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Abstract
The potential to bioprint and study 3Dbacterial biofilm constructs could have great clinical significance
at a timewhen antimicrobial resistance is rising to dangerously high levelsworldwide. In this study,
clinically relevant bacterial species includingEscherichia coli, Staphylococcus aureus (MSSA),Methicillin-
resistant Staphylococcus aureus (MRSA) andPseudomonas aeruginosawere 3Dbioprinted using a
double-crosslinked alginate bioink to formmature bacteria biofilms, characterized by confocal laser
scanningmicroscopy (CLSM) andfluorescent staining. Solid andporous bacteria-laden constructswere
reproducibly bioprintedwith thicknesses ranging from0.25 to 4mm.Wedemonstrated 3Dbioprinting
of thicker biofilms (>4mm) than found in currently available in vitromodels. Bacterial viabilitywas
excellent in the bioprinted constructs,withCLSMobservation of bacterial biofilmproduction and
maturationpossible for at least 28 d in culture. Importantly,weobserved the completefive-step biofilm
life cycle in vitro following3Dbioprinting for thefirst time, suggesting the formationofmature 3D
bioprinted biofilms. Bacterial growthwas faster in thinner,more porous constructswhilst constructs
crosslinkedwithBaCl2 concentrations of above 10mMhaddenser biofilm formation. 3DMRSAand
MSSAbiofilm constructswere found to showgreater resistance to antimicrobials than corresponding
two-dimensional (2D) cultures. Thicker 3DE. colibiofilms had greater resistance to tetracycline than
thinner constructs over 7 d of treatment.Ourmethodology allowed for the precise 3Dbioprinting of
self-supporting 3Dbacterial biofilm structures that developed biofilms during extended culture. 3D
biofilm constructs containing bacterial biofilms produce amodelwithmuch greater clinical relevance
compared to 2D culturemodels andwehave demonstrated their use in antimicrobial testing.

Introduction

Biofilms can be defined as three dimensional (3D)
structured communities of bacterial cells enclosed in a
self-produced polymeric matrix, attached to a solid
surface or substratum [1]. Bacterial biofilm formation is
crucial to establishing chronic infections including
respiratory infection [2], orthopaedic infection [3], heart
valve infection (endocarditis) [4], and nosocomial

infections [5]. In the case of acute infections, bacteria
often exist in the planktonic (or free-swimming) state,
allowing effective treatment with antimicrobials. How-
ever, once a biofilm develops infections are known to be
10–1000 times more resistant to antimicrobial agents,
often rendering standard antimicrobial therapy ineffec-
tivewithoutmore invasive treatment such as surgery [6].
In the United States of America alone, there are 17
million new biofilm-associated bacterial infections that
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lead to estimated health care costs of $94 billion and
550 000 deaths each year [7]. According to the World
Health Organization (WHO), urgent action is required
to avoid a ‘post-antibiotic era’, in which common
infections and minor injuries can once again kill;
antimicrobial resistance (AMR) is projected to result in
10million deaths every year globally by 2050 [8]. Global
concern about AMR is compounded by the fact that it
has been 30 years since a new class of antibiotics was last
introduced [9]. Therefore, increasing importance is
being placed on drug screening, and in particular,
antimicrobial susceptibility testing (AST), which
requires suitable models that more closely resemble
in vivobiofilm formation.

The minimum inhibitory concentration (MIC) of
antimicrobial agents (defined as the lowest concentra-
tion of an antimicrobial agent at which visible bacterial
growth is inhibited after overnight incubation) is fre-
quently calculated during AST to assess antimicrobial
efficacy and bacterial resistance [10]. Methods to
determine the MIC based on two-dimensional (2D)
planktonic cultures of bacteria are well established
[11]. However, determining the minimal biofilm era-
dicating concentration (MBEC) in biofilm infections
is much more challenging. This is primarily because
in vivo biofilm formation is 3D in architecture, which
differs to most currently available laboratory models
that tend to involve 2Dbiofilm culture [12–14]. AST of
planktonic bacteria therefore tends to give misleading
results that do not reflect the increased resistance of
bacteria living in a 3D biofilm [15, 16]. This has sig-
nificant clinical implications; for example, anti-
microbial agents are usually chosen on the basis of
their efficacy against 2D planktonic cultures which are
more sensitive to treatment than 3D biofilms. Clini-
cally this is well demonstrated by cystic fibrosis
patients, where treatment of P.aeruginosa infection
with antibiotics originally developed against plank-
tonic cultures often becomes ineffective once biofilm
formation occurs [15]. To develop novel anti-
microbials capable of disrupting biofilm formation
and resistance in future, 3D in vitro biofilm models
more representative of clinical infection are required.

Most commonly used 2D biofilm culture methods
attempt to simulate the nature of the in vivo environ-
ment by focussing on selected relevant factors such as
materials, nutrients and, importantly, fluid flow
including drip flow [16], rotating disk [17], micro-
fluidics [18], and flow chamber architecture [19].
Unfortunately, none of these methods mimic the
complexity of the 3D microenvironment and host
defence mechanisms [20] and unable to produce bio-
film thicknesses beyond 100 μm [21, 22]. In contrast
to the current in vitro models, in vivo biofilms can
grow beyond 1000 μm in size and are often found
embedded within a host’s extracellular matrix, leading
to interactions with the host immune system which
can further alter biofilmmorphology and size [1, 23].

