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Abstract: A new mathematical modelling framework for simulation of 
metal cyclic plasticity is proposed and experimental validation based on 
tension-compression cyclic testing of S355J2 low carbon structural steel 
presented over the two parts of this paper. The advantages and limitations 
of the stress-strain curve shape modelling given by “Armstrong and 
Frederick” type hardening rules are discussed and a new formulation for 
kinematic hardening is proposed for more accurate representation of the 
stress-strain dependence under cyclic loading conditions. The proposed 
model is shown to describe the shape of the stress-strain curve accurately 
under various different loading conditions. Transition effects occurring 
at loading reversals are incorporated through a new framework of Dirac 
delta functions. In addition to the yield surface, stress supersurfaces able 
to expand and instantly move to simulate a shift of stress-strain curves 
during loading reversals are determined. This also enables inclusion of 
the behavior of monotonic stress-strain curves with yield plateau 
deformation in one mathematical model. The influence of the first stress 
invariant on the shape of a stress-strain curve in tension and compression 
directions observed in many metals is incorporated into the kinematic 
hardening rule. The ability of the model to accurately describe transition 
from elastic to elastic-plastic deformation at small offset strain yield 
points naturally accounts for nonlinearity of an unloading stress-strain 
curve after plastic pre-strain. Development of the model to include mixed 
cyclic hardening/softening, ratcheting and mean stress relaxation is 
presented in a companion paper (Part II), which includes experimental 
validation of the modelling framework.   
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1. Introduction 

Elastic-plastic analysis of mechanical bodies is an important aspect of design and structural integrity 
assessment in a range of industries. The loading conditions considered in the analysis can vary significantly 
between applications, from relatively simple monotonic loading to complex load histories with multiple load 
and unload stages. The phenomenological approach to plasticity modelling which is based on macroscopic 
observations of material behavior and the concept of a yield surface in the stress space is a convenient way of 
structure behaviour prediction. The yield surface changes size and moves according to isotropic and kinematic 
hardening rules respectively, where, in simplest formulation, the plastic deformation is defined in terms of 
linear functions (Hill, 1950; Prager, 1949). These plasticity models are relatively simple to implement but are 
limited in their ability to represent real plastic behavior, particularly under cyclic loading conditions.  

To describe cyclic plasticity more realistically, isotropic and kinematic hardening models are modified 
either through a multisurface approach (Dafalias and Popov, 1975; Mróz, 1967) or by introduction of 
nonlinear hardening functions. In the latter approach, a saturation function implemented through the Voce 
rule is used in isotropic hardening and a dynamic recovery term implemented through the Armstrong and 
Frederick (1966) rule (A-F rule) is used in kinematic hardening. These models are able to better represent 
experimentally observed plastic deformation under complex load cycles than the linear models. The A-F 
model was generalized by Chaboche (1979) by decomposing the back stress into several components. This 
model is widely used in practice, incorporated in several commercial Finite Element Method programs and is 
the basis of many other plasticity models incorporating various mathematical formulations for the dynamic 
recovery term. These types of model have been shown to give good agreement with experimental observation 
of ratcheting rate and stabilized stress-strain states for cyclic softening and hardening. However, Döring et al. 
(2003); Xu et al. (2016); Zhu et al. (2017) have shown that in many cyclic loading situations A-F models may 
not accurately capture the form of the evolving stress-strain curve, particularly during transitions at load 
reversals. 

Several plasticity models that reasonably accurately represent the form of cyclic plasticity curves, including 
transition regions have been proposed. Döring et al. (2003) extended the Jiang and Sehitoglu (1996) model 
with A-F type of kinematic hardening to allow it to simulate transient behavior with reasonable accuracy for 
a wide strain range. The cyclic plasticity modelling framework of Zhu et al. (2014); Zhu et al. (2017); Zhu 
and Poh (2016) incorporates a new kinematic hardening rule in which the back stress is decomposed into 
long-range, middle-range and short range components with different nonlinear features. Each component 
consists of a special type of nonlinear kinematic hardening rule with a linear hardening term and a dynamic 
recovery term, resulting in a logarithmic function after integration for a monotonic loading step. The 
logarithmic function shows better prediction of the general stress-strain curve shape than the exponential 
function from the A-F rule, but still with certain deviations from experimental results. The authors attribute 
these to the fact that experimental results were fitted to only 3 components of back stress decomposition and 
the discrepancy is, in general, present in all Chaboche back stress decomposition models. The representation 
of the stress-strain curve can be improved by increasing the number of Chaboche back stress decompositions; 
however this can lead to highly complicated constitutive modelling and a complex procedure in the material 
specification process. To eliminate the issue of the numerous back stresses in Chaboche model frameworks, 
a phase mixture approach (Eisenträger et al., 2018a; Eisenträger et al., 2018b; Naumenko et al., 2011; 
Naumenko and Gariboldi, 2014) is applied for the unified description of the material behaviour to minimize 
the number of material parameters. The phase mixture model originates from materials science, i.e., hardening 
and softening behaviour is simulated based on an iso-strain composite with soft and hard constituents. It is 
assumed that the alloy is made of soft subgrains surrounded by hard boundaries, while the volume fraction of 
the hard constituent is closely related to the microstructure (e.g., mean subgrain size) and decreases toward a 
saturation value to model softening (Naumenko et al., 2011). To simplify parameter identification based on 
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microstructural observations, a back stress and a softening variable are introduced as internal variables 
through a continuum mechanics approach (Naumenko et al., 2011; Naumenko and Gariboldi, 2014).  

