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Abstract

This paper is concerned with input-to-state stability of SFDSs. By using stochastic analysis techniques, Razumikhin
techniques and vector Lyapunov function method, vector Razumikhin-type theorem has been established on input-to-
state stability for SFDSs. Novel sufficient criteria on the pth moment exponential input-to-state stability are obtained
by the established vector Razumikhin-type theorem. When input is zero, an improved criterion on exponential stability
is obtained. Two examples are provided to demonstrate validity of the obtained results.
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1. Introduction

The stochastic functional differential systems (SFD-
S), including stochastic delay differential systems (S-
DDSs), have been widely used since stochastic mod-
elling plays an important role in many branches of sci-
ence and engineering. During the last decade, stability
analysis of SFDSs have received a lot of attention, see,
e.g., [7], [8], [12], [16], [21] and references therein. It
is well known that dynamical behaviors of SFDSs are
often affected by disturbances such as, control, external
inputs. In order to investigate how the system dynamic
affected by external inputs, the concept of input-to-state
stability (ISS) has been originally proposed by Sontag
[23], which has played a significant role in control syn-
thesis of nonlinear systems with external inputs. Con-
sequently, the ISS properties for SFDS with external in-
puts have been studied by many works, see, e.g., [5],
[24], [30].

It is well known that Lyapunov method is power-
ful in stability analysis. The stability conditions based
on the Lyapunov functional is very severe restrictions,
and it is not very convenient in applications. In order
to overcome such difficulty, Razumikhin has evolved
Lyapunov method, and established the Razumikhin-
type theorem for functional systems, which avoid using
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Lyapunov functional in stability analysis for function-
al systems. Moreover, many stability criteria described
by differential operator inequalities can be obtained by
Razumikhin-type theorems. Hence, Razumikhin-type
theorems have been evolved by many authors for vari-
ous systems. In the past 20 years, Mao and his collab-
orators have established the a number of Razumikhin-
type theorems on moment exponential stability for var-
ious SFDSs, the reader is referred to [12]-[14], [26]
and references therein. For ISS case, Huang et.al es-
tablished Razumikhin-type theorems on asymptotic for
SFDSs in [2]. For more detailed understanding on this
topic, please refer to [6], [18], [19].

However, most of the Razumikhin-type theorem on
ISS and exponential stability in the existing literature
are based on scalar Lyapunov function (SLF). The sta-
bility criteria induced by existing Razumikhin-type the-
orems are described by scalar differential operator in-
equalities. But many well-known systems are high-
dimensional, such as, neural networks systems, popu-
lations systems. That is to say, there is a gap between
the structure of the high-dimensional systems and scalar
differential operator inequalities. In order to conquer the
gap, many elementary inequalities and matrix inequali-
ties are applied to narrow the gap, which might give rise
to more conservatism.

Recently, more and more attentions have been paid to
investigate the stability of neural networks via the vec-
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tor Lyapunov function (VLF) method (see [4], [9], [22],
[25], [27]-[29]). Most of the them are based on com-
parison systems with a M-matrix structure. By estab-
lishing a vector Halandy inequality with the structure
compatible with recurrent neural networks, Li and Liu
[4] have improved the stability criteria on the ISS for
neural networks with Markovian switching. Two rea-
sons can attributed to it: 1) The coefficient structure of
some realistic systems are similar with M-matrix, such
as Hopfield neural networks systems, generalized eco-
logical system; 2)The eigenvalue condition of M-matrix
is easy to verify. Motivated by the above mentioned lit-
erature, the first aim of this paper is to establish a vec-
tor Razumikhin-type theorem based on a vector vector
operator with a structure of M-matrix. By using Ito for-
mula, Razumikhin techniques and M-matrix theorem, a
vector Razumikhin-type theorem is established. With
the help of the vector Razumikhin type theorem, sever-
al sufficient criteria with vector L -operator differential
inequality on p-th moment exponential ISS are derived.

Moreover, when the external input is zero, the ISS
becomes the traditional Lyapunov stability based on the
equilibrium point. As a result, the criteria on ISS be-
come some sufficient conditions on Lyapunov stability.
Thus, the second motivation of this paper is to investi-
gate exponential by the established vector Razumikhin
type theorem. A sufficient criteria on exponential sta-
bility has proposed in this paper, which has slightly im-
proved the results in existing literature [11], [17], [21].

2. Preliminaries

Throughout this paper, unless otherwise specified,
let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual condition-
s (i.e., it is increasing and right continuous while F0
contains all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))
be an m-dimensional Brownian motion defined on the
probability space. Let R+ = [0,+∞). Let τ > 0
and C = Cb

F0
([−τ, 0]; Rn) the family of all bounded,

F0-measurable, C([−τ, 0]; Rn)-valued, Ft−adapted s-
tochastic processes. Let C(Rn; R+) denote the fami-
ly of all nonnegative functions w(x) on Rn. For t >
0, denote by Lw

Ft
([−τ, 0]; Rn) the family of all Ft-

measurable C([−τ, 0]; Rn)-valued random variables φ
such that sup−τ≤θ≤0 E|w(φ(θ))| < ∞, and let Lp

Ft
=

L|x|
p

Ft
([−τ, 0]; Rn) for simplicity. Let L n

∞ denote the class
of essential bounded functions u from [0,∞) to Rn with
∥u∥∞ = supt≥0|x(t)| < ∞. A function χ : R+ → R+
is said to be class of K if it is continuous and strictly
increasing and satisfies χ(0) = 0; it is class of K∞ if

in addition χ(s) → ∞ as s → ∞. Let G be a vector or
matrix. By G ≥ 0 we mean that each element of G is
non-negative. By G ≫ 0 we mean that all elements of
G are positive.

Moreover, we also adopt here the traditional notation
by letting Zn×n = {A = (ai j)n×n : ai j ≤ 0, i , j}.A matrix
A ∈ Zn×n is said to be a a nonsingular M-matrix, if there
exists x ≫ 0 in Rn such that Ax ≫ 0. For a singular M-
matrix A, we denote ΩM(A) = {x ∈ Rn|Ax ≫ 0, x ≫ 0}.

We consider the following SFDS with external input-
s:

dx = F(t, xt, u)dt +G(t, xt, u)dB(t) (1)

with xt = {x(t + θ) : −τ ≤ θ ≤ 0} and the given initial
data ξ ∈ Cb

F0
([−τ, 0]; Rn), where

F : R+ ×C × Rn → Rn,G : R+ ×C × Rn → Rmn.

Let C1,2(R+ × Rn; R+) denote the family of all
nonnegative functions W(x, t) on Rn × R+ which are
continuously twice differentiable in u and once in t. For
each W ∈ C1,2(R+ × Rn; R+), denote an operator L W
from R+ ×C × Rn to R by

L W(t, φ, u) = Wt(t, φ(0)) +Wx(t, φ(0))F(t, φ, u)

+
1
2

trace[GT (t, φ, u)Wxx(t, φ(0))G(t, φ, u)].

Definition 2.1: For p > 0, the system (1) is said to be pth
moment exponentially input-to-state stable, if for every
ξ ∈ Lp

Ft
and u ∈ L n

∞, there exist scalar L > 0, γp > 0
and χ ∈ K∞, such that

E|x(t)|p ≤ L sup
−τ≤θ≤0

E∥ξ(θ)∥p exp{−γpt} + χ(∥u∥p∞). (2)

3. Main results

In this section, we will establish the vector
Razumikhin-type theorem for SFDS (1), and we assume
that for any initial data ξ ∈ Cb

F0
([−τ, 0]; Rn), system(1)

have a unique continuous solution on t ≥ 0 denoted by
x(t; ξ).