3D bioprinting has developed rapidly as a technique
that can deposit living cells and biomaterials in user-
defined patterns to build complex tissue constructs
‘from the bottom up’ [24–27]. While there are elegant
approaches on 3D bioprinting bacteria and their aggre-
gates [28–32], there has been no report on demonstrat-
ing the formation ofmature bacteria biofilms.However,
the capacity to reliably and reproducibly 3D bioprint
bacterial biofilms have several potential benefits.
Embedded bacteria have been shown to have increased
metabolic activity, AMRandplasmid stability compared
to bacteria grown in [33, 34]. 3D bioprinted bacterial
biofilms therefore could potentially mirror in vivo bac-
terial growth and behaviour more closely than tradi-
tional 2Dmodels, increasing the potential to investigate
critical bacterial quorum sensing and antimicrobial bio-
film penetration [34, 35]. 3D bioprinting also increases
the potential to produce biofilm constructs with prede-
signed dimensions, with a high degree of control possi-
ble over biofilm thickness and dimensions. Other
benefits of 3D bioprinting biofilm include the potential
creation of microbial fuel cells [36], biosensors [37] and
biotechnological applications [37–39].

In this paper, we present a novel 3Dbioprinting bio-
film technology and report the first investigation of the
formation of mature bioprinted 3D biofilms and mea-
sure their responses to antibiotic drug tests, and drug
penetration. Mature biofilms with different thicknesses
and structures were designed and bioprinted using a
range of clinically relevant bacterial strains. In vitro AST
was performed to compare the resistance of 2D cultures
versus 3D printed biofilm constructs for the first time.
Bioprinting of biofilm constructs with thicknesses
greater than previously available in vitromodels was also
successfully performed.

Materials andmethods

Bacteria-laden bioink preparation
Brain Heart Infusion (BHI) broth (Sigma-Aldrich,
UK) powder was dissolved in sterile deionized water to
produce a 37 g l−1 BHI Broth and then autoclaved.
UV-sterilised sodium alginate powder (Protanal
LF10/60FT, FMC Biopolymer, UK) was then dis-
solved in BHI Broth to produce a 4% (w/v) alginate
solution. The alginate solution was subjected to
magnetic stirring until reaching homogeneity and
then sterilised through heating to boiling point (95 °C)
three times. Solutions consisting of 4% w/v sodium
alginate and 0.4% w/v CaCl2 were then mixed with a
volume ratio of 1:1 to create a partially cross-linked
0.2% CaCl2:2% sodium alginate hydrogel in a 50 ml
conical tube. The hydrogel solution was vortex mixed
at room temperature (RT) at 1500 rpm for 5 min to
produce a homogeneous, partially cross-linked algi-
nate hydrogel. Alginate hydrogels were then stored at
4 °C prior to usage to prevent the growth of
contaminants.
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Bacterial strains and growthmedia
Bacterial strains were universally cultured in BHI
broth at 37 °C whilst shaking. Strains used included
Escherichia coli (E. coli clinical isolate, ATCC 25922),
Pseudomonas aeruginosa (P. aeruginosa, PAO1, wild
type strain, ATCC 47085), Methicillin-sensitive Sta-
phylococcus aureus (MSSA, clinical isolate, ATCC
29213) andMethicillin-resistant Staphylococcus aureus
(MRSA, clinical isolate, ATCC 700788). Chosen
strains were routinely maintained on BHI agar
(Sigma-Aldrich, UK) plates and stocks kept frozen in
glycerol (50%v/v) at−80 °C.

Inoculumpreparation
Bacterial strains taken from glycerol stocks were
streaked on to a BHI agar plate and incubated at 37 °C
overnight. The following day a single colony was
inoculated into 5 ml of BHI broth and incubated
overnight at 37 °C, with 200 rpm shaking (Mini
shaker, Cleaver). The overnight cultures were har-
vested in the stationary phase after 18 h cultivation.
The bacteria were collected by centrifugation
(3000 rpm, 4 °C, 5 min) and washed three times with
9% sodium chloride (NaCl) to remove the residual
BHI medium. In all experiments, the concentration of
bacteria was determined by optical density spectro-
metry (Eppendorf BioPhotometer) and inoculated to
1.0 at wavelength 600 nm (OD600nm=1.0). The
inoculated suspension of each strain was prepared in
10 ml of 9% NaCl in a 50 ml centrifuge tube (Fisher
Scientific, UK) and the cells harvested by centrifuga-
tion (3000 rpm, 4 °C, 5 min). Bacterial cell-pellets
were then re-suspended in 500 μl of 0.2% CaCl2:2%
sodium alginate hydrogel solution with a micropipette
and dispensed into a 5 ml Luer-lock syringe (Fisher
Scientific, UK). Connection to a further 5 ml Luer-
lock syringe containing 4.5 ml 0.2% CaCl2: 2%
sodium alginate hydrogel warmed to 37 °C allowed
repeated, gentle mixing to be carried out back and
forth between syringes containing bacteria and hydro-
gel (100 mixes back and forth), producing 5 ml bioink
with homogeneously distributed bacteria.