Many structural steels exhibit Lüders-type of yielding, in which a pronounce plateau occurs after yield 
such that plastic deformation takes place without increasing loading up to a point of subsequent strain 
hardening. This phenomenon has been studied experimentally for different materials, temperatures and 
loading conditions by Ballarin et al. (2009); Elliot et al. (2004); Wang and Huang (2017); Zhang and Jiang 
(2005b). The physical background of the phenomenon of the plateau together with advanced theoretical 
modelling by models of crystal plasticity and strain gradient plasticity are given by Hallai and Kyriakides 
(2013); Mazière et al. (2017); Yoshida et al. (2008). To solve a wide range of engineering problems, 
concerning structural plastic behaviour of different components, Goto et al. (1998); Shen et al. (1995); Ucak 
and Tsopelas (2011, 2012) included the yielding plateau into the phenomenological plasticity framework. 
Bounding surface and strain amplitude parameters dividing the loading into regions of plateau and strain 
hardening are introduced, allowing representation of loading and unloading from the plateau region with 
different hardening responses.  

Nonlinear nature of unloading stress-strain curves after plastic pre-straining have been experimentally 
observed by Lee et al. (2017a); Lee et al. (2017b); Lee et al. (2013); Mendiguren et al. (2015); Yang et al. 
(2004); Yu (2009); Zajkani and Hajbarati (2017), who have reported reduction in measured unloading chord 
modulus of up to 40% of the initial value for different metals. This effect is usually neglected in modelling 
cyclic plasticity but is significant in engineering applications such as sheet metal forming, where spring-back 
due to elastic recovery occurs. Several mathematical models based on empirical relationships between 
Young’s modulus and accumulated plastic pre-strain have been developed by (Chen et al., 2016); Luo and 
Ghosh (2003); Yoshida et al. (2002); Zang et al. (2006); Zavattieri et al. (2009). A review of the physical 
background of the phenomenon of nonlinearity of the unloading stress-strain curve slope is given by Chen et 
al. (2016). Explanation mechanisms, such as second order nonlinear elasticity via atomic bond stretching, 
twinning/detwinning, textural changes and material damage are excluded from consideration due to 
inconsistency with many sets of experimental results. The continuum elastic-plastic response due to internal 
and residual stresses and pile-up dislocation motion are established as two main mechanisms behind the 
phenomenon of elastic modulus reduction during accumulation of plastic strain. 

Materials such as rocks and soils exhibit strong dependence of plastic flow on hydrostatic pressure. To 
incorporate this effect in a material model, all three stress invariants are usually considered in the constitutive 
equation (Lai et al., 2016; Shen et al., 2017; Smith et al., 2015; Sun et al., 2018). Some metals show a less 
pronounced dependence on hydrostatic pressure (Spitzig and Richmond, 1984) and the effect is introduced 
into yield criteria in several studies ((Wilson, 2001); (Brünig et al., 2000; Brünig et al., 2008; Brünig and 
Gerke, 2011; Cazacu and Barlat, 2004) (Bai and Wierzbicki, 2008; Mirone and Corallo, 2010). These indicate 
that stress triaxiality is important in predicting the onset of yield, as well as damage and fracture, in the metals 
considered. Hydrostatic pressure component is also present during the uniaxial tension-compression stress 
state. This effect on the form of cyclic stress-strain curves is observed in experimental curves from Halama 
et al. (2017); Kang et al. (2003); Kowalewski et al. (2014); Taleb and Cailletaud (2010); Voyiadjis et al. 
(2012); Wang et al. (2015) articles, where tension-compression plasticity tests showed a larger hardening 
effect for compression dominated loading. Voyiadjis et al. (2012) demonstrated that improved representation 
of this effect can be achieved by including the first stress invariant in the isotropic hardening constants.  

The cyclic plasticity modelling concept proposed here accounts for the various plasticity phenomena 
identified above in a unified mathematical framework based on a nonlinear kinematic hardening rule with 
non-saturation effect and without back stress decomposition. The deformation process, including the 
transition effect between different stress-strain loops, is determined by a framework of Dirac delta functions 
and introduction of an additional stress surface. This approach can simulate stepwise dependence for different 
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internal variables and is shown to be predictive in modelling transition of initial monotonic curves to 
subsequent cyclic plasticity curves. The effect of differences between tensile and compression stress-strain 
curves is represented by an incremental form of hardening slope dependency on the first stress invariant. The 
ability of the model to determine initiation of plasticity at the actual yield point means that unloading curve 
nonlinearity is included and the model naturally accounts for variation in Young’s modulus during plastic 
strain accumulation without use of additional features to account for this phenomenon. The cyclic 
hardening/softening effects and ratcheting are considered in a companion paper (Part II). Experimental testing 
of S355J2 low carbon structural steel together with experimental results for other metals from the literature 
shows that the new model can accurately represent plasticity loop branches for different loading stages of 
loading. 