3.1. The Razumikhin-type Theorem for SFDS
For stochastic functional differential system (1) with-

out external input

dx = F(t, xt)dt +G(t, xt)dB(t) (3)

Kolmanovskii and Nosov establish the following stabil-
ity criteria in [37]. However, it is not very convenient
in application since the construction of a Lyapunov
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functional is much more harder than that of a Lyapunov
function. Thus scholars would like to study the stability
of SFDSs using Lyapunonv function. In order for
L W(t, φ, 0) to be negative for all function φ ∈ C and
t ≥ 0, some rigorous conditions would be imposed on
functions F(t, φ) and G(t, φ). As a result, the point φ(0)
must play a dominant role and, therefore, the stability
criteria might apply only to equations that are very
similar to stochastic differential equations. Fortunately,
it is Razumikhin who first indicate that it is unnecessary
to verify all φ ∈ C when studying the deterministic
differential delay equation. In the past 20 years, Mao
and his collaborator generalize the original ideal with
Razumikhin to SFDSs. Now we presented the vector
Razumikhin-type theorem for SFDSs with external
input as following.

Theorem 3.1: Let Λ = diag(µ1, · · · , µn) ≫ 0, A =
(ai j)n×n ≥ 0 be real matrix. Assume that Λ − A is
a nonsingular M-matrix, and there exist r ≥ 1, Q =
diag(q1, · · · , qn) ≫ 1, W1, · · · ,Wn ∈ C1,2(R+ × Rn; R+),
w ∈ C(Rn; R+), v ∈ K such that for all

w(x) ≤
n∑

i=1

Wi(t, x) ≤ v(x), t ≥ 0 (4)

and, moreover for all i = 1, · · · , n

EL Wi(t, φ, u) ≤ −µiEWi(t, φ(0))

+

n∑
j=1

ai j(EWi(t, φ(0)))1/r′(EW j(t, φ(0)))1/r

+ (EWi(t, φ(0)))1/r′ |ui(t)|,

for all t ≥ 0, and those φ ∈ Lw
Ft

([−τ, 0]; Rn) satisfying

EWi(t + θ, φ(θ)) ≤ qiEWi(t, φ(0)), (5)

on θ ∈ [−τ, 0], where r′ = (1 − r−1)−1. Then the global
solution x(t, ξ) to system (1) has the following property:(

EWi(t, x(t))
)1/r

≤ αiΞ
1/r exp{−γt} + βt

i, i = 1, · · · , n, (6)

where γ = min1≤i≤n γi, rγi =
log qi
τ
∧ α−1

i
(
µiαi −∑n

j=1 ai jα j
)
, Ξ = sup−τ≤θ≤0

∑n
i=1 EWi(θ, x(θ)), and α ∈

ΩM(Λ − A) with min1≤i≤n{αi} ≥ 1, βt = (βt
1, · · · , βt

n)T =

(Λ−A)−1ut with ut = (ut
1, · · · , ut

n)T , ut
i = sup0≤s≤t |ui(s)|.

Proof: Since Λ − A is a nonsingular M-matrix, there
exists α ∈ ΩM(Λ− A) with min1≤i≤n{αi} ≥ 1. In order to
prove (6), it is sufficient to show for any λ ∈ (0, γ)(

EWi(t, x(t))
)1/r ≤ αiΞ

1/r exp{−λt}
+βt

i, i = 1, · · · , n. (7)

Let Wi(t) = Wi(t, x(t)), Ui(t) = EWi(t, x(t)), Hi(t) =
αiΞ

1/r exp{−γt} for simplicity. Since ξ ∈ C, we can find
a integer k0 such that ∥ξ∥ < k0, a.s. Thus the right side
of inequality gives that for any t ∈ [−τ, 0]

EWi(t, x(t)) ≤ Ev(|x(t)|) ≤ v(k0), i = 1, · · · , n.

Let ϱi
k = inf{t > 0; EWi(t, x(t)) > k}, ϱi

e = limt→∞ ϱ
i
k

and ϱe = ∧n
i=1ϱ

i
e. It follows from Lemma 3.1 in [2] that

EWi(t, x(t)) are continuous on [−τ, ϱi
e). It is obvious that

Wi(0) = EWi(0, x(0)) ≤ αr
iΞ ≤

(
αiΞ

1/r + β0
i

)r
.

We claim that (7) holds for all t ∈ [−τ, ϱe). Otherwise,
by the continuity of EWi(t, x(t)) there exist ī and the s-
mallest t∗ such that

Ui(t) ≤
(
Hi(t) + βt

i

)r
, t ∈ [−τ, t∗], i = 1, · · · , n,

(8)

Uī(t
∗) =

(
Hī(t

∗) + βt∗

ī

)r
, (9)

D+Uī(t
∗) ≥ D+

(
Hī(t

∗) + βt∗

ī

)r
. (10)

By condition (8), for any θ ∈ [−τ, 0]

EWi(t∗ + θ) ≤
(
Hi(t∗ + θ) + βt∗+θ

i

)r

≤
(
αiΞ

1/r exp{−λ(t∗ − τ)} + βt∗
i

)r
< ∞.

This implies

sup
−τ≤θ≤0

Ew(x(t∗ + θ))

≤
n∑

i=1

(
αiΞ

1/r exp{−λ(t∗ − τ)} + βt∗
i

)r
< ∞.

which means xt∗ ∈ Lw
Ft

([−τ, 0]; Rn). From the definition
of γ and (9), we have(

EWī(t
∗ + θ)

)1/r − βt∗+θ
ī

≤ αīΞ
1/r exp{−λ(t∗ + θ)}

≤ q1/r
ī

((
EWī(t

∗)1/r − βt∗

ī

)
.

This implies

EWī(t
∗ + θ) ≤

(
q1/r

ī

(
EWī(t

∗)
)1/r

+(βt∗+θ
ī − qīβ

t∗

ī )
)r
≤ qīEWī(t

∗).
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We hence see from condition (5) and (8), (9) that

EL Wī(t
∗, xt∗ , u)

≤ −µīEWī(t
∗) + (EWī(t

∗)1/r′ |uī(t
∗)|

+

n∑
j=1

aī j
(
EWī(t

∗)
)1/r′(EW j(t∗)

)1/r

≤ −µī
(
Hī(t

∗) + βt∗

ī

)r

+
(
Hī(t

∗) + βt∗

ī

)r−1|uī(t
∗)|

+

n∑
j=1

aī j
(
Hī(t

∗) + βt∗

ī

)r−1(H j(t∗) + βt∗
j
)

≤ (
Hī(t

∗) + βt∗

ī

)r−1
(
− µīHī(t

∗) +
n∑

j=1

aī j

×H j(t∗) +
n∑

j=1

aī jβ
t∗
j − µīβ

t∗

ī + |uī(t
∗)|

)
.

(11)

The definition of γ and βt imply easily that

−µīHī(t
∗) +

n∑
j=1

aī jH j(t∗)

≤ Ξ1/r exp{−λt∗}
(
− µīαī +

n∑
j=1

aī jα j

)
< −rλHī(t

∗), (12)

−µīβ
t∗

ī +

n∑
j=1

aī jβ
t∗
j + xī(t

∗) ≤ 0. (13)

By virtue of the Definition of Dini-derivative, we have
D+EWī(t∗, x(t∗)) = EL Wī(t∗, xt∗ , u). Submitting (12)
and (13) into (11) yields

EL Wī(t
∗, xt∗ , u) = D+EWī(t

∗, x(t∗))

< −λrHī(t
∗)
(
Hī(t

∗ + βt∗

ī )
)r−1

= r
(
Hī(t

∗) + βt∗

ī

)r−1D+Hī(t
∗) ≤ D+

(
Hī(t

∗) + βt∗

ī

)r
,

which contradicts with (10). Therefor for any t ∈
[−τ, ϱe), (7) holds. Now we process to show ϱe = +∞.
Otherwise, there exits i∗∗ such that ϱi∗∗

e < +∞. Letting
t → ϱi∗∗

e on both side of (6) yields

∞ = lim
t→ϱi∗∗

e

(
EWi∗∗ (t, x(t))

)1/r

≤ αi∗∗Ξ
1/r exp{−γϱi∗∗

e } + β
ϱi∗∗

e
i∗∗ < ∞.

which is a contradiction. Thus the inequality (6) holds
for any t ≥ 0. The proof is completed.

