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Abstract— This paper deals with microwave tomography for 

brain stroke imaging using state-of-the-art numerical modeling 
and massively parallel computing. Iterative microwave 
tomographic imaging requires the solution of an inverse problem 
based on a minimization algorithm (e.g. gradient or Newton-like 
methods) with successive solutions of a direct problem. The 
solution direct requests an accurate modeling of the whole-
microwave measurement system as well as the as the whole-head. 
Moreover, as the system will be used for detecting brain strokes 
(ischemic or hemorrhagic) and for monitoring during the 
treatment, running times for the reconstructions should be fast. 
The method used is based on high-order finite elements, parallel 
preconditioners with the Domain Decomposition method and 
Domain Specific Language with open source FreeFEM++ solver. 
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I. INTRODUCTION 
This paper deals with the detection and monitoring of brain 

stroke or cerebrovascular accident (CVA). About 85% of 
strokes are ischemic, caused by an interruption of the blood 
supply to some part of the brain and 15% are hemorrhagic. 
Differentiation between these two types of strokes is essential 
because the subsequent management and treatment of each 
patient is vastly different. Rapid and accurate diagnosis is 
crucial. CT and MRI are actually the "gold" standards but they 
are bulky diagnostic instruments and cannot be used for 
continuous brain monitoring. A non-invasive and 
transportable/portable device would have clear clinical 
applications at the bedside in a Neurological Intensive Care 
Unit (NICU). 

 Detecting and identifying strokes using microwave 
tomography is challenging as it corresponds to a small opposite 
variation of the permittivity values of brain tissues of about +/- 
10 % of the baseline tissue values for the two types of strokes 
(ischemic or hemorrhagic) [1]. The rapid data acquisition time 
is another attractive feature of microwave tomography but fast 
tomographic reconstructions are mandatory for developing a 
novel imaging modality with a new paradigm: detecting, 
identifying and monitoring stroke continuously during 

treatment. Iterative tomographic imaging requires the solution 
of an inverse problem based on a minimization algorithm. 
Reconstruction algorithms are computationally intensive with 
successive solutions of the forward problem needing efficient 
numerical modeling and high-performance parallel computing. 
The interaction is very complex, as it must be seen as a 
coupling problem between the antennas and the head rather 
than a simple scattering problem. In addition, we do not have 
access directly to the electric field but only via antenna S 
parameters. The purpose of this work is to solve the inverse 
problem associated to a prototype developed by EMTensor 
GmbH (Vienna, Austria) [2] using state-of-the-art modeling, 
high-performance and massively parallel computing. 

II. TOMOGRAPHIC SYSTEM 
The system consists of a cylindrical metallic chamber 

composed of 5 rings of 32 Transmitting/Receiving antennas 
(Fig. 1). 

       
Fig. 1. Left: General view of BRIMG1 (courtesy of 

EMTensor 

The antennas are ceramic (εr = 59) loaded open-ended 
waveguides. The operating frequency of the system is 0.9 GHz 
to 1.8 GHz. The data acquisition cycle of the system is fully 
electronically controlled, allowing for a total data acquisition 
of about 30 s. The imaging chamber is in horizontal position, 
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allowing easy positioning a human head within an imaging 
domain (Fig. 1). 

III. DIRECT PROBLEM 
The numerical modeling of the direct problem is based on 

high-order finite elements, parallel predicontioners from 
Domain Decomposition method and Domain Specific 
Language with open source FreeFEM++ solver [3-4]. In order 
to have a higher numerical accuracy with the same total 
number of unknowns, we consider a high order edge element 
discretization, choosing the high order extension of Nédélec 
elements presented in [5]. We implemented edge elements of 
degrees 2 and 3 in FreeFem++. Domain decomposition 
preconditioners are naturally suited to parallel computing and 
make it possible to deal with smaller subproblems. The domain 
decomposition preconditioner we employ is called Optimized 
Restricted Additive Schwarz (ORAS).  

IV. INVERSE PROBLEM 
The measured physical quantities are the S parameters of the 
scattering matrix, which are the complex reflection and 
transmission coefficients measured by the 160 receiving 
antennas when a signal is transmitted by one of the 160 
transmitting antennas. The inverse problem that we consider 
consists in finding the unknown complex dielectric 
permittivity ε(x)  in order the corresponding scattering 
parameters S from the forward modeling coincide with the 
measured scattering parameters Sij

meas . In a classical way, 

solving the inverse problem consists in minimizing a cost 
functional J. We use the adjoint approach in order to compute 
the gradient efficiently after discretization, with a number of 
computations independent of the size of the parameter space. 
We compute the gradient to use in a gradient-based local 
optimization algorithm. The numerical results presented here  
are obtained using a limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm.  

V. NUMERICAL RESULTS 
 We want to assess the feasibility of the microwave imaging 
technique presented in this paper for stroke detection and 
monitoring through a numerical example in a realistic 
configuration. We use synthetic data corresponding to an 
accurate numerical model of a human head with a simulated 
hemorrhagic stroke as input for the inverse problem. The 
numerical model of the virtual head comes from CT and MRI 
scans and consists of a complex permittivity map of 362 × 434 
× 362 data points with a spatial resolution of 500 µ.  In order 
to simulate the evolution of a hemorrhagic stroke, we use a 
synthetic ellipsoid-shaped stroke whose size (principal axes) 
increases over time, from 3.9 cm × 2.3 cm × 2.3 cm (small 
stroke) to 7.7 cm × 4.6 cm × 4.6 cm (large stroke). For this 
test case, the relative complex permittivity of the ellipsoid is 
assumed to be inhomogeneous where the relative complex 
permittivity at each quadrature point of the mesh is taken as 

the mean value between the original healthy brain permittivity 
values (baseline values) and the permittivity of blood (εr

blood = 
68 − i44) at f = 1 GHz. The imaging chamber is filled with the 

matching solution εr
matching = 44 – i20. The synthetic data are 

obtained by solving the direct problem using a mesh 
composed of 17.6 million tetrahedra (corresponding to 
approximately 20 points/λ) and consist in the computed 
transmission and reflection coefficients Sij  with 10% noise. 

 

 

 
Fig. 2. Left: exact imaginary part of complex permittivity 

of a simulated hemorrhagic stroke (indicated with a red arrow) 
over time. Right: reconstructed imaginary part over time (after 
30 iteration steps). 

Reconstructed images for each test case shown in Fig. 2 are 
obtained with a total computing time of less than 2 minutes (94 
seconds for the large stroke case) using 4096 cores of Curie. 
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