2. Experimental setup 

Tension-compression tests of S355J2 low carbon structural steel with chemical composition given in Table 
1 were performed on a Zwick/Roell Amsler Z250 Material Testing Machine with capacity of 250 kN. The 
test specimen geometry and dimensions are shown in Fig. 1. Both strain and force control were used, with 
total strain rate of 5·10-4 s-1 and stress rate of 1 MPa/s for both monotonic and cyclic loading. The strain was 
measured by a 10 mm gauge length extensometer. Preliminary tests were performed to determine the 
monotonic tensile behavior and material properties. Subsequent tests investigated different cyclic plasticity 
phenomena for specific loading programs under strain or force control as appropriate. Each specific loading 
program is described in the modeling sections of Part I and Part II of this study with reference to the specific 
phenomenon analysed. 

 

Fig. 1 – Geometry of tension-compression test specimen 

The S355J2 material properties determined from monotonic tests are given in Table 2. It is noted that the 
measured monotonic yield stress of 255 MPa is lower than the nominal value for this type of steel, 355 MPa. 
The measured value conforms to the standard BSI (2000), which defines lower yield stress for S355 low 
carbon steel obtained after forging.  

Table 1 - Chemical composition of S355J2 steel 

Element C Si Mn P S Cr Ni Mo Al B 

% 0.2 0.34 1.32 0.009 0.002 0.01 0.03 0.01 0.042 0.0012 

 
Table 2 – Basic mechanical properties of S355J2 steel 

Yield strength Tensile strength Elongation Young’s modulus 

255 MPa 501 MPa 34.5 % 200 GPa 

 

3. Modelling background 

The proposed nonlinear kinematic hardening model is based on observations made during the experimental 
investigation of S355J2 low carbon steel. It will be shown that the general form of the rule is valid for other 
metals, with particular forms of the evolution variables required for different materials.  
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The model is based on the small strain assumption with strain decomposition on elastic and plastic parts: 

e p
ij ij ij                                                                           (1) 

The elastic part of the strain tensor is described with the Hooke’s law for isotopically elastic materials in 
the form: 

e
ij ijkl klE                                                                                       (2) 

where ij is Cauchy stress tensor and ijklE  is elastic stiffness tensor defined as: 

 ijkl ij kl ik jl il jkE G                                                                        (3) 

Parameters   and G  are defined as:  

  1 1 2

E
 


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 2 1

E
G





                                                        (4) 

where E is Young’ modulus and  is Poisson’s ratio. 

This study considers mathematical modelling of rate independent cyclic plasticity for metals. The classical 
concept of the yield surface in the form of von Mises criterion within the framework of rate-independent 
plasticity is adopted: 

   0

3

2 ij ij ij ijf S X S X R                                                        (5) 

where 0  is initial yield stress, ijS  is deviatoric part of the stress tensor, R  is isotropic hardening function 

and ijX  is back stress tensor responsible for kinematic hardening. 

With the assumption of plastic incompressibility observed for most of metals, the plasticity flow is 
described with the use of the flow rule associated with the yield surface in the following form: 

0

3

2
ij ijp

ij

S X
p

R








                                                                                  (6) 

Appropriate forms of isotropic hardening R  and kinematic hardening ijX  for accurate modelling of a 

variety of cyclic plasticity phenomena are identified from the results of the S355J2 steel test programme. 

4. Determination of cyclic yield strength and isotropic hardening rule  

To determine the evolution rule for expansion of the yield surface (5) and a mathematical form for the 
isotropic hardening variable, the cyclic yield strength of the material was determined. A crucial factor in the 
yield strength determination is accurate measurement of the yield point. Abdel-Karim (2011) discussed 
various methods of yield stress determination, which significantly affect the choice of the yield surface and 
hardening rules. The S355J2 steel exhibits discontinuous yield under monotonic test but a notable deviation 
from linearity was observed at stress levels below the upper yield point. This behavior is common in 
polycrystalline metals, where local plasticity can occur at relatively low stress levels due to beneficial 
orientation of crystals. In design practice, the yield point of a continuous yielding material is defined as the 
stress corresponding to 0.2% plastic strain. A similar approach is adopted here but for more accurate 
representation of the plasticity phenomena the yield point is defined at 0.01% offset plastic strain. This gives 
a yield stress value of 90 MPa, which is significantly lower than the upper yield stress of 255MPa at which 
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macroscopic yield occurs and the Lüders plateau initiates, as shown in Fig. 2. The deformation between the 
defined yield point and the upper yield stress is not non-linear elasticity, but rather can be explained as 
inhomogeneous localized plastic strain of favourably oriented single grains as discussed by Jiang (2001); 
Zhang and Jiang (2005a). Determination of the initial yield stress and the hardening law for plastic 
deformation between the initial and plateau upper yield stresses is important as it accounts for the phenomenon 
of cyclic softening at a small plastic strain range, as discussed in the companion paper (Part II).   