Remark 1: When r = 1,w(x) = |x|p, u(t) = 0 and
using the SLF, the Theorem 3.1 becomes the classical
Razumikhin-type theorems that established for SFDSs
by Mao and his collaborators(see [12]-[14]). Hence,
the classical Razumikhin-type theorems on exponential
stability are generalized to vector form for SFDSs.

Remark 2: For the stochastic differential system, the
boundedness and continuity of EWi(t, x(t)) is of vital
importance, which are guaranteed by linear growth con-
ditions (LGC) and power function type bilateral con-
dition posed on Lyapunov function, see [12]-[? ]. In
this paper, the LGC is no longer needed and the bilat-
eral condition has been replaced by a weaker (4). In
order to establish the Razumikhin-type Theorem 3.1 in
the absent of there two conditions, we proved the Theo-
rem 3.1 by three steps. Firstly, by virtue of Lemma 3.1
in [2] and the boundedness of ξ ∈ C, we showed that
EWi(t, x(t)) are continuous on [−τ, ϱi

e). Secondly, with
the aid of classical Razumikhin technique, we proved
that inequality (6) holds on [−τ, ϱe). Finally, we proved
by contradiction that inequality (6) holds for all t ≥ −τ,
which also ensured the continuous of EWi(t, x(t)).

3.2. Exponential input-to-state stability

Now we process to apply the vector Razumikhin-type
theorem to deal with the exponential ISS of the SFDS
(1).

Theorem 3.2: Let the condition (4) of Theorem 3.1 hold.
Assume that Λ = diag(µ1, · · · , µn) ≫ 0, A = (ai j)n×n ≥
0, B = (bi j)n×n ≥ 0, are real matrix. Assume that there
exist r ≥ 1 and W1, · · · ,Wn ∈ C1,2(R+ × Rn; R+) as well
as probability measures η1, · · · , ηn on [−τ, 0] such that
for all i = 1, · · · , n

lim
|x|→∞

[
inf

0≤t≤∞

n∑
i=1

Wi(t, x)
]
= ∞, (14)

and

L Wi(t, φ, v) ≤ −µiWi(t, φ(0))

+

n∑
j=1

ai j
(
Wi(t, φ(0))

)1/r′(W j(t, φ(0))
)1/r

+
(
Wi(t, φ(0))

)1/r′ |ui(t)| +
n∑

j=1

bi j
(
Wi(t, φ(0))

)1/r′

× ( ∫ 0

−τ
W j(t + θ, φ(θ))dη j(θ)

)1/r
,

(15)
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for all t ≥ 0 with r′ = (1 − r−1)−1. We then have the
following assertions:

i) Given any initial data ξ ∈ Cb
F0

([−τ, 0]; Rn), the
global solution to the system (1) denoted by x(t; ξ)
satisfys the following property:

sup
0≤s≤t

n∑
i=1

EWi(s, x(s)) < ∞, ∀t ≥ 0. (16)

ii) IfΛ−(A+B) is a nonsingular M-matrix, the global
solution x(t; ξ) to system (1) has the following property:

(
EWi(t, x(t))

)1/r ≤ αiΞ
1/r exp{−γrt} + βt

i,

i = 1, · · · , n. (17)

where βt = (βt
1, · · · , βt

n)T and Ξ are defined in The-
orem 3.1, and γr = sup

{
θ > 0, αiθ − r−1µiαi +

r−1 ∑n
j=1 ai jα j + eθτr−1 ∑n

j=1 bi jα j < 0, i = 1, · · · , n}
with α ∈ ΩM(Λ − (A + B)), min1≤i≤n{αi} ≥ 1.

Proof: The proof is composed of two parts. In part
1, we show the continuous of EWi(t, x(t)). The as-
sertion ii) is proved by Theorem 3.1 in part 2. Let
x(t) = x(t, ξ), Wi(t) = Wi(t, x(t)), i = 1, · · · , n for sim-
plicity.

Part 1: For sufficiently large number k, set ρk = inf{t ≥
0 : Wi(t, x(t)) > k, i = 1, · · · , n}. Applying the Itô
formula to system (1) and using the Hölder inequality
yields

EWi(t ∧ ρk) ≤ EWi(0)

+

∫ t

0

n∑
j=1

ai j
(
EW j(s ∧ ρk)

)1/r(EWi(s ∧ ρk)
)1/r′

+

∫ t

0

n∑
j=1

bi j
(
EWi(s ∧ ρk)

)1/r′

× ( ∫ 0

−τ
EW j((s + θ) ∧ ρk)dη j(θ)

)1/rds

+

∫ t

0

(
EWi(s ∧ ρk)

)1/r′ |ui(s ∧ ρk)|ds.

(18)

By virtue of the Young inequality

vςv1−ς ≤ ςu + (1 − ς)v, ∀u, v ≥ 0, ς ∈ (0, 1),

and compute that

EWi(t ∧ ρk) ≤ EWi(0)

+

∫ t

0

n∑
j=1

ai j

(
r′−1EWi(s ∧ ρk) + r−1EW j(s ∧ ρk)

)
ds

+

∫ t

0

n∑
j=1

bi j

(
r′−1EWi(s ∧ ρk)

+ r−1 sup
−τ≤θ≤0

EW j
(
(s + θ) ∧ ρk

))
ds

+

∫ t

0

[(
r′−1EWi(s ∧ ρk)

)1/r′
+ r−1ur

i (s ∧ ρk)
]
ds.

(19)

and then

sup
0≤t≤t1

EWi(t ∧ ρk)

≤ EWi(0) + r−1
n∑

j=1

bi j sup
−τ≤s≤0

EW j(s ∧ ρk)t1

+ E
n∑

j=1

(
ai j + bi j

) ∫ t1

0

(
r′−1 sup

0≤s≤t
Wi(s ∧ ρk)

+ r−1 sup
0≤s≤t

W j(s ∧ ρk)
)
dt

+

∫ t1

0

((
r′−1 sup

0≤s≤t
EWi(s ∧ ρk)

)1/r′

+ r−1 sup
0≤s≤t
|ui(s ∧ ρk)|r

)
dt.

(20)

Summing sup0≤t≤t1 EWi(t ∧ ρk) from 1 to n yields

n∑
i=1

sup
0≤t≤t1

EWi(t ∧ ρk) ≤
n∑

i=1

EWi(0)

+

(
r−1

n∑
i=1

n∑
j=1

bi j sup
−τ≤s≤0

EW j(s ∧ ρk)
)
t1

+ r′−1
n∑

i=1

n∑
j=1

(ai j + bi j)
∫ t1

0
sup

0≤s≤t
EWi(s ∧ ρk)dt

+ r−1
n∑

i=1

n∑
j=1

(ai j + bi j)
∫ t1

0
sup

0≤s≤t
EW j(s ∧ ρk)

+

∫ t1

0

((
r′−1 sup

0≤s≤t

n∑
i=1

EWi(s ∧ ρk)
)1/r′

+ r−1 sup
0≤s≤t

n∑
i=1

|ui(s ∧ ρk)|r
)
dt.
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which means

n∑
i=1

sup
0≤t≤t1

EWi(t ∧ ρk) ≤ K + Mt1

+β

∫ t1

0
sup

0≤s≤t

n∑
i=1

EWi(s ∧ ρk)dt. (21)

where β = max1≤i≤n

(
r′−1 ∑n

j=1(ai j +

bi j + 1) + r−1 ∑n
j=1(a ji + b ji)

)
, M =

r−1
(∑n

i=1
∑n

j=1 bi j sup−τ≤s≤0 EW j(s ∧ ρk) +
∑n

i=1 ∥ui∥rp
)
.

