictions in the temperature range following the y = x line the closest.

Finally, Figure 14 shows the imputed values and APE for the T/C speed.

Through the histogram, it is noted that the hybrid method has the best perfor-

mance with the majority of the predictions having less than 1% APE. Also from620

the histogram, it is observed that the approaches produce predictions with APE

ranging from 0-18%. Through the scatter plot, it is observed that the MICE

algorithm produces results with large sparsity, which can introduce outliers in

the dataset. Similarly with the previous cases, the hybrid method displays con-

sistently good predictions in the speed range following the y = x line closely.625

Summarising the above, Table 5 encapsulates the overall performance of the

three tools for the examined variables. Table 5 shows the MAPE and mean

32



315 320 325 330 335 340 345 350 355
Actual values (T/C EG Inlet Temp. - . C)

315
320
325
330
335
340
345
350
355

Pr
ed

ict
ed

 v
al

ue
s 

(T
/C

 E
G 

In
le

t T
em

p.
 - 

.
C)

MICE
Hybrid approach
KNN

0 2 4 6 8 10
Absolute Percentage Error

0

20

40

60

80

100

Nu
m
be
r o

f o
bs
er
va
tio

ns

MICE
Hybrid approach
KNN

Figure 12: T/C EG inlet temperature imputation performance comparing the MICE, k-NN

and hybrid methods.

standard deviation for each approach and for each variable. Also, an over-

all MAPE and mean standard deviation are shown to summarise the general

performance of each approach. As it is observed, even though the two state-630

of-the-art approaches perform relatively well, the hybrid method outperforms

them. It has the lowest overall mean error of 2.21% and the smallest overall

standard deviation of 2.64%. The hybrid tool makes accurate predictions with-

out running the risk of generating outliers. The worst performing tool is the

k-NN with an overall mean error of 5.55% and an overall standard deviation635

of 8.9%. Observing the results, it becomes clear that in correlated variables (

M/E power, M/E speed, T/C speed, T/C EG inlet temperature, T/C EG out-

let temperature, M/E scavenging air pressure, T/C LO outlet temperature) the

novel imputation method has superior performance It is observed that the FP

component of the hybrid model makes a positive influence on the prediction. By640

understanding the systemic interdependencies of the system under examination
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Figure 13: T/C EG outlet temperature imputation performance comparing the MICE, k-NN

and hybrid method.

the performance of the predictions is enhanced. Therefore, the integration of

the knowledge of the system to any predictive effort is encouraged and should

be preferred to purely data driven approaches.

4.3. Operational analysis645

Following the imputation process step, the resulting dataset is adjusted to

account for the influence of the environmental conditions. For that reason, the

T/C speed, M/E scavenging air pressure and the T/C EG inlet temperature

were corrected (MAN B&W, 2014; Tsitsilonis and Theotokatos, 2018) accord-

ing to the manufactures guides and the ISO 3046-1:2002 standards (Interna-

tional Organization for Standardization, 2008). The measured M/E scavenging

air pressure, Pscav, was adjusted to its corrected figure, Pscav,corr according to

Equation 11. In Equations 11, 12 and 13 K, F1 and F2 are correction con-

stants, while Tair and Tsea are the ambient temperatures of the air and the sea
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Figure 14: T/C Speed imputation performance comparing the MICE, k-NN and hybrid meth-

ods.

respectively.

Pscav,corr = Pscva + (Tair − 25)F1(K +Pscav) + (Tsea− 25)F2(K +Pscav) (11)

The measured T/C speed, N , was adjusted to its corrected value, Ncorr accord-

ing to equation 12.

Ncorr =
N√

(K+Tair)
(K+25)

(12)

The measured T/C EG inlet temperature, Tegin, was adjusted to its corrected

value, Tegin,corr according to equation 13.

Tegin,corr = Tegin + (Tair − 25)F1(K + Tegin) + (Tsea − 25)F2(K + Tegin) (13)

5. Conclusion

This paper develops a novel data condition and performance imputation

method for energy efficient operations of marine systems. This study examined
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Table 5: Summary of imputation approaches performance

Case MAPE Mean σ

k-NN MICE Hybrid k-NN MICE Hybrid

M/E Power 3.16% 2.44% 2.29% 5.48% 4.06% 4.98%

M/E Speed 1.15% 1.02% 0.65% 1.12% 1.23% 1.05%

M/E Scav. Air Press. 17.15% 2.34% 1.92% 23.72% 3.63% 3.60%

M/E T/C EG Inlet Temp. 1.63% 2.15% 0.92% 1.69% 1.96% 1.16%

T/C EG Outlet Temp. 2.25% 3.08% 1.19% 1.96% 2.60% 1.64%

T/C LO Inlet Press. 14.92% 8.46% 7.97% 32.11% 5.24% 4.96%

T/C LO Outlet Temp. 2.25% 2.33% 1.29% 3.65% 2.31% 1.73%

T/C Speed 1.96% 1.92% 1.42% 1.49% 2.61% 1.97%

Average 5.55% 2.97% 2.21% 8.9% 2.96% 2.64%

imputations from a holistic view, including all the necessary pre- and post-

imputation steps. At the same time, it is shown how a treated dataset with650

no missing values can lead to more accurate condition monitoring models and

therefore, improve the efficient operation of ship systems. The superior per-

formance of the proposed novel imputation method is compared against the

existing k-NN and MICE methods and is demonstrated in the case of a M/E

andT/C system of a 38,000 tonnes chemical tanker. In total, eight variables655

are examined including the M/E power, M/E speed, M/E scavenging air pres-

sure, T/C EG inlet temperature, T/C EG outlet temperature, T/C LO outlet

temperature, T/C LO inlet pressure and T/C speed. The examined variables

are selected based on the availability of the accessible DAQ system. following

discussions with the tanker operator. The key outcomes of this research work660

are the following:

• The development of a novel, hybrid imputation method for the specific

needs of marine machinery condition and performance measurements,

which streamlines all the pre- and post-imputation steps.

• The demonstration of data synchronisation, filtering, correlation analysis665
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and variable correction for imputation.

• The importance of treating missing condition monitoring data values,

which leads to accurate models for improving the efficient operation of

ship systems.

• The use of OEM thresholds and engineering knowledge for data filtering,670

prior to the imputation process.

• The investigative comparison between the k-NN, MICE and the proposed

hybrid method for imputation purposes.

• The superior performance of the hybrid approach exhibiting a mean error

of 2.21% compared to the MICE, k-NN algorithms with errors of 3.3% and675

5.6%, respectively, highlighting that the small error of the proposed novel

method improves the quality of data used in condition- and performance-

monitoring.

• The highlight of using FP analysis in the prediction of measurements from

an engineering system, compared to purely data driven approaches.680

• In the case of uncorrelated variables (e.g. T/C LO inlet pressure), similarity-

based imputation methods did not perform well, yielding errors above 8%.

In those cases, time-series analysis should be preferred.

Following the above, future work may include the use of the treated dataset in

developing an advanced, fault-detection and diagnostic tool for efficient ship op-685

erations. A treated dataset could be used to train advanced data-driven models

for the accurate identification of developing faults while suggesting rectifying ac-

tions. In addition, future work may include the comparison of the novel hybrid

imputation method with other imputation algorithms.
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