 

Fig. 2 – Determination of the two yield stresses for S355J2 steel 

To define the yield strength under cyclic loading conditions, values of yield stress were determined for 
stress-strain curves from loading-unloading stages, random loading sequences and stabilized hysteresis loops, 
as shown in Figs 3a, 3b and 3c respectively. Figure 3d shows the measured yield stress values in terms of 
stress within the elastic domain plotted against the plastic strain accumulated prior to yield stress 
measurement. It is seen that the elastic domain gradually decreases within the range 0.1% to 1.0% of 
accumulated plastic strain and then remains unchanged within a 20 MPa scatter band. This suggests that the 
radius of the yield surface is reduced after initial plastic strain accumulation and then remains constant with 
plastic strain accumulation regardless of plastic deformation history. This material behavior can be modelled 
by the use of a nonlinear isotropic hardening rule adopted in many plasticity models:  

 R b Q R p                                                                             (7) 

 where b and Q  are material constants. The saturation nature of the dependence shown in Fig. 3d indicates 

the nonlinear isotropic hardening rule (7) is an appropriate choice for isotropic hardening modeling. 

5. Stress-strain curve shape modelling 

Experimental measurement of the yield stress during different loading conditions determined the shape of 
the yield surface and the isotropic hardening rule for its change in size. The size of the elastic domain remains 
unchanged during plastic deformation for the investigated S355J2 steel. Subsequently, the stress-strain curve 
shape and variation between curves during the deformation process are uniquely described by the kinematic 
hardening rule, which defines translation of the yield surface. 

The A-F type of kinematic hardening law for yield surface translation is widely used in the literature: 

2

3
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where C and   are material constants and p  is accumulated plastic strain rate defined as: 

2

3
p p

ij ijp                                                                                        (9) 

Integration of (8) for a tensile loading step gives an exponential function in the form:  

  1 exp pC
X 


                                                                  (10) 

where X  is uniaxial back stress and p  is uniaxial plastic strain. 

 

Fig. 3 – Measurement of cyclic yield strength of S355J2 steel in cases of (a) loading-unloading curves, (b) 
stabilized hysteresis loops and (c) stress-strain curves from random loading; (d) measured elastic domain vs. 

accumulated plastic strain 

This type of function has a saturation effect. However, most metals, and specifically the S355J2 steel 
considered here, does not show saturation of stresses during plastic deformation in the investigated range. 
Therefore, to describe the stress-strain curve shape more precisely, Chaboche back stress decomposition is 
applied, where back stress is presented as a sum of several components: 

( ) ( ) ( ) ( )k k p k k
ij ij ijX C X p                                                              (11) 
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where n  is number of back stress decompositions.  

The kinematic hardening rule (8) with decomposition (11) has shown reasonable prediction ability for 
many cyclic plasticity phenomena. However, significant variation of plastic modulus in experimental 
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responses of cyclic hardening and softening during cyclic loading, as well as the difference between the initial 
monotonic and subsequent cyclic curves, requires additional modification of this model. More accurate 
description of the transition between stress-strain curves at load reversals and modelling deformation history 
with ratcheting and hardening/softening effects is achieved by complex modifications proposed by Döring et 
al. (2003); Jiang and Sehitoglu (1996). According to the proposed models, higher accuracy of the simulation 
responses is achieved by the use of several back stress decompositions, usually 6n  . A large number of back 
stress decompositions are inherently related to the exponential function, as a result of integration of (8). To 
reduce the number of back stress decompositions, Zhu et al. (2017); Zhu and Poh (2016) have proposed a new 
kinematic hardening law, where a long range back stress is expressed as: 

   

2

( 1)

2

3 1 ln 1

m m
eqp

ij ij ijmm

qX
X X p

q q




 



 
 

  


                                                     (13) 

This type of kinematic hardening law has a logarithmical form after integration for a monotonic loading 
step: 

 ln 1pX B 


 


                                                                     (14) 

Application of the Zhu et al. (2017) model has shown better description of the monotonic and cyclic stress-
strain curves than exponential A-F models, with the use of only 3 back stress decompositions. The accuracy 
of the model is achieved due to the form of the logarithmic function (14), which naturally fits the nonlinear 
slope of metal elastic-plastic deformation.  