Setting l(k)(t) =
∑n

i=1 sup0≤s≤t EWi(s ∧ ρk), (21) can be
rewritten as

l(k)(t1) ≤ Ξ + Mt1 +
∫ t1

0
βl(k)(t)dt. (22)

The Gronwall inequality implies that

l(k)(t1) ≤ Ξ + Mt1 + β
∫ t1

0
exp{β(t1 − s)}(Ξ + Ms)ds.

By virtue of the well-known Fatou Lemma, we have

E
(

sup
0≤s≤t

n∑
i=1

Wi(s, x(s))
)

= E
(

sup
0≤s≤t

n∑
i=1

lim inf
k→∞

Wi(s ∧ ρk)
)

≤ E
(

lim inf
k→∞

sup
0≤s≤t

n∑
i=1

Wi(s ∧ ρk)
)

≤ lim inf
k→∞

E
(

sup
0≤s≤t

n∑
i=1

Wi(s ∧ ρk)
) ≤ Ξ + Mt+

β1

∫ t

0
exp{β(t − s)}(Ξ + Ms)ds < ∞, t > 0,

which implies the required assertion i).
Part 2: Now we begin to prove the assertion ii). The
proof consists of two steps. The first step is to indicate
the upper bound of

(
EWi(t, x(t))

)1/r − βt
i, i = 1, · · · , n

can be controlled by a exponential function. The second
step is to show that the exponent should not be greater
than −γr.

Step 1 of Part 2: Since Λ − (A + B) is a nonsingu-
lar M-matrix, there exists α ∈ ΩM(Λ − (A + B)) with
min1≤i≤n{αi} ≥ 1 such that

µiαi −
n∑

j=1

ai jα j −
n∑

j=1

bi jα j > 0, i = 1, · · · , n.

Setting βi =
(∑n

j=1 bi jα j
)−1(
µiαi −

∑n
j=1 ai jα j

)
, for any

qi ∈ (1, βr
i ), we have

µiαi −
n∑

j=1

ai jα j − q1/r
i

n∑
j=1

bi jα j > 0, i = 1, · · · , n,

which meansΛ−(A+QB) is still a nonsingular M-matrix
with Qr = diag{q1, · · · , qn}, qi ∈ (1, βr

i ), i = 1, · · · , n. If
t ≥ 0, φ ∈ Lw

Ft
([−τ, 0]; Rn) satisfying

EWi(t + θ, φ(θ)) ≤ qiEWi(t, φ(0)), i = 1, · · · , n.

By the condition (15)

EL Wi(t, xt, u) ≤ −µiEWi(t, x(t))

+
(
EWi(t, x(t))

)1/r′ |ui(t)| +
n∑

j=1

(ai j

+ q1/r
i bi j)

(
EWi(t, x(t))

)1/r′(EW j(t, x(t))
)1/r
.

So by Theorem 3.1, the global solution to system (27)(
EWi(t, x(t))

)1/r

≤ αiΞ
1/r exp{−γ′t} + βt

i, i = 1, · · · , n. (23)

where γ′ = γ̂′i, rγ
′
i = τ

−1 log(qi)∧α−1
i

(
µiαi −

∑n
j=1(ai j +

qibi j)
)
.

Step 2 of Part 2: Set fi(qi) = τ−1 log q1/r
i and hi(qi) =

α−1
i

(
µiαi −

∑n
j=1(ai j + q1/r

i bi j)
)
, i = 1, · · · , n. Sim-

ple computations show that fi(qi) is increasing func-
tion on (1, βr

i ) while hi(qi) are decreasing function for
i = 1, · · · , n. Combining with the fact that fi(1) = 0 <
hi(1), fi(βr

i ) > 0 = hi(βr
i ), we can claim that there exists

a unique q∗i such that γ′i (q
∗
i ) = fi(q∗i ) = hi(q∗i ). By the

definition of q∗i we have

γ′i (q
∗
i ) = sup

{
τ−1 log q1/r

i |τ
−1 log q1/r

i

− r−1α−1
i

(
µiαi −

n∑
j=1

(ai j + qibi j)
)
< 0, qi > 0

}
= sup

{
θi|αiθ − r−1µiαi + r−1

n∑
j=1

ai jα j

+ eθτr−1
n∑

j=1

bi jα j < 0, θ > 0
}
.

Moreover, we can claim that

γr = sup
{
θ > 0, αiθ − r−1µiαi + r−1

n∑
j=1

ai jα j

+ eθτr−1
n∑

j=1

bi jα j < 0, i = 1, · · · , n} = γ̂′i(q∗i ).
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It yields the desired assertion ii). The proof is complet-
ed.

If
∑n

i=1 Wi(t, x) has a infinity lower bound as |x|p, we
have the following criteria on pth exponential ISS of
SFDS (1).

Corollary 3.1: Let all the assumptions of Theorem 3.2
hold. Moreover, if there exists C1 > 0, p > 0 such that

C1|x|p ≤
n∑

i=1

Wi(t, x), t ≥ 0. (24)

Then the system (1) is pth moment exponential ISS.
Proof: It follows from the assertion ii) of Theorem 3.2
that

EWi(t, x(t)) ≤
(
αiΞ

1/r exp{−γt} + βt
i

)r

≤ 2r−1αr
iΞ + 2r−1(βt

i
)r
.

By condition (24), we compute that

E|x(t)|p ≤ C−1
1 2r−1

n∑
i=1

αr
iΞ exp{−rγt}

+C−1
1 2r−1

n∑
i=1

[(βt
i)

p]r/p. (25)

By virtue of the definition of βt that

(βt
i)

p =
(
ei(Λ − (A + B))−1ut)p

≤ |ei(Λ − (A + B))−1|p|ut |p.

Taking the supremum of βp
i (t) over interval [0,∞) yields

sup
0≤t≤∞

β
p
i (t) ≤ |ei(Λ − (A + B))−1|p∥u∥p∞. (26)

Submitting (26) into (25) yields

E|x(t)|p ≤ L exp{−rγrt}E∥ξ∥p + χ(|u|p∞),

where L = C−1
1 2r−1

n∑
i=1
αr

i , χ(t) = C−1
1 2r−1 ∑n

i=1 |ei(Λ −

(A + B))−1|rtr/p. The proof is completed.

Remark 3: In fact, the moment boundedness can be
guaranteed by those L V operator whose upper bound
may take a much more general form. More detailed
understanding on this topic can be referred to [11], [21]
and reference therein.

Remark 4: It is worth emphasizing that the vector
operator differential inequality (15) in Theorem 3.2 is
a generalisation of the existing operator inequalities

on exponential stability for SFDSs which are in terms
of SLF (see [16]) or VLF (see [27], [29]). Especially,
the inequality (15) has several advantage in discussing
pth moment exponential stability for stochastically
perturbed neural networks and stochastically perturbed
generalized ecological systems. When taking V = |x|p,
the cross-item, such as, |xi|p−1|x j| are inevitable encoun-
tered. In order to establish the sufficient criteria, the
cross-item are amplified by the elementary inequalities.
With the help of Theorem 3.2, the amplification might
be avoided when discussing these systems. It could be
inferred that the vector operator differential inequality
(15) has several advantages over those operator differ-
ential inequalities in [16], [27], [29] for stochastically
perturbed neural networks and stochastically perturbed
generalized ecological systems, which can be illustrated
by the examples given in Section 4.

Consider an SDDS of the form:

dx(t) = f (t, x(t), x(t − τ(t)))dt

+g(t, x(t), x(t − τ(t)))dB(t), (27)

on t ≥ 0 with initial data ξ ∈ C, where τ(·) : R+ → [0, τ]
is continuous and

f : R+ × R2n × Rn → Rn , g : R+ × R2n × Rn → Rn×m.

If we define F(t, φ) = f (t, φ(0), φ(−τ(0))), G(φ, t) =
g(t, φ(0), φ(−τ(0))), the system (27) can be seen as a
class of system (1).