Construct design
3D models consisting of a solid or lattice
10 mm×10 mm square design with increasing verti-
cal thicknesses (0.25, 0.5, 1, 2, 4 mm) were produced
using Autodesk® Netfabb® software (Autodesk®, Inc.,
USA) and exported as an STL file. Open-source slicer
software (Sli3er, Version 1.2.9) was used to load the
STL files and generate G-code files using the following
settings for bioprinting: layer thickness, 0.1 mm; infill
pattern, rectilinear; infill density, 25%; speed,
10 mm s−1; extrusion multiplier 1.2. G-code files
corresponding to solid and lattice constructs with
differing vertical thicknesses were then loaded onto
the bioprinter.

Bioprinting
A three-axis (X–Y–Z), single nozzle 3D cell printer
developed in our laboratory was used for bioprinting
bioinks laden with different bacteria. This bioprinter
represents an adapted, extrusion-based version of a
previously developed microvalve-based bioprinter
used in our lab to bioprint human cells including
induced pluripotent stem cells [26, 39, 40]. Briefly, the
bioprinter produces 3D constructs by coordinating
the motion of a mechanically-driven syringe. The
dispenser deposits extrudate consisting of hydrogel on
a stationary Z-platform. As successive layers of extru-
date are deposited, the z-platform moves downwards
allowing structures to be bioprinted from the bottom
up, layer-by-layer. Prior to use, the bioprinter was
sterilized via UV exposure and wiped down with 70%
ethanol. Sterility was maintained during bioprinting
by placing the bioprinter in a laminar flow cabinet.
Sterile 5 ml Luer-lock syringes containing bacterial
bioink were attached to 25 G printing nozzles and
loaded into the bioprinter, allowing bioprinting into
sterile 6-well culture plates to occur.

Secondary cross-linking of constructs
Ethylenediaminetetraacetic acid (EDTA), calcium
chloride (CaCl2) and barium chloride (BaCl2) powders
(Sigma-Aldrich, UK) were sterilised with ultraviolet
(UV) light (three 30 min cycles). Solutions of 0.4% w/
v CaCl2, 10 mM BaCl2, 20 mM BaCl2, 40 mM BaCl2
and 110 mM EDTA (Sigma-Aldrich, UK) were pre-
pared in sterile deionised water. All solutions were
then autoclaved at 121 °C for 30 min prior to exper-
imental usage.

Following bioprinting, constructs were cross-
linked by submersion in ionic solutions of either 10, 20
or 40 mM BaCl2 for 2 min. Cross-linked constructs
were then rinsed in phosphate-buffered saline (PBS)
prior to incubation in BHI medium under standard
culture conditions (37 °C, 5% CO2, and 95% relative
humidity). BHI media was replenished every second
or third day and culture was performed atop a com-
pact fixed-angle platform rocker (Grant Bio™ PMR-
30 Compact Fixed-Angle Platform Rocker, Fisher Sci-
entific, UK), to increase flow of media around the bio-
printed constructs.

Fluorescence staining for biofilm viability
A commercial Film TracerTM LIVE/DEADTM biofilm
viability kit (Thermo Fisher) was used for the assess-
ment of biofilm viability based on staining with the
membrane potential sensitive dye propidium iodide
(PI) (490 nm excitation, red emission) and the nucleic
acid stain SYTO-9 (488 nm excitation, green emis-
sion). In principle, bacteria with intact cellmembranes
stain fluorescent green, whereas bacteria with
damaged membranes stain fluorescent red. Cell viabi-
lity staining of bacteria was carried out by incubating
biofilm constructs concomitantly with SYTO-9
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(6.7 μM) and PI (40 μM) in 35 mm glass bottomed
imaging dishes (Ibidi) at RT for 45 min to allow stain
penetration.

Biofilmmorphotype analysis
In this study, a Leica Microsystems TCS SP8 CARS
microscope utilising a 25× objective (HC FLUOTAR
L 25×/0.95W) was used for all confocal fluorescence
imaging measurements. To minimise or eliminate
artefacts associated with simultaneous dual wave-
length excitation, all dual labelled biofilms were
sequentially scanned, frame-by-frame, first at 488 nm
(Argon laser, 70 μW) then at 561 nm (DPSS laser,
80 μW). Line averaging (×2) was used to capture
images with reduced noise. Fluorescence emission was
then sequentially collected in the green and red regions
of the spectrum respectively. Images were captured in
a 2D projection. For analysing spatial separation in the
z-direction (thickness), step sizes between 40 and
140 μm were used and 3D reconstructions were
performed using Leica imaging software (LAS X). Five
image stacks were (typically 700×700 μm images
over a depth of 40–140 μm) were acquired randomly
from three independent constructs per BaCl2 concen-
tration per time point (15 stacks in total). The image
stacks were then analysed using MATLAB 2016A
software.

Antibiotic susceptibility testing (AST)
For all ASTmethods, inocula of the isolate tested were
prepared according the inoculum preparation proto-
col described above.