It is noted that the kinematic hardening law (13) gives the logarithmic function (14) only under integration 

with zero initial conditions  0 0X  . Consequently, analytical calibration of the model to the case of a 

branch of the hysteresis loop with non-zero initial conditions is difficult. To provide an analytical solution for 
integration of the kinematic hardening law, applying to any loading step of uniaxial proportional loading, and 
to further improve the simulation accuracy for the stress-strain curve shape, a new kinematic hardening rule 
is proposed here:   

        
4

exp
9

eq kl kl p
ij ij

X r n
X AB

B


 
  

 
                                                   (15) 

where A  and B  are material parameters and ijn  is a unit direction of plastic flow: 

3

2
ij ij

ij
ij eq

S Xf
n

 


 


                                               (16) 

Equivalent back stress eqX  is defined as: 

3

2eq ij ijX X X                                                  (17) 

and klr  is a unit direction of the radius vector of back stress tensor: 

        
3

2
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ij
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X
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X



                                                                                     (18) 
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It is noted that the proposed kinematic hardening rule in the form of (15) does not contain the dynamic 
recovery term, which provides directionality of hardening under non-proportional loading in A-F rules. 
Directionality of the kinematic hardening rule (15) is provided by the term kl klr n , as demonstrated in Fig. 4. 

The inner product of the yield surface normal and back stress radius vector provides different hardening 
depending on the direction of loading. In the case of proportional loading, the normal and radius vector can 
either coincide or be opposite in direction, giving values of the inner product equal to 1.5 or -1.5 respectively.  

 

Fig. 4 – Representation of the directional behaviour of the proposed kinematic hardening rule (15) 

Using (17) and (18), equation (15) can be rewritten in the following form: 

2
exp

3
pkl kl

ij ij

X n
X AB

B
   

 
                                                                (19) 

Integration of the kinematic hardening rule (19) for the case of uniaxial tensile load gives the logarithmic 
function: 

 3
ln 1

2
pX B A                                                                    (20) 

Figure 5 shows that application of the new kinematic hardening rule to the stress-strain curve shape of a 
single hysteresis loop branch provides accurate modelling with the use of only two material parameters and 
no back stress decomposition.  

6. Shift of the stress-strain curves 

Although the proposed kinematic hardening rule describes the shape of a single deformation stress-strain 
curve precisely, its direct application to all deformation curves at the same time will deviate from experimental 
results. This is due to the shift of stress-strain curves that occurs with reversal of load path. To determine the 
effect load reversals on the plastic deformation history, it is convenient to investigate the measured stress-
strain curves for S355J2 steel from a random loading program as shown in Fig. 6a. Figure 6b represents the 
deformation curves in terms of back stress vs. plastic strain. It can be noticed that all stress-strain curves share 
similar shape, if they compared relatively a certain reference point O. To demonstrate this, all the deformation 
curves are plotted on the same graph with the reference point O in the beginning of the coordinate system in 
Fig. 6c. All curves are precisely described by the use of the logarithmic function (20), however with different 
values of A and B parameters. This difference is contributed to cyclic hardening/softening and asymmetry 
between tension and compression and will be addressed in the following sections and in the companion paper 
(Part 2).  
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Fig. 5 – Modelling of stress-strain curve shape for a branch of stabilized hysteresis loop of S355J2 steel 

 

Fig. 6 – Stress-strain response under random loading for S355J2 steel in terms of (a) stress vs. total strain, (b) back 
stress vs plastic strain and (c) back stress vs. plastic strain with reference point at the beginning of the coordinate 

system 

It can be assumed that the stress-strain curves from the deformation process are accurately described by 
the proposed kinematic hardening law (19), where the curves occur with a specific value of shift of reference 
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point O. A modification has to be made to include this shift into the kinematic hardening rule. Equation (19) 
can be written for a tension-compression load cycle as: 

1   for tension3 2
exp      

1   for compression2 3
p sX

X AB s
sB


       

                                        (21) 

Integration of (21) with  0 0
pX X   gives: 
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p p X

X sB sA s
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 
         

                                              (22) 

To include the shift of reference point O, the kinematic hardening rule is modified to the form: 

 23
exp

2 3
pX O

X AB s
B


 

  
 

                                                         (23) 

Integration of (23) with  0 0
pX X   gives an equation describing the deformation process for tension-

compression loading accounting for the shift of the stress-strain curves: 

   0
0

23
ln exp

2 3
p p X O

X sB sA s O
B

 
  

      
   

                                     (24) 

Fig. 6b shows that equation (24) precisely describes the stress-strain curve at load reversals. Equation (23) 
is generalised to the multiaxial case in the form of: 

   
 2

exp
3

kl kl kl p
ij ij

X O n
X AB

B


 
  

 
                                                (25) 

where klO  is back stress reference tensor. 

The general form of equation (25) is valid for modelling the stress-strain curve shape for many materials. 
Figure 7 shows examples of application to hysteresis loops for 304 and X10CrMoVNb9-1 steels, 2124-T851 
aluminum alloy and pure copper. It is seen that the new kinematic hardening model has good prediction 
accuracy for the stress-strain curve shapes for these materials. To simulate other plasticity phenomena such 
as the transition behaviour between cyclic curves and modelling of the initial monotonic stress-strain curve, 
the expression for back stress reference tensor ijO  should be developed specifically for different materials.  