By virtue of similar technique presented in the Theo-
rem 3.1 and Corollary 3.1, a sufficient criterion on pth
moment ISS on SDDSs is obtained as follows:
Corollary 3.2: Let all the assumption of Corollary 3.1
hold expect inequality (15) which is replaced by

L Wi(t, φ, u) ≤ −µiWi(t, φ(0))

+

n∑
j=1

ai j
(
W j(t, φ(0))

)1/r′(W j(t, φ(0))
)1/r

+

n∑
j=1

bi j
(
W j(t, φ(0))

)1/r′(W j(t − τ(t), φ(−τ(0)))
)1/r

+
(
Wi(t, φ(0))

)1/r′ |ui(t)|.
(28)

Then the system (27) is pth moment exponential ISS.

3.3. Exponential stability

When u(t) ≡ 0, the system (1) becomes

dx = F(t, xt)dt +G(t, xt)dB(t). (29)
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The pth moment exponential ISS degenerates into the
pth moment exponential stability. In this subsection,
we assume that F(t, 0) ≡ 0, G(t, 0) ≡ 0, and system
(29) has a unique trivial solution x(t; 0) ≡ 0. The
main aim of this subsection is to study the exponential
stability of system (29).

Theorem 3.3: Let all the assumptions of Theorem 3.2
hold and u(t) = 0. Moreover, if there exists D > 0 such
that for i = 1, 2, · · · , n

|
∂WT

i

∂x
(t, x(t))G(t, xt)| ≤ D

n∑
i=1

(
Wi(t, x(t))

+

∫ 0

−τ
Wi(t + θ, x(t + θ))dν j(θ)

)
, (30)

where ν1(θ), · · · , νn(θ) are probability measures on
[−τ, 0]. Then we have the following property:

lim sup
t→∞

log EWi(t, x(t))
t

≤ −γr, (31)

lim sup
t→∞

log Wi(t, x(t))
t

≤ −γr a.s. i = 1. · · · .n.

(32)

Proof: Let x(t) = x(t, ξ), G(t) = G(t, xt), Wi(t) =
Wi(t, x(t)), i = 1, · · · , n for simplicity. The property
(31) follows by condition (17) with v(t) = 0 in Theorem
3.2 immediately. Now we proceed to show the property
(32). Write ∥Wi,kτ∥ = sup0≤θ̄≤τWi(kτ+ θ̄) for any integer
k > 0. By the Itô’s formula, it is easy to show

Wi(kτ + θ̄) = Wi(kτ)

+

∫ kτ+θ̄

kτ
L Wi(s)ds +

∫ kτ+θ̄

kτ

∂WT
i

∂x
G(s)dB(s)

≤ Wi(kτ) +
∫ kτ+θ̄

kτ

n∑
j=1

ai j
(
W j(s)

)1/r(Wi(s)
)1/r′ds

+

∫ kτ+θ̄

kτ

n∑
j=1

bi j
( ∫ 0

−τ
W j(s + θ)dν j(θ)

)1/r

× (
Wi(s)

)1/r′ds + |
∫ kτ+θ̄

kτ

∂WT
i

∂x
G(s)dB(s)|.

(33)

Making use the Young inequality (stated in Theorem

3.2) with ς = 1/2, we then have

E sup
0≤θ̄≤τ

Wi(kτ + θ̄) ≤ EWi(kτ) +
∫ (k+1)τ

kτ

n∑
j=1(

r′−1(ai j + bi j)EWi(s) + r−1ai jEW j(s)

+r−1bi j

∫ 0

−τ
EW j(s + θ)dη j(θ)

)
ds

+E sup
0≤θ̄≤τ

|
∫ kτ+θ̄

kτ

∂WT
i

∂x
G(s)dB(s)|. (34)

By the Burkholder-Davis-Gundy inequality

E sup
0≤θ̄≤τ

|
∫ kτ+θ̄

kτ

∂WT
i

∂x
G(s)dB(s)|

≤
√

32E
( ∫ (k+1)τ

kτ
|
∂WT

i

∂x
G(s)|2ds

) 1
2

≤
√

32DE
( ∫ (k+1)τ

kτ

( n∑
j=1

W j(s)

+

∫ 0

−τ
W j(s + θ)dν j(θ)

)2ds
) 1

2

≤ 2
√

2DE
[
ε sup

0≤θ̄≤τ

( n∑
j=1

W j(kτ + θ̄)

+ sup
−τ≤θ≤0

n∑
j=1

W j(kτ + θ̄ + θ)
)

+ε−1
∫ (k+1)τ

kτ

( n∑
j=1

W j(s)

+

n∑
j=1

∫ 0

−τ
W j(s + θ)dν j(θ)

)
ds

]
.

(35)

Choosing ε = (4
√

2D)−1(2 + exp{rγrτ})−1 yields

E sup
0≤θ̄≤τ

|
∫ kτ+θ̄

kτ

∂WT
i

∂x
G(s)dB(s)|

≤ (2n + n exp{γrτ})−1

×
n∑

j=1

(
E∥W j,kτ∥ + 0.5E∥W j,(k−1)τ∥

)
+16D2n(2 + exp{γrτ})

∫ (k+1)τ

kτ

n∑
j=1

(
EW j(s)

+

∫ 0

−τ
EW j(s + θ)dν j(θ)

)
ds. (36)
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By condition (17) with v(t) = 0, we compute that

E
∫ (k+1)τ

kτ
W j(s)ds ≤ Kαr

jτ exp{−rγr}kτ,

E
∫ (k+1)τ

kτ

∫ 0

−τ
W j(s + θ)dν(θ)

≤ Kαr
jτ exp{rγrτ} exp{−rγr}kτ. (37)

Substituting (36) and (37) into (34) yields

E∥Wi,kτ∥ = (2n + n exp{rγrτ})−1
n∑

i=1

E∥Wi,kτ∥

+(4n + 2n exp{rγrτ})−1
n∑

i=1

E∥Wi,(k−1)τ∥

+

n∑
i=1

Ci exp{−rγrt},

where Ci = Kαr
i + Kτ

(
r′−1 ∑n

j=1(ai j + bi j)αr
i +

r−1 ∑n
j=1 ai jα

r
j + r−1 ∑n

j=1 bi jα
r
j exp rγrτ + 16nD2(2 +

exp rγrτ)
∑n

j=1 α
r
j(1 + exp rγrτ)

)
. Summing E∥Wi,kτ∥

from 1 to n yields

n∑
i=1

E∥Wi,kτ∥

= (2 + exp{rγrτ})−1
n∑

i=1

E∥Wi,kτ∥ +
n∑

i=1

Ci exp{−rγrt}

+ (4 + 2 exp{rγrτ})−1
n∑

i=1

E∥Wi,(k−1)τ∥,

This implies for any k = 0, 1, · · · ,

n∑
i=1

E∥Wi,kτ∥ ≤
1

2 + 2 exp{rγrτ}

n∑
i=1

E∥Wi,(k−1)τ∥

+
1

1 − (2 + exp{rγrτ})−1

n∑
i=1

Ci exp{−rγrkτ}.

For any ε ∈ (0, γr), it follows from Chebyshev inequali-
ty that

P
{∥Wi,kτ∥ > Ci exp{−r(γr − ε)kτ}

}
≤ exp{r(γr − ε)kτ}E∥Wi,kτ∥

≤ exp{r(γr − ε)kτ}
n∑

i=1

E∥Wi,kτ∥.