The methicillin stock solution of 20 mgml−1 was
prepared in sterile dH2O and diluted in BHI broth to
obtain solutions with preliminary concentration in a
range of 2.5–10 mgml−1. Investigation of the
response of 3D biofilm constructs to methicillin was
then made by initially culturing porous, 1 mm con-
structs containing MRSA or MSSA for 14 d to allow
biofilm maturation to occur. The matured biofilm
constructs were then transferred to sterile Corning™
6-well microtiter plates (Sigma-Aldrich, UK). A 3 ml
volume of each methicillin solution was dispensed
into each well of the plate. Fresh BHI broth was then
added without antibiotic into the positive control
wells. The plates were sealed with an anaerobic film
(Thermo Fisher Scientific, UK) and incubated under
anaerobic conditions at 37 °C for 24 h.

2Dbrothmicrodilutionmethod
Corning 96-well microtiter plates (Sigma-Aldrich,
UK) were used for determining the MICs of the
antimicrobial agents methicillin sodium salt (Sigma-
Aldrich, UK). Amethicillin concentration in a range of
0.02–5 mgml−1 were used. The MRSA and MSSA
inoculum plural (OD1.0) were prepared as described
above. A 50 μl volume of eachmethicillin solution and
a 50 μl of inoculated suspension were dispensed into

each well of the microtiter plates respectively. The 96-
well plates were then sealed with an anaerobic film
(Thermo Fisher Scientific, UK) and incubated under
anaerobic conditions at 37 °C for 24 h. The optical
density of inoculated culture wells was then measured
using a plate reader (Multiskan Go, Thermo Scienti-
fic). Subsequently, MICs were read as the lowest
concentration of an antimicrobial agent at which
visible growthwas inhibited.

3Dbrothmacrodilutionmethod
Methicillin stock solution of 20 mgml−1 was prepared
in sterile dH2O and diluted in BHI broth to obtain
solutions with preliminary concentrations ranging
from 2.5 to 10 mgml−1. Investigation of the response
of 3D biofilm constructs to methicillin was then
performed by exposing a series of porous, 1 mm
MRSA or MSSA constructs to increasing concentra-
tions of methicillin. MRSA andMSSA constructs were
cultured for 14 d prior tomethicillin exposure to allow
biofilm maturation to occur. Mature MRSA and
MSSA biofilm constructs were then transferred into
sterile Corning® 6-well plates (Sigma-Aldrich, UK)
and incubated in 3 ml volumes of either 2.5, 5 or
10 mgml−1 methicillin solution. Positive-control
wells containing fresh BHI broth, no methicillin and
MRSAorMSSA constructs were also set up. The 6-well
plates were sealed with an anaerobic film (Thermo
Fisher Scientific, UK) and incubated under anaerobic
conditions at 37 °C for 24 h. The optical density of
inoculated culture wells was again measured using a
plate reader (MultiskanGo, Thermo Scientific).

Biofilm antimicrobial penetration test
3D bioprinted E. coli biofilm constructs of 1 and 2 mm
thickness and porous design were cultured for 14 d to
allow significant biofilm formation to occur. Biofilm
constructs were then washed ×3 with phosphate
buffered saline (PBS) solution to remove non-adher-
ent bacteria. Antibiotic disks containing 30 μg tetra-
cycline (Oxoid, UK) were then placed on top of E. coli
biofilm constructs and incubated at 37 °C for 7 d
within BHI broth. The tetracycline disks located on
top of the biofilm constructs were replaced daily to
maintain consistent delivery of antibiotic.

Results and discussions

Developing long-term stability of bioprinted
alginate hydrogels to allow observation of 3D
biofilm formation
The schematic presented below (scheme 1) elucidates
our generalmethodology of bacterial biofilm bioprint-
ing using a biocompatible bioink [40, 41], extrusion
bioprinting and a step-wise ionic crosslinking process.
Cultured bacteria were mixed into a partially-cross-
linked hydrogel to produce a bioink with homogenous
bacterial concentration. A home-built bioextrusion
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based bioprinter was then used to extrude the bioink
to produce constructs with predesigned dimensions.
Following bioprinting, secondary ionic cross-linking
of the hydrogel was performed to increase construct
stability, allowing prolonged culture and observation
(up to 28 d).

The complex structure of 3D biofilms found in
clinical infection take significantly longer to develop
andmature than the simpler, 2D biofilm in vitromod-
els which can be produced in overnight laboratory cul-
ture [3, 42]. Achieving sufficient stability in bioprinted
bacterial construct was therefore essential to allow
time for bacteria to associate, proliferate and deposit
their own extracellular polymeric matrix to form a
mature 3D biofilm structure. Alginate is a widely-
adopted hydrogel for bioprinting and was chosen as
the main component of our bacterial bioink due to its
biocompatibility, low toxicity, low cost and ease of use
[25, 43, 44].