The next requirement is to develop an evolution rule for the shift of back stress reference tensor ijO  with 

application to the investigated S355J2 steel. To evaluate the behaviour of reference point O based on uniaxial 
tension-compression testing, experimental results for stress-strain response from Fig. 8a are analysed. Fig. 8b 
shows this stress-strain response in terms of back stress versus plastic strain, where reference points from each 
curve are numbered from 1 to 8. It can be assumed that the reference point stays unchanged during active 
loading step and changes its value only on load reversal, such as from Curve 2 to Curve 3, or with return of 
load to the main curve, such as from Curve 3 to Curve 1. Evolution of the reference point O with accumulation 
of plastic strain can therefore be plotted as a stepwise dependence, as shown in Fig. 8c. This type of 
dependence requires consideration of a new mathematical approach to model this type of behaviour. 
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Fig. 7 – Stress-strain curves from hysteresis loops branches for (a) 304 stainless steel (Kang et al., 2003), (b) 2124-
T851 aluminum alloy (Halama et al., 2017) and (c) X10CrMoVNb9-1steel and pure copper (Kowalewski et al., 2014) 

7. Dirac delta functions framework  

Developing a new mathematical framework for describing cyclic plasticity phenomena is required for a 
certain types of internal variables which behave as constants during certain intervals of loading. An example 
of such a variable is previously accumulated plastic strain, introduced by Voyiadjis et al. (2012) to better 
describe stress-strain curve prediction. The concept of this variable is that previously accumulated plastic 
strain remains constant during a step of active loading and changes to the current value of accumulated plastic 
strain only with a change of loading from tensile to compressive or vice versa. In this study, this type of 
variables is widely and efficiently used for various different cases and strict mathematical representation is 
first given here based on a framework of Dirac delta functions.  

When an internal variable is kept constant during some time interval, the history of its development is 
described by a stepwise function as shown in Fig. 9. To reproduce this type of dependency in evolution laws, 

a Dirac delta function  δ x  is used here. The Dirac delta function is formulated as: 

  ,     0
δ

0,     0

x
x

x

 
  

                                                                                      (26) 

The evolution equation for internal variables with stepwise dependency is written by means of the Dirac 
delta function (26) in a general form: 

   , ,g x f x x                                                                                      (27) 
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Several basis properties of the Dirac delta functions are used to solve the general equation (27). The main 
property is that integration of a differential equation ( ) ( )x x x    with initial condition of (0) 0.5   yields 

( ) ( )x H x  .  H x  is the Heaviside step function, defined as: 

  1,    0

0,    0

x
H x

x


  

                                                                                      (28) 

 

Fig. 8 – Stress-strain response under random loading for S355J2 steel in terms of (a) stress vs. total strain, (b) back 
stress vs plastic strain; (c) behavior of the reference point with accumulation of plastic strain 
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Fig. 9 – Stepwise dependence of internal variable 

Additional properties of the Dirac delta function are summarized in Table 3. For the sake of numerical 
performance it is convenient to write the Dirac delta function in the approximate form: 

 
0

δ lim ( , )
a

x x a


                                                                                     (29) 

The function ( , )x a  which is associated with the Dirac delta function can be taken as:  

2

2exp( )
( , )

x
ax a

a





                                                                                   (30) 

It is important that representation of the Dirac delta function in the form of (30) keeps its properties for 
solving of differential equations.  

An instant change of an internal variable, such as the shift of the reference point in a stress-strain curve 
shown in Fig. 8c, can be modelled by tuning the parameter a in the delta function ( , )x a  to be small. 

Adjusting this parameter to larger values can provide more gradual transition for internal variable changes, 
such as transition between Curve 3 to Curve 1 of Fig. 8b. The definition of the a  parameter is important as it 
is a unique parameter for evaluation of ratcheting and mean stress relaxation. 

 

Table 3 – Properties of Dirac delta function for solving of differential equations 

Equation Solution 

     x x k x                                                              (3.1)      1x H x k c                                                      (3.7)  

   x c x k x                                                       (3.2)     1x cH x k c                                                        (3.8)  

     x x g y x                                                    (3.3)     1x H x g y c                                                     (3.9)  

( ) ( ) ( )x g x x k x                                                (3.4) 1( ) ( ) ( )x g k H x k c                                               (3.10)  

     x x g x x                                                   (3.5)       1

0

x

x H x g y dy c                                         (3.11)  

     ,   y y y y x      

     
y

x    


   
                                                (3.6)

     1H x c                                                          (3.12)

 

t

χ
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8. Developing of the evolution equation for shift of back stress reference tensor 

Investigation of the deformation curve from Fig. 8 suggests that there are two main reasons for changing 
the reference point of the stress-strain curves. The first case is change of the loading direction such as from 
Curve 2 to Curve 3 and the second case is transition between two curves without changing loading path such 
as from Curve 3 to Curve 1. It is assumed that the shift point keeps constant during a step of loading and 
changes its value only when Case 1 or Case 2 occurs. 