Setting Ak =
{∥Wi,kτ∥ > exp{−p(γr − ε)kτ}

}
. Note that

exp{r(γr − ε)kτ}
n∑

i=1

E∥Wi,kτ∥ ≤
exp{r(γr − ε)τ}
2 + 2 exp{rγrτ}

× exp{r(γr − ε)(k − 1)τ}
n∑

i=1

E∥Wi,(k−1)τ∥

+

n∑
i=1

Ci

1 − (2 + exp{rγrτ})−1 exp{−rεkτ},

k = 0, 1, · · ·

Let υ1 = exp{r(γr − ε)τ}(2 + 2 exp{rγrτ})−1 < 1, υ2 =

Ci(1 − (2 + exp{rγrτ})−1)−1. Summing exp{2(γr −
ε)kτ}∑n

i=1 E∥Vi,kτ∥ from 0 to∞ yields

∞∑
k=0

exp{r(γr − ε)kτ}
n∑

i=1

E∥Wi,kτ∥

≤ υ1

∞∑
k=0

exp{r(γr − ε)kτ}
n∑

i=1

E∥Wi,kτ∥

+ υ2
1

1 − exp{−rεkτ} +
n∑

i=1

E∥Wi,0∥,

which means
∑∞

k=0 exp{r(γr − ε)kτ}E∥Wi,kτ∥ < ∞. The
well-known Borel-Cantelli Lemma (see [16]) yields

P
( ∞∪

k=1

∞∩
k=n

Ac
k
)
= 1.

This implies for any ω ∈ ∪∞
k=1

∩∞
k=n Ac

k, there exists an
integer N(ω) such that for all k ≥ N(ω), we have

sup
kτ≤t≤(k+1)τ

Wi(t) ≤ Ci exp{−r(γr − ε)kτ} a.s.

For any k ≥ N0, t ∈ [kτ, (k + 1)τ], we have

Wi(t) ≤ Ci exp{γrτ} exp{−rγrt} a.s. (38)

Hence we have assertion (32) as desired. The proof is
completed.

Remark 5: Noting that the condition (30) is specialized
for the almost surely exponentially stable. For those
systems satisfying LGC along with the power function
type bilateral condition posed on Lyapunov function,
the L -operator differential inequality (15) can be re-
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placed by the weaker inequality as following

EL Wi(t, xt)

≤ −µiEWi(t, x(t)) +
n∑

j=1

bi j
(
EWi(t, x(t))

)1/r′

× sup
−τ≤θ≤0

(
EW j(t + θ, x(t + θ))

)1/r

+

n∑
j=1

ai j
(
EWi(t, x(t))

)1/r′(EW j(t, x(t))
)1/r
.

(39)

When ai j = 0 and p = 1 or p = 2, the inequalities (39)
have the same structure as the inequalities presented by
Shen and Wang in [22] in the constant coefficient case.

Remark 6: Noting, for G = 0, the SFDS (29) degener-
ate into the deterministic functional differential system.
In this case, the boundedness of pth moment and the
Ft−adapted of solution x(t) are not required. Taking
r = 1, the L -operator differential inequality (39) has a
concise form for the deterministic system as following:

D+Wi(t, x(t)) ≤ −µiWi(t, x(t)) +
n∑

j=1

ai jW j(t, x(t))

+

n∑
j=1

bi j sup
−τ≤θ≤0

W j(t + θ, x(t + θ)).

(40)

Setting pii = aii − µi, pi j = ai j, i , j, qi j = bi j, the in-
equality (40) becomes the vector L -operator differen-
tial inequality presented in [27] without external input.

We now use Theorem 3.3 to establish a useful corol-
lary.
Corollary 3.3: Let all the assumptions of Theorem
3.2 hold. Moreover, if there exists (c1, · · · , cn) ≫
0, (p1, · · · , pn) ≫ 0 such that

ci|ui|pi ≤ Wi(t, u), t ≥ 0, i = 1, · · · , n.

Then the global solution x(t; ξ) to system (27) has the
following property

lim sup
t→∞

log E|ui(t)|pi

t
≤ −rγr,

lim sup
t→∞

log |ui(t)|
t

≤ − rγr

pi
a.s., i = 1, · · · , n.

Remark 7: Compared with existing criteria in [10], [11],
[17], [21], our criteria show that different component
might has different degree of stability in moment sense
and almost sure sense. Hence, our criteria provided a
more detailed description on the asymptotic behavior

of system than that of these existing criteria.

Remark 8: It is well known that the almost sure expo-
nential stability can be acquired by the moment expo-
nential stability under the LGC imposing on both drift
coefficient and diffusion coefficient in [3], [12] and [16].
It was Wu and Hu who first pointed out that the LGC
imposing on both drift coefficient is not necessary [26].
In comparison with Wu and Hu [26], our criteria further
point out that that the LGC imposing on diffusion coef-
ficient can be replaced by a more generalized condition
(30).

4. Application and Numerical Examples

4.1. Neural Networks
Recurrent neural networks (RNNs) have been widely

applied in many fields (see [34], [35], [36] ) owing to
the pioneering work of Hopfield [33]. It is well known
that neural networks are often affected by external in-
puts, such as perturbations in control or errors on ob-
servation. Recently, we have also noticed that more and
more scholars begin to discuss the p-th moment ISS of
neural networks by means of the vector Lyapunov func-
tion methods, see, e.g., [4], [31]. Moreover, Haykin [32]
points out that in real nervous systems, synaptic trans-
mission “. . . is a noisy process brought on by ran-
dom fluctuations from the release of neurotransmitters,
and other probabilistic causes”. Thus, it is interesting
to study how noise affect the ISS of neural networks.
The approach used in the current paper is to view neural
networks as nonlinear dynamical systems with intrinsic
noise and external input, described by the following s-
tochastic differential delay system

dx(t) =
( − Dx(t) + A f (x(t)) + B f (x(t − τ(t))) + u(t)

)
dt

+ σ(x(t))dB(t),
(41)

where x(t) =
(
x1(t), x2(t), · · · , xn(t)

)T ∈ Rn are the s-
tate vector, f (x(t)) =

(
f1(x1(t)), · · · , fn(xn(t))

)T , f (x(t −
τ(t))) =

(
f1(x1(t − τ1(t))), f2(x2(t − τ2(t))), · · · , fn(xn(t −

τn(t)))
)T are the neuron activation function with fi(0) =

0, τi(t) > 0 are the transmission delay. Moreover, D =
diag

(
d1, · · · , dn

)
is a self-feedback connection weight

matrix with di > 0, A and B are connection weight ma-
trices associated without delay and with delay, respec-
tively. σ(x) = diag

(
σ1x1, · · · , σnxn

)
is the noise intensi-

ty matrix. System (41) can be regarded as the stochas-
tically perturbed system of corresponding deterministic
RNN. Now we present need the following assumptions
which we will use later.
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Assumption 2: For i = 1, · · · , n, there exists κi > 0 such
that ∀ θ1, θ2 ∈ R

0 ≤ fi(θ1) − fi(θ2)
θ1 − θ2

≤ κi,

for all i = 1, 2, · · ·, n. Denoted K = diag
(
κ1, · · · , κn

)
.

Noting that the system (41) is a weak nonlinear sys-
tem and the structure of every component state is alike,
choosing |xi|p for every state xi. Thus the vector Lya-
punov function for system (41) is (|x1|p, |x2|p, · · · , |xn|p).
Then the following Theorem 4.1 for system (41) follows
from Theorem 3.1 straightforward.
Theorem 4.1: Let Assumption 2 hold. The system (41)
is said to be p-th moment exponentially input-to-state
stable provided Λ(p, σ) − (|Ā| + |B|)K is a nonsingular
M-matrix with Λ(p, σ) = D − 0.5pdiag

(
σ2

1, · · · , σ2
n
)
.

Example 4.1: Consider a delayed two-neuron network
as follows:

dx1(t) =
(
− 1.2x1(t) − 0.7 f1(x1(t))

+0.8 f2(x2(t)) + 0.1 f1(x1(t − τ(t)))
+0.3 f2(x2(t − τ(t))) + 2| sin 8t|

)
dt

+
√

0.1x1(t)dB1(t),

dx2(t) =
(
− 2x2(t) + 0.4 f1(x1(t))

−0.5 f2(x2(t)) + 0.3 f1(x1(t − τ(t)))
−0.5 f2(x2(t − τ(t))) + | cos 4t|

)
dt

+
√

0.5x2(t)dB2(t).