In previous workwe have developed the stability of
alginate bioinks to allow the successful long-term 3D
cell culture and differentiation of stem cells [25, 44].
This was achieved by double cross-linking alginate
with calcium and then barium cations in a stepwise
process [44]. We adapted this approach to produce
double cross-linked bacterial bioink constructs with
extended stability (>4 weeks) in culture. Other cations
including strontium have been utilized elsewhere for
this purpose; however, barium has been shown to give
the strongest cross-linking effect, optimizing con-
struct mechanical stability [45]. Initial cross-linking of
sodium alginate hydrogel with calcium chloride cre-
ated a hydrogel with sufficient viscosity to allow suc-
cessful bioprinting of free-standing structures of both
solid and porous design, ranging in thickness from

0.25 to 4 mm (figure 1(a)). By performing alginate
hydrogel cross-linking prior to bioprinting, rather
than extruding alginate onto a calcium-coated culture
surface as performed in other literature, homogenous
hydrogel cross-linking was achieved; this is essential to
achieve good printability [28]. Further cross-linking
occurred following bioprinting by exposure to solu-
tions of barium chloride which further helped to
maintain construct stability, extending the stability of
constructs from within a week (with calcium-only
cross-linking) to over 4 weeks in culture. (ESI, figures
S1 and S2 are available online at stacks.iop.org/BF/
11/045018/mmedia.) Bioprinting resolution with the
hydrogel was sufficient to produce more intricate
structures using a 32 g printing needle, corresponding
to a 108 μm inner needle diameter (figure 1(b)).

Confocal laser scanning microscopy (CLSM) was
used to observe 3D bioprinted biofilm formation.
Standard light microscopes often struggle to image
biofilm of more than 3–4 μm thickness as biofilm
material above and below the focal plane tend to scat-
ter light and interfere with direct measurement [46].
Contrastingly, CLSM allows optical sectioning of bio-
films and, with image analysis, 3D reconstruction is
possible [47].

The extended hydrogel stability after bioprinting
allows observation of 3D biofilm formation for several
weeks. Previous attempts reported elsewhere in the lit-
erature to 3D bioprint bacteria only demonstrated
bacterial viability up to a maximum of 7–9 d, with no
attemptsmade to perform antimicrobial testing on 3D
bioprinted bacterial constructs [28, 30, 31]. The stabi-
lity in culture of the bioprinted hydrogel-bacteria con-
struct achieved in our study is therefore significant, as
it allows for extended observation of bacterial growth

Scheme 1. Schematic of bacterial biofilm bioprinting process. Initial designs to be bioprintedwere produced using computer-aided
design (CAD) software. Following this, a partially cross-linked hydrogel was produced bymixing sodium alginate and calcium
chloride (CaCl2) together. Bacteria were thenmixed into the hydrogel to produce a bioinkwith homogenously distributed bacteria.
3D bioprintingwas then performed, using a custom-built bioprinter that usesmechanical force to extrude bioink from a syringe that
ismoved in the x–y–zplane. Bioprinted constructs of solid and porous designwere then immersed in solutions of barium chloride
(BaCl2) for 2 min to secondary cross-link the constructs. Following bioprinting and immersion cross-linking, the constructs were
cultured in bacterial growthmedia, allowing analysis to be performed at selected time points.
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as well as offering the potential to perform anti-
microbial studies and further analysis of biofilm for-
mation in 3D. Clinical biofilm infections are most
often chronic in nature and develop over a period of
weeks and evenmonths; the stability of our bioprinted
constructs may therefore facilitate greater potential to
mirror clinical biofilms than currently available bio-
filmmodels [3, 7, 15, 48, 49].

Investigating the influence of construct design and
thickness on biofilm formation
In order to mimic in vivo biofilms and to create an
ideal in vitro 3D bioprinted biofilm model, solid and
porous constructs were bioprinted in a range of

thicknesses from 0.25 to 4 mm to investigate the ideal
construct design and thickness for E. coli biofilm
formation.

E. coli biofilm formation (or bacterial density) was
greater in thinner (0.25–1 mm), constructs compared
to thicker (4 mm) construct designs (p< 0.001,
ANOVA) (figure 1(c)). However, thinner constructs of
0.25 and 0.5 mm thickness were not robust enough to
allow physical manipulation and CLSM imaging to be
performed after 14 d culture. This was presumed to be
due to leaching of cations (Ca2+ and Ba2+) from the
thin, relatively high-surface area constructs into sur-
rounding culture media, resulting in decreased cross-
linking; this is likely to have been exacerbated by

Figure 1.Thickness, structure and cross-linking of bioprinted constructs influences biofilm formation. (a) Solid and porous
constructs with vertical thicknesses increasing from0.25 to 4 mmwere sequentially bioprinted and cross-linked by exposure to
20 mMBaCl2.Measured thickness correlated well with designed vertical thickness aftermeasurement with digital callipers (ESI, table
1). (b)Hydrogel printability was such that intricate structures could be printedwith a 32 G, 0.108 μm inner needle diameter needle.
(c) 3D reconstructed CLSMz-stack images were acquired, allowing comparison of biofilm growth in solid and porous structures.
Initial analysis at 5 d found that growth in solid constructs was slower than in corresponding porous constructs in all ranges of
thicknesses. At day 14, 1 mmconstructs appeared to have the greatest biofilm formation, whilst 0.5 and 0.25 mmconstructs had
insufficientmechanical stability to allow analysis. The sizes of the scale bars in the photograph and fluorescence images are 1 cm and
100μm.
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regular media changes and culture atop a rocking
device, increasing outwards diffusion of cations from
the hydrogel-bacteria construct. In 4 mm thick con-
structs, reduced biofilm formation was observed in
solid compared to porous constructs (p=0.038,
t-test) (figure 1(c)).

