

Critical Review of Floating Support Structures for Offshore Wind Farm Deployment

Mareike Leimeister^{1,2}, Athanasios Kolios¹, Maurizio Collu¹

¹ Cranfield University, Energy and Power, United Kingdom

² Fraunhofer Institute for Wind Energy Systems IWES, Germany

Abstract

Current situation: - numerous deep water sites with promising wind potential → floating structures possible, bottom-fixed systems not; - large diversity in floater concepts → fast achievement of high technology readiness levels (TRLs) inhibited. Thus, different floating support structures are assessed with respect to their suitability for offshore wind farm deployment. Based on a survey, a multi-criteria decision analysis (MCDA) is conducted, using the technique for order preference by similarity to ideal solution (TOPSIS). With the individual scores of ten floater categories, considering the weighting of ten specified criteria, suitable concepts are identified and potential hybrid designs, combining advantages of different solutions, are suggested.

Methodology

Set of	alternatives		Set of criteria						
I.	spar - standard	common spar floater type	1. (-)	LCOE	rate of return, power density, mooring footprint, dimensions, turbine spacing				
II.	spar - advanced	improved spar (horizontal transport, short draft, vacillation fins, delta configuration)	2. (+)	volume production	ease to manufacture, fabrication time, onshore fabrication, modular structure				
III.	semi-sub - standard	common semi-sub floater type	3. (+)	ease of handling	weight, assembly, transport, installation, decommissioning, equipment, dimensions				
IV.	semi-sub - advanced	improved semi-sub (braceless, active bal- last, wave-cancelling, inclined columns)	4. (+)	durability	redundancy, corrosion resistance, fatigue resistance, aging				
V.	barge floater	common barge floater type	5. (+)	flexibility	site, water depth, soil, environment				
VI.	TLP - standard	common TLP floater type	6. (+)	certification	time & ease to achieve, TRL				
VII.	TLP - advanced	improved TLP (redundant mooring lines, gravity anchors)	7. (+)	performance	deflections, displacements, nacelle acceleration, dynamic response				
VIII.	hybrid floater	mixed spar, semi-sub, TLP floater types	8. (-)	maintenance	frequency, redundancy, costs, downtime				
IX.	multi-turbine floater	floater supporting more than one wind turbine	9. (+)	time- efficiency	assembly, transport, installation, maintenance, decommissioning				
Х.	mixed-energy floater	floater for wind & wave/tidal/current/ photovoltaic utilisation	10. (-)	mooring re- quirements	number & length of lines, need of flexible cables (motions), anchor system costs				

Results

Survey: - scores (1: least applicable - 5: most applicable) assigned for each criterion to each alternative;

- weights (1: not important - 5: important) represent importance of each criterion with respect to offshore wind farm deployment. Analysis using TOPSIS: - scores yield a decision matrix, which is - after normalisation - multiplied with the weight vector;

final ranking of alternatives based on their closeness/distance to the positive/negative ideal solution (table 1);
comparison of TRL wrt to potential to scale up to mass production for multi-MW wind farm deployment (figure 1).

Table 1: Weights, scores, ranks					Figu	re 1: TRLs wrt potential to scale up to mass	produc	tion for	- multi	-MW	wind f	arm d	leplo	ymeni	ť
١	Neight		Score	Rank	TRL	Description (based on Horizon 2020 https://ec.europa.eu/)	9 ⊤								
1.	4.26	١.	0.651	2	(0	idea for an unproven concept)	8 -								I
2.	3.43	II.	0.763	1	1	basic principles observed	7 -								
3.	2.91	III.	0.532	5	2	technology concept formulated	6 -								▶ IV
4.	3.24	IV.	0.600	3	3	experimental proof of concept	R 2 -							•	V
5.	2.33	V.	0.549	4	4	validation in lab	4 -								≥VI ≥VII
6.	3.40	VI.	0.319	10	5	validation in relevant environment	3 -								VIII
7.	3.38	VII.	0.335	9	6	demonstration in relevant environment	2 -								IX
8.	3.59	VIII.	0.425	7	7	demonstration in operational environment	1 +								X
9.	3.02	IX.	0.436	6	8	system complete and qualified	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
10.	3.10	Х.	0.390	8	9	proven in operational environment	* the	e bubble s	T ize repre	Sents th	S scor e standa	e rd devia	tion of t	the TRL	

Conclusions

- Assessment of ten floating wind turbine support structures wrt ten criteria focusing on wind farm deployment;

- MCDA based on survey results and TOPSIS method;

- Costs are still most important and advanced spars have the highest potential to develop for multi-MW wind farm deployment.

EERA DeepWind'18 Trondheim 17 - 19 January 2018

Engineering and Physical Sciences Research Council