(42)

where f (x) =
(

exp{2x} + exp{−2x})−1( exp{2x} −
exp{−2x}), the time-varying delay τ(t) = 1.8| sin(t)|.
Applying Itô formula to Wi(x) = |xi|p yields

L V1(xt, u(t)) ≤ −1.2p|x1(t)|p + 0.8p|x1(t)|p−1|x2(t)|
+ 0.1p|x1(t)|p−1|x1(t − τ(t))| + 0.3p|x1(t)|p−1

× |x2(t − τ(t))| + 2p|x1(t)|p−1| sin 8t|,
L V2(xt, u(t)) ≤ −2p|x2(t)|p + 0.4p|x2(t)|p−1|x1(t)|
+ 0.3p|x2(t)|p−1|x1(t − τ(t))| + 0.5p|x2(t)|p−1

× |x2(t − τ(t))| + p|x2(t)|p−1| cos 4t|.

The parameter matrix in Theorem 4.1 become as:

Λ(p, σ) =
(
1.2 − 0.05(p − 1) 0

0 2 − 0.25(p − 1)

)
.

|Ā| =
(

0 0.8
0.4 0

)
, |B| =

(
0.1 0.3
0.3 0.5

)
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The transient state of (x1(t), x2(t)) with
τ(t) = 1.8| sin(t)| in Example 4.1.

By Theorem 2.10 in [15], we can show that
Λp − (Ap + Bp) is a nonsingular M-matrix for any
p ∈ (0, 4.3674). According to Theorem 3.2 and Corol-
lary 3.2, the system (42) is pth moment exponentially
input-to-state stable.

Remark 9: It is obvious that the system (42) is mean
square exponential ISS. Now we process to apply the
existing results in [31] to show the effectiveness of our
criteria. For system (42), the parameters matrix T and
S become

T =
(
−0.1 0.8
0.4 −2.3

)
, S =

(
0.1 0.3
0.3 0.5

)
.

Simple computations show that −(T+S ) is not a nonsin-
gular M-matrix, which means the Corollary 3.1 in [31]
could not be applied to the system.

4.2. A numerical example

Example 4.2: Consider a two-dimensional non-
autonomous system with the form

dx1(t) =
√
|x1(t)|

[(
− 2signx1(t)

√
|x1(t)|

+0.5| sin t|x2(t) + 0.5
∫ 0
−1 x2(t + θ)dη(θ)

)
dt

+
√

0.5signx1(t)
√
|x1(t)|dB1(t)

]
,

dx2(t) =
(
− 2.4x2(t) + 0.6(1 + e−t)

√
|x1(t)|

+

√∫ 0
−1 |x1(t + θ)|dη(θ)

)
dt +

√
0.5x2(t)dB2(t).

(43)

where η(θ) = (1 − exp{−1})−1 exp{θ} is defined on
[−1, 0].

Such system and its alike can be seen as generalized
stochastic power law logistic model (see [? ] and the
references therein), and could been used to study the
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extinction of population systems under noise. The nu-
merical system (43) is a strong nonlinear system, of
which every component equation have different coef-
ficient structure. Thus different Lyapunov functions
should be chosen for every state component. Based on
detailed observation, V1 = |x1|3 is chosen for x1 and
V2 = |x2|6 is chosen for x2. Thus

L V1(t, xt)
≤ −5.4|x1(t)|3 + 1.5

(|x1(t)|3)5/6(|x2(t)|6)1/6

+1.5
(|x1(t)|)5/6( ∫ 0

−1 |x2(t + θ)|6dη(θ)
)1/6
,

L V2(t, xt)
≤ −11.4x2

6(t) + 7.2
(|x2(t)|6)5/6(|x1(t)|3)1/6

+6
(|x2(t)|6)5/6( ∫ 0

−1 |x1(t + θ)|3dη(θ)
)1/6
.

(44)

Under such vector Lyapunov function, the system (43)
can be transformed into a system with negative M-
matrix system, and the parameter in Theorem 3.2 can
be rewritten as

µ =

(
5.4 0
0 11.4

)
, A =

(
0 1.5

7.2 0

)
, B =

(
0 1.5
6 0

)
.

By simple computing, we derive that µ − (A + B) is a
nonsingular M-matrix, and γ6 = 0.2468 with choosing
α1 = 1, α2 = 1.5.

Remark 10: It is worth noting that the vector opera-
tor differential inequality (15) is more compatible with
the pth moment exponential ISS for stochastically per-
turbed neural network and stochastically perturbed gen-
eralized ecological systems than those in [16], [27],
[29].

Based on the vector operator differential inequality,
the choosing of Lyapunov function becomes easier than
those criteria describe by operator differential inequal-
ity. When choosing the classical quadratic function
W1 = x2

1 + x2
2, the L W1 has the form

L W1(t, xt)

≤ −3.5u2
1(t) − 4.3u2

2(t) + |x1(t)|3/2|x1(t)|

+ 0.5|x1(t)|3/2
∫ 0

−1
|x2(t + θ)|dη(θ)

+ 2.4
√
|x1(t)||x2(t)| + 2

∫ 0

−1
|x1(t + θ)|dη(θ).

(45)

Noting that the higher order of polynomial, such as
|x1(t)|3/2|x1(t)|, 0.5|x1(t)|3/2

∫ 0
−1 |x2(t+θ)|dη(θ), appear on

the right-hand side of inequality (45) and this prevents
the exiting results, such as, Theorem 8.7 in [16] from
being used for W1 = x2

1 + x2
2.

On the other hand, applying the Itô formula to W2 =

|x1|3 + x6
2 yields

L W2(t, xt)

≤ 3signx1|x1|2
( − 2x1(t) + 0.5

√
|x1||x2(t)|

+ 0.5
√
|x1(t)|

∫ 0

−1
|x2(t + θ)|dη(θ)) − 14.4x2

6(t)

+ 7.2
√
|x1(t)||x2(t)|5 + 6

( ∫ 0

−1
|x1(t + θ)|3dη(θ)

)1/6

× |x2(t)|5 + 0.6|x1(t)|3 + 3x6
2(t).

By the Young inequality (stated in Theorem 3.3), we
can show we have

L W2(t, xt) ≤ −0.15x6
2(t) + 0.25

∫ 0

−1
|x2(t + θ)|6dη(θ)

− 1.7|x1(t)|3 +
∫ 0

−1
|x1(t + θ)|3dη(θ).

Since 0.25 > 0.15, the existing stability criteria in [10],
[11], [17], [21], based on the SLF are invalid for W2 =

|x1|3 + x6
2.

0 2 4 6 8
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0.5
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2.0
2.5

3.0

t

x(t
)

x_{1}(t)
x_{2}(t)

The transient state of (x1(t), x2(t)) in Example 4.2.

5. Conclusion

This paper have studied the pth moment exponential
ISS for SFDSs. Firstly, by utilizing stochastic analysis
techniques and VLF, a vector Razumikhin-type theorem
has been derived, which might have a compatible struc-
ture with neural networks systems. Secondly, with the
help of the established Razumikhin-type theorem, suffi-
cient criteria on pth moment exponential ISS have been
established. Finally, for the systems with zero input, the
established criteria improved the conditions imposed on
exponential stability. Two numerical examples are pro-
vided to illustrate the superiority and effectiveness of
the proposed results.

12



Acknowledgement

The project reported here is supported by the National
Science Foundation of China (Grant Nos. 613040706),
the China Postdoctoral Science Foundation(Grant Nos.
2016M601698) and the Fundamental Research Fund-
s for the Central Universities of China. (Grant
No.2015B19814).

Reference

[1] L. Huang, X. Mao, and F. Deng, Stability of hybrid stochastic
retarded systems, IEEE Trans. Circuits Syst. I, 55(11), pp. 3413-
3420, 2008.