We believe the porous construct design facilitates
convective fluid transport through the pore channels,
enhancing nutrient and oxygen diffusion processes in
comparison to non-porous, solid constructs. This
would explain why the aerobic bacteria E. coli failed to
proliferate and produce significant biofilm in the
thick, solid constructs, with the optimal structure for
E. coli being a 1 mmporous construct.

Bioprinting of thick, anaerobic 3Dbiofilm
constructs
Whilst the aerobic bacteria E. coli had limited growth
in thicker bioprinted constructs (figure 1(c)), presum-
ably due to limited diffusion of nutrients and oxygen,
anaerobic bacteria have greater potential to thrive in
oxygen-deplete conditions. As an opportunistic, noso-
comial pathogen of immunocompromised indivi-
duals, the anaerobic strain Pseudomonas aeruginosa (P.
aeruginosa) is well known for infecting the thick,
oxygen-depletedmucus in the airways of cysticfibrosis
(CF) patients, producing robust in vivo biofilms [2].
The culture conditions provided by the thick respira-
tory mucus in CF patients is somewhat analogous to
those provided by our thick, non-porous hydrogel
constructs. To investigate this, in vitro biofilm forma-
tion of P. aeruginosa (figure 2) was examined in non-
porous, thick (2 and 4 mm) constructs (figure 2).

P.aeruginosa was observed to undergo extensive
colonisation and aggregation in 2 mm and 4 mm
thick, non-porous structures, forming an extremely
dense layer of biofilm (figure 2(b)). In contrast, much
more limited bacterial growth and biofilm formation

was observed via CLSM in 2 and 4 mm constructs
inoculated with the aerobic bacteria E. coli
(figure 1(c)). Strong blue-green pigmentation was also
seen to form in 2 and 4 mm P.aeruginosa constructs
over 14 d of culture (figure 2(a)); this is likely related to
the expression of two metabolites, pyocyanin (blue)
and pyoverdine (green), which is known to occur in P.
aeruginosa to facilitate anaerobic respiration [50]. The
prevalence of multidrug-resistant anaerobes, includ-
ing P. aeruginosa, is increasing worldwide with limited
current therapeutic options [51, 52]. The extensive
growth of P.aeruginosa and associated biofilm forma-
tion seen within our 3D bioprinted constructs there-
fore offers a novel and highly promising in vitro
method of studying anaerobic bacterial biofilm
infection.

Capturing the in vitro life cycle of biofilm in 3D
Biofilm formation is reported to occur in a five-step
lifecycle (figure 3(a)), which begins with the attach-
ment of planktonic cells to a biological or inert surface
and culminates in mature biofilm formation [53].
However, due to factors including limited biofilm
thickness, current in vitromodels are unable to readily
facilitate observation of the five-step process and
complex microarchitecture development that occurs
during biofilm formation [54].

As illustrated in figure 3(a), Initially, ① free swim-
ming planktonic bacteria were attached on the surface,
② Soon after, bacteria began to divide and aggregate
together in small microcolonies and secrete quorum
signals ③, which initiated up-regulation of various
genes and virulence factors on a community-wide
basis. Bacteria cells forming an extracellular biofilm
matrix ④ by secrete copious polymers including poly-
saccharides, proteins and oligonucleotides. Biofilm
continues to accumulate and consuming ambient
nutrient and QC acceptors. As results of increased in

Figure 2.Pseudomonas aeruginosa (PAO1) formed anaerobic biofilms in thick constructs. (a)Photo images of 3Dbioprinted PAO1
biofilm at day 0 (white colour) andmatured biofilm at day 14 (blue-green colour). (b) 3D reconstructedCLSMZ-stack in 2D-
projection and 3D reconstructed images (1:1 aspect ratio in x, y and z axes) ofmatured PAO1 biofilm formed at 2 and 4 mm thickness
at day 14. The sizes of the scale bars in the photograph and fluorescence images are 1 cmand 100μm.
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shear stress and other cell signalling events, portions of
biofilm started detaching or slough off⑤ entirely. Dis-
persed cells can quickly revert to their planktonic form
to colonise other sites, whilst retaining properties such
as AMR [54].

The influence of BaCl2 cross-linking concentra-
tion on bacterial growth was also analysed over 28 d by
exposing porous, 1 mm constructs containing MRSA
to a range of BaCl2 concentrations (ESI, figure S3).
Growthwithin all constructs was initially strong; how-
ever, it was perceptible that bacteria had a greater ten-
dency to leach from constructs exposed to 10 mM
BaCl2, with greater biofilm formation seen in 20 and
40 mM constructs (figure 3(c)). A custom designed
image processing algorithm, implemented in
MATLAB 2016a, was used to apply further statistical
analysis to quantify biofilm formation (ESI, figures S4
and S5). It was found that 10 mM of BaCl2 provided
less favourable conditions for biofilm formation com-
pared to 20 and 40 mM constructs between days four
and 23 (p<0.001, ANOVA). This was presumed due
to reduced cation (Ba2+) cross-linking density allow-
ing greater leaching of bacteria.