8.1 Case 1 

The shift point of the deformation curves changes its value whenever loading path changes to completely 
reversal such as from tensile to compression loads. To understand the movement of the shift point a specific 
test with several cycles of tension-compression with loading program shown in Fig. 10a are considered. Figure 
10b demonstrates the results of the test in terms of stress-strain response. To analyse the stress-strain response, 
deformation curves are plotted in coordinates of uniaxial back stress vs. uniaxial plastic strain and shown in 
Fig. 10c. It can be noticed from the graph that the shift point changes its value from zero to a non-zero value 
with every reversal of loading when loading cycles are confined within a range of compressive and tensile 
stresses where maximum amplitude is attained in tension as shown by Curve 1. As soon as the peak stress of 
a hysteresis loop such as from Curve 2 or 3 exceeds this stress range in either tensile or compression direction, 
no further shift of the reference point occurs anymore regardless of new reversals of loading cycles. This 
observation suggests the existence of a stress surface within which the reference point of the deformation 
curve can shift. Once the current stress state is on the surface the reference point returns to the zero value. As 
the back stress surface is located outside the yield surface it is called a supersurface and introduced as: 

0
s

eq sF X R                                                                       (31) 

where sR  is the radius of the supersurface. 

The supersurface can isotopically change in size without kinematic movement of its centre. The evolution 
law of sR  based on consistency condition is formulated as: 

 0
eqs

s

X
R H F p

p



 


                                                                (32) 

eqX p   is calculated as: 

 2 2
exp

3 3

eq
eq eq ij ij kl kl kl

ij
ij eq

X X X X X O nX
AB n

p p X p X B

   
       


 

             (33) 

The Heaviside function  0
sH F  means that the variable sR  can only evolve when the current stress state 

is on the supersurface 0
sF  and stays unchanged while the stress state is inside the supersurface. 
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Fig. 10 – Testing with loading to define supersurface; (a) loading program , (b) stress vs. total strain and (c) back 
stress vs plastic strain 
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To develop the evolution rule for the shift of back stress reference tensor for Case 1, loading, unloading 
and reloading steps for uniaxial case are considered in Fig. 11. Its generalization for the multiaxial case is 
presented in Fig. 12. Starting from initial point A, the load path to point B evolves the reference supersurface. 
Reversal of the load path occurs at point B. At that moment, the current stress state goes inside the 

supersurface satisfying the condition 0 0sF  . With reversal of the load path, deformation proceeds from point 

B to point C. To establish the evolution rules for the back stress reference tensor ijO , the uniaxial case of 

unloading from Fig. 11a is generalised as follows. Reversal of the loading path at point B creates subsurface 
sf  which is associated with reference supersurface 0

sF . These have a mutual point which is defined as the 

back stress attained at a moment of load reversal. The location of the back stress reference point on the 
subsurface depends on the current stress state. The back stress reference point is defined as a half of the 
distance between the point of previously attained back stress and the point of intersection between a 
supersurface and the normal of the yield surface. This definition allows the back stress reference point to 

always lie on the subsurface sf . It also accounts for anisotropy of hardening during non-proportional loading 

conditions. The equation for the back stress reference tensor is then written as: 

 1

2ij ij ijO Z X                                                                  (34) 

where ijZ  is the tensor of intersection between the supersurface and the normal to the yield surface and ijX  

is the previously attained back stress tensor. 

The intersection between the supersurface and the normal to the yield surface is determined using 
geometrical properties of the intersection between a line and a hypersphere in a multidimensional space. The 
line and sphere equations are written in the form: 

Line:   ij ij ijx X n                                                                  (35) 

   22
Hypersphere:   

3ij ij ij ij sx c x c R                                                (36) 

where ijc  is a centre of the supersurface and   is a parameter for parametrical representation of the line. 

Parameter   can be found with roots of quadratic equation 2

1 2 3 0        as: 

2
2 2 1 3

1

4

2

   




  
                                                                         (37) 

where coefficients of the quadratic equation 1 , 2  and 3  are determined as:  

 
  

1

2

2
3

1.5

2

2

3

ij ij

ij ij ij

ij ij ij ij s

n n

n X c

X c X c R







 

 

   

                                                  (38) 

As the quadratic equation has two roots, it corresponds to two points of intersection. The point in the 
positive direction of the yield surface normal should be chosen for the solution.   
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Fig. 11 – Consideration of three paths of tension-compression tests with multiaxial representation; (a) loading from A’ 
to C’ , (b) loading from C’ to D’ and (c) loading from D’ to E’ 
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Fig. 12 – Multiaxial representation of the model behavior 

To find the intersection point, parameter   should be put back into the line equation (35). The intersection 

tensor ijZ  is then defined as: 

ij ij ijZ X n                                                                         (39) 

The expression (39) contains variables, which show stepwise dependency such that they changes value 
only with reversal of the load path. To form an evolution equation for these variables in terms of the delta 
function, the condition of the reversal of loading paths is formulated. As the case of uniaxial unloading may 
not exist in multiaxial case, the load reversal condition is defined in terms of the shortest distance between 
current back stress and previously attained back stress. The critical distance is defined as: 

  3

2 ij ij ij ijL X X X X                                                                 (40) 

Load reversal occurs when the distance L  stops growing, such that 0L  . This condition can be directly 
inserted into the evolution equations for variables with stepwise dependency: 