[2] L. Huang and X. Mao, On input-to-state stability of stochastic
retarded systems with Markovian switching, IEEE Trans. Au-
tomat. Contr., 54(8), pp. 1898-1902, 2009.

[3] S. Jankovic, J. Randjelovic, and M. Jovanovic, Razumikhin-type
exponential stability criteria of neutral stochastic functional dif-
ferential equations, J. Math. Anal. Appl., 355(2), pp. 811-820,
2009.

[4] Z. Li, L. Liu, and Q. Zhu, Mean-square exponential input-to-
state stability of delayed Cohen-Grossberg neural networks with
Markovian switching based on vector Lyapunov functions, Neu-
ral Networks, 84, pp. 39-46, 2016.

[5] S. Liu, J. Zhang, and Z. Jiang, A notion of stochastic input-to-
state stability and its application to stability of cascaded stochas-
tic nonlinear systems, Acta. Math. Appl. Sin-E, 24(1), pp. 141-
156, 2008.

[6] B. Liu and D. Hill, Input-to-state stability for discrete time-delay
systems via the Razumikhin technique, Syst. & Control Lett.,
58(8), pp. 567-575, 2009.

[7] L. Liu, Y. Shen, and F. Jiang, The almost sure asymptotic stabil-
ity and pth moment asymptotic stability of nonlinear stochastic
differential systems with polynomial growth, Asian Journal of
Control, 14(3), pp. 859-867, 2012.

[8] L. Liu and Y. Shen, Noise suppresses explosive solutions of d-
ifferential systems with coefficients satisfying the polynomial
growth condition, Automatica, 48, pp. 619-624, 2012.

[9] L. Liu, New criteria on Exponential stability for stochastic delay
differential systems based on vector Lyapunov function, IEEE
Trans. on Systems, Man, and Cybernetics: Systems, 2016.

[10] Q. Luo, X. Mao, and Y. Shen, New criteria on exponential sta-
bility of neutral stochastic differential delay equations, Syst. &
Control Lett., 55(10), pp. 826-834, 2006.

[11] Q. Luo, X. Mao, and Y. Shen, Generalised theory on asymptot-
ic stability and boundedness of stochastic functional differential
equations, Automatica, 47(9), pp. 2075-2081, 2011.

[12] X. Mao, Razumikhin-type theorems on exponential stability of
stochastic functional differential equations, Stoch. Proc. Appl.,
65(2), pp. 233-250, 1996.

[13] X. Mao, Razumikhin-type theorems on exponential stability
of neutral stochastic functional differential, SIAMJ. on Math.
Anal., 28(2), pp. 389-401, 1997.

[14] X. Mao, A. Rodkina, and N. Koroleva, Razumikhin-type the-
orems for neutral stochastic functional differential equations,
Functional Differential Equations, 5, pp. 195-211, 1998.

[15] X. Mao and C. Yuan, Stochastic Differential Equations with
Markovian Switching, London, U.K.: Imperial College Press,
2006.

[16] X. Mao, Stochastic Differential Equations and Applications,
Horwood: Chichester, 2007.

[17] X. Mao, Y. Shen, and C. Yuan, Almost surely asymptotic stabil-
ity of neutral stochastic differential delay equations with Marko-
vian switching, Stoch. Proc. Appl., 118(8), pp. 1385-1406,
2008.

[18] C. Ning, Y. He, and M. Wu, Improved Razumikhin-type theo-
rem for input-to-state stability of nonlinear time-delay systems,
IEEE Trans. Automat. Contr., 59(7), pp. 1983-1988, 2014.

[19] P. Pepe and Z. Jiang, A Lyapunov-Krasovskii methodology for
ISS and iISS of time-delay systems”, Syst. & Control Lett.,
55(12), pp. 1006-1014, 2006.

[20] S. Nersesov and W. Haddad, On the stability and control of non-
linear dynamical systems via vector Lyapunov functions, IEEE
Trans. Automat. Contr., 51(20), pp. 203-215, 2006.

[21] Y. Shen, Q. Luo, and X. Mao, The improved LaSalle-type the-
orems for stochastic functional differential equations, J. Math.
Anal. Appl., 318(1), pp. 134-154, 2006.

[22] Y. Shen and J. Wang, Almost sure exponential stability of recur-
rent neural networks with Markovian switching, IEEE Trans.
Neural Netw., 20(5), pp. 840-855, 2009.

[23] E. Sontag, Smooth stabilization implies coprime factorization,
IEEE T. Automat. Contr., 34(4), pp. 435-443, 1989.

[24] J. Tsinias, Stochastic input-to-state stability and applications to
global feedback Stabilization, Int. J. Control, 71(5), pp. 907-
930, 1998.

[25] X. Wang, Q. Guo, and D. Xu, Exponential p-stability of im-
pulsive stochastic Cohen-Grossberg neural networks with mixed
delays, Math. Comput. Simulat., 79(5), pp. 1698-1710, 2009.

[26] F. Wu and S. Hu, Razumikhin-type theorems on general decay
stability and robustness for stochastic functional differential e-
quations, Int. J. Robust. Nonlin., 22, pp. 763-777, 2012.

[27] D. Xu and Z. Yang, Impulsive delay differential inequality and
stability of neural networks, J. Math. Anal. Appl., 305(1), pp.
107-120, 2005.

[28] D. Xu, W. Zhu, and S. Long, Global exponential stability of
impulsive integro-differential equation, Nonlinear Anal. TMA.,
64(12), pp. 2805-2816, 2006.

[29] L. Xu and D. Xu, P-attracting and p-invariant sets for a class of
impulsive stochastic functional differential equations, Comput.
Math. Appl., 57(1), pp. 54-61, 2009.

[30] P. Zhao, W. Feng, and Y. Kang, Stochastic input-to-state sta-
bility of switched stochastic nonlinear systems, Automatica,
48(10), pp. 2569-2576, 2012.

[31] W. Zhou, L. Teng, and D. Xu, Mean-square exponentially input-
to-state stability of stochastic Cohen-Grossberg neural network-
s with time-varying delays, Neurocomputing, 153, pp. 54-61,
2015.

[32] S. Haykin, Neural Networks, Prentice-Hall, NJ, 1994.
[33] J. Hopfield, “Neural networks and physical systems with emer-

gent collective computational abilities”, Proc. Nat. Acad. Sci.
(Biophysics), vol. 79, pp. 2554-2558, Apr. 1982.

[34] Long Cheng,Zeng-Guang Hou, Yingzi Lin, Min Tan, Wenjun
Chris Zhang, and Fang-Xiang Wu, Recurrent Neural Network
for Non-Smooth Convex Optimization Problems With Applica-
tion to the Identification of Genetic Regulatory Networks IEEE
Transactions on Neural Networks Volume: 22, Issue: 5, May
2011 Page(s): 714 - 726

[35] Q. Liu and J. Wang, A one-layer projection neural network for
nonsmooth optimization subject to linear equalities and bound
constraints, IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 24, no. 5, pp. 812C824, May 2013.

[36] Zhigang Zeng, Jun Wang, Design and analysis of high-capacity
associative memories based on a class of discrete-time recur-
rent neural networks, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, Vol.38, No.6, pp.1525-1536,
2008.

13



[37] V.B. Kolmanovskii and V.R. Nosov, Stability of Functional Dif-
ferential Equations (Academic Press, New York, 1986).

[38] On the stability of systems with a delay BS Razumikhin - Prikl.
Mat. Mekh, 1956

[39] Application of Liapunov’s method to problems in the stability
of systems with a delay BS Razumikhin - Automat. i Telemeh,
1960

[40] Stability of motion: applications of Lyapunov’s second method
to differential systems and equations with delay NN Krasovskii,
J McCord, J Gudeman - 1963 - Stanford university press

[41] Bahar, A., Mao, X. (2008). Persistence of stochastic power law
logistic model. J. Appl. Probab. Stat., 3(1), 37C43.

14