CLSM studies demonstrated superior biofilm for-
mation in 10, 20 and 40 mM constructs, with sig-
nificant biofilm formation evident after 5 d. Initially,
① individual planktonic bacteria were homogenously
distributed in bioink at day 0 (figure 3(c), day 0).
Although some bacteria may have left the construct, a
high density remained and likely adhered to the bioink
scaffold using cell surface displayed adhesin

molecules. ② Soon after, bacteria began to divide and
aggregate together in small microcolonies (figure 3(c),
day 1–2)with in the construct, which merged into lar-
ger communities (figure 3(c), day 3–5); ③ progressive
deposition of an EPS matrix also occurred, ④ leading
to mature biofilm formation (figure 3(c), day 14).
Eventually, ⑤ regions of biofilm were seen to sponta-
neously disperse between days 23 and 28 as bacteria
enzymatically dissolved the extracellular matrix [55],
weaken the biofilm structure and release microbial
cells spread and leak out of the construct (figure 3(c),
day 23–28) into surrounding culture media (where
new biofilms can be formed). It is important to
observe that 3D bioprinted alginate constructs
remains largely intact while the bacteria escaped from
constructs (ESI, figure S2) after day 23. This further
confirms that the lower microbial cell density
observed from day 23–28 was consistent with the final
stage of the biofilm lifecycle where bacteria leak out of
the biofilm and spread rather than the degradation of
the 3D alginate constructs.

To the best of our knowledge, we have demon-
strated for the first time the processes involved in
mature 3D biofilm formation in vitro over a 28 d per-
iod using bioprinting (figure 3(c)). This allows direct
correlation to the 5-step process governing biofilm
formation in 2D to bemade (figure 3(a)).

Comparison of 2D versus 3D in vitroAST
To compare the susceptibility of 2D and 3D bacterial
cultures to treatment, we utilised 3D bioprinted

Figure 3. 3D reconstructed confocal laser scanningmicroscopy (CLSM)Z-stacks of 3Dbioprinted biofilm images. (a)The 5-step
process of biofilm formation in 2D correlatedwith (b) cross-sectional and side-onCLSM images of 3Dbioprinted biofilm formation.
(c)Growth ofMRSA in 1 mm, porous scaffolds exposed to increasing concentration of BaCl2 from 10 to 40 mMwas examined over a
28 d period. Schematic (a) adopted fromWagner et al [2]. The sizes of the scale bars in the photograph and fluorescence images are 1
cm and 100 μm.
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biofilms as an in vitromodel with comparisonmade to
2D bacterial cultures. Staphylococcus aureus (S. aureus)
was chosen for investigation as a major human
pathogen[56]. Although most commonly associated
with skin and soft tissue infections, S. aureus is also
responsible for a range of serious invasive infections,
including osteomyelitis, necrotising pneumonia,
endocarditis and bacteraemia [56]. Infections caused
by S. aureus are increasing worldwide, with over 52%
of intensive care unit infections reported to be caused
by S. aureus [57]. Most strains of S. aureus, including
methicillin-susceptible S. aureus (MSSA), are sensitive
to β-lactam antibiotics and are responsive to treat-
ment. However, there is a growing worldwide pre-
valence of methicillin resistant S. aureus (MRSA)
infections, which have repeatedly been associated with
a worse patient outcome compared to infections
caused by methicillin sensitive S. aureus (MSSA) [58].
Furthermore, the efficacy of first-line treatments for
MRSA such as vancomycin is dwindling [59]. Anti-
biotic resistance studies are therefore essential to allow
the development of novel anti-biofilm therapies
againstMRSA andMSSAbiofilms.

The broth microdilution method was used to
determine the lowest concentration (MIC) of methi-
cillin antibiotic that prevented visible growth ofMRSA
andMSSA in 2D culture (figure 4(a)). The broth mac-
rodilution method was then used to determine the
MBEC in 3DbioprintedMRSA andMSSA biofilm cul-
ture models (figure 4(c)). The MIC and MBEC were
determined by a visual inspection of culture wells and
correlated with measurements of absorbance of light
through treated culture wells in both cases
(figures 4(b) and (d)). Due to resistance to methicillin,
MRSA had a higher MIC than MSSA in 2D
(figure 4(a)) and a higherMBEC thanMSSA in 3D cul-
ture as expected (figure 4(c)). However, for both
MRSA and MSSA, the MBEC calculated in 3D culture
was significantly higher than the MIC for 2D culture.
Whilst 0.16 μg ml−1 methicillin prevented visible
growth of 2D MSSA culture, the MBEC for MSSA in
3D culture appeared to be at least 15 times higher at
2.5 mg ml−1. Similarly, although 1.25 μg ml−1 methi-
cillin appeared to prevent 2D growth of MRSA,
growth of MRSA in 3D culture still occurred with
greater than 10 mgml−1 methicillin. Therefore, for
bothMRSA andMSSA, a far higher dose ofmethicillin
was required to treat biofilm growth thanwas required
to treat 2D infection. This result is in keeping with pre-
vious reports suggesting that biofilm formation can
cause a 10–1000 fold increase in bacterial tolerance to
antimicrobial treatment compared to 2D, planktonic
cultures [33, 55].

Biofilm thickness influences response to treatment
AST methods such as MIC calculation do not distin-
guish between bactericidal and bacteriostatic effects of
antibitoics, and crucially do not provide information

on the degree of antimicrobial biofilm penetration or
eradicaiton [1, 4, 13, 20, 21, 50, 60, 61]. Utilising 3D
bioprinted biofilms as an in vitromodel, we sought to
investigate the relationship between bacterial biofilm
thickness and susceptibility to antimicrobial treat-
ment. Sensitivity of E. coli to tetracycline was first
confirmed in 2D culture (ESI, figure S6). Bioprinted
E. coli constructs of 1 and 2 mm thickness were then
grown for 14 d to allow biofilm maturation, before
exposure to 30 μg tetracycline discs which were
changed every 24 h for 7 d, mimicking a course of
clinical antimicrobial treatment (figure 5(a)). It was
apparent that 2 mm constructs remained opaque
whilst 1 mm constructs became increasingly transpar-
ent in response to tetracycline exposure (figure 5(a)).
CLSM imaging of the constructs after 7 d of tetracy-
cline exposure demonstrated that E. coli biofilms had
greater viability in 2 mm constructs, whilst bacteria
located below the tetracycline disc in 1 mm constructs
had largely been destroyed (figure 5(b)).

As discussed previously, current methods of
studying antimicrobial biofilm penetration and eradi-
cation suffer significant limitations. However, 3D bio-
printed biofilms could offer hope for a novel and
reproducible method of studying antimicrobial bio-
film penetration and eradication in 3D. In the clinical
environment 3D bioprinted biofilms could feasibly be
generated from bacterial samples taken from patients
in a similar manner to our experiment; this would
allow antimicrobials to be selected on the basis of their
ability to achieve biofilm penetration and eradication
in patient-specific infections. Furthermore, it is recog-
nised that 3D cultures (such as our 3D bioprinted bio-
film) more closely resemble the in vivo biofilm, when
compared to traditionally used 2D in vitro cultures
[12, 13, 15, 16].

Conclusions

In conclusion, mature bacterial biofilm constructs
were reproducibly 3D bioprinted for the first time
using clinically relevant bacteria. By deploying a
methodology originally developed to enable 3D cul-
ture and differentiation of bioprinted stem cells [25],
we have been able to demonstrate for the first time 3D
bioprinted mature biofilm formation, dispersal and
morphology over 28 d, as well as the antibiotic
tolerance of clinically relevant bacterial biofilms in 3D.
Our methodology also significantly prolongs the
viability of bacteria cultured in 3D bioprinted con-
structs compared to previous studies. Future ability to
investigate clinically relevant bacterial biofilms in a
biocompatible, cost-effective 3D model that more
closely resembles in vivo conditions than traditional
2D culturemethods is therefore increased.

A high degree of control was achieved over biofilm
construct thickness and design, with the production of
biofilms thicker (>4 mm) than currently available
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Figure 4. In vitro antimicrobial susceptibility testing (AST). (a)TheMICswere determined by brothmicrodilutionmethods. AnMIC
ofmethicillin of 0.16 μg ml−1 was required to prevent visible growth ofMSSA,whilst forMRSA theMICofmethicillinwas
1.25 μg ml−1 (figure 4(a)). (b)Optical densitymeasurement of themethicillin-containing culture. No significant change in
absorbance was observedwhenmethicillin concentrations were increased beyond theMIC calculated forMRSAorMSSA in 2D. (c)
TheMBECswere determined by brothmacrodilutionmethod.MBECs appeared to be at least 2.5 mg ml−1 forMSSA, and greater
than 10 mg ml−1 forMRSAon inspection. (d)Measurement of the light absorbance of the culture broth surrounding theMRSA and
MSSA constructs supported these findings, with far higher doses ofmethicillin required to reduce bacteria growth and therefore the
measured broth light absorbance than in 2D cultures.

Figure 5.Biofilm thickness determines response to treatment (a) 1 and 2 mm thick constructs containing E. coliwere bioprinted and
allowed tomature for 14 d before 30 μg tetracycline discs were placed directly on top of them.Discs were changed every 24 h to
maintain a high dose of tetracycline delivery to the constructs. Over a 7 d period, visible clearing of biofilm occurredwithin the 1 mm
construct below the area of tetracycline exposure. (b)CLSMZ-stack images of the 1 and 2 mmconstructs was performed after
exposure to tetracycline discs.Whilst themajority of bacteria were found to be dead below the area of tetracycline disc exposure in the
1 mmconstruct, greater evidence of biofilm survival in the 2 mmconstruct was observed. The sizes of the scale bars in the
photograph are 1 cm.
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in vitromodels also achieved. We observed that anae-
robic bacteria continued to thrive in constructs of
greater than 4 mm thickness, demonstrating the
potency of these infections. To our best knowledge,
the 4 mm thick aerobic bacteria biofilm formation is
the thickest 3D bioprinted in vitro biofilm construct
ever reported, allowing easy observation of anti-
microbial biofilm penetration.

We observed that 3D biofilm constructs had
greater resistance to antimicrobial treatment than 2D
cultures, underlining the significance of biofilm for-
mation in clinical infection. Thicker biofilms were also
seen to have greater resistance to antimicrobial ther-
apy than thinner biofilms, even over a prolonged per-
iod of treatment.

With rising worldwide AMR, 3D bioprinted bio-
film technology could become a key weapon to aid the
discovery of novel therapeutic targets and increase the
understanding of biofilm formation.
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