   ,
x

x G
G f p p

p
  


 


                                                                                       (41) 

where xG  is a kernel of the delta function. Condition (41) means that when xG  is equal to zero, the delta 

function gives an instant change for a variable   on the value of  ,f p  . To fulfil the condition of loading 

reversal, xG  is written in the form: 
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x L L
G

p p
 
 
 

                                                                       (42) 

The use of (42) allows instant change of a variable for cases of both smooth and sharp dependencies of  L  
on p  as shown in Fig. 13. The full derivative of L p   can be calculated analytically: 

 2 2
exp

3 3
ij ij ij kl kl kl

ij
ij

X X X X O nL L L
AB n

p p X p L B

   
       


 

                         (43) 

The evolution rule for ijX  is then written as: 

  [ ]
x

x
ij ij ij

G
X G X X p

p
 

 
                                                              (44) 

where ijX  is previously attained back stress tensor which is defined at a previous moment of time with a time 

delay : 

 ij ijX X t                                                                         (45) 

 

Fig. 13 – Smooth and sharp dependence of L parameter on accumulated plastic strain 

Introduction of a time delay in equation (44) is required to avoid uncertainty at a moment of load reversal 

when the argument of the delta function takes zero value. The value of variable ijX  at a new step of loading 

depends on its value from a previous loading step defined before reversal of loading, as shown in Fig. 14. An 

instant change of the variable ijX therefore depends on its value at any moment of time before reversal of 

loading. Subsequently, the time delay must be a value smaller than the value of the step duration itself.  

Referring to Fig. 11b, with a new reversal of the loading path at point C loading proceeds to point D. Figure 

11b suggests that if reversal occurs within the reference supersurface 0
sF , the Curve 2 from the hysteresis 

loop always tends to close the loop with Curve 1. In fact, Curve 2 shares the same hardening as of Curve 1 
with another position of reference back stress. In the general stress state, another surface called shifted 

supersurface 1
sF  is created at the reversal point C. It is assumed that the hardening laws inside 1

sF  is the same 

as inside 0 ,sF  but relatively a new position of reference back stress. The shifted supersurface 1
sF  is written as: 
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  1 1
1

3

2
s s s

ij ij ij ij sF X c X c R                                                          (46) 

where 1s
ijc  is coordinates of the centre.  

The supersurface is able to move instantly only at the reversal of loading step and remains unchanged 

during loading. It also keeps the same radius sR  as the reference supersurface 0
sF . Figs 10a, 10b and 10c 

show that the centre of the supersurfaces coincides with the shift point. However, this is only valid for the 
case of proportional loading. To develop a general evolution rule for the supersurface centre and reference 
back stress tensor, a general case of multiaxial loading is considered in Fig. 12 as loading from point C to 
point D.  

In the case of loading reversal from the reference supersurface 0
sF  at point B, the reversal at point C occurs 

when the shortest distance between current back stress and previously attained back stress stops growing, 

such that 0L  . As the supersurface 1
sF  is created at the reversal point C with tangent plane perpendicular to 

the distance L , the evolution equation of centre of the shifted supersurface 1
sF  is formulated in terms of the 

delta function: 

   1 1
x

s x ss
ij ij ij ij ij

RG
c G X X X c p

p L


 
    

 


    

                                                (47) 

where 1s
ijc  is centre of the supersurface defined at a previous moment of time with a time delay : 

 1 1s s
ij ijc c t                                                                           (48) 

and L  is defined as: 

  3

2 ij ij ij ijL X X X X                                                                   (49) 

 

Fig. 14 – Evolution of back stress and previously attained back stress 
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sF  is created when the distance L  stops growing as shown in Figure 12. 
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  2 2
2

3

2
s s s

ij ij ij ij sF X c X c R                                                         (50) 

where the centre 2s
ijc  of the supersurface defined as: 

   2 2
x s

s x s
ij ij ij ij ij

G R
c G X X X c p

p L


 
    

 


    

                                            (51) 

Hardening inside 2
sF  is the same as inside 1

sF , however with different position of reference back stress 

tensor. It is important to note that a new reversal inside the shifted supersurface 2
sF  at point E does not create 

a new shifted supersurface, but the shifted supersurface 1
sF  will be moved instantly to a new position defined 

by the equation (51).  

To generalize this point, every new reversal inside shifted supersurface 2
sF  instantly moves shifted 

supersurface 1
sF  and every reversal inside shifted supersurface 1

sF  instantly moves the shifted supersurface 

2
sF . To prove this assumption, a test with loading program shown in Fig. 15a is performed. The stress-strain 

response of this loading is shown in Fig. 15b and Fig. 15c. The use of this type of loading provides that every 

new reversal of loading occurs within one of shifted supersurface 1
sF  or 2

sF . Curve 2 consists of two parts: 

the first one is before the transition point with reference Point 2 and the second one is after the transition point 

with reference Point 1. It can be concluded that with crossing the boundary of the shifted supersurface 1
sF  at 

the transition point, the reference Point 1 moves to reference Point 2 and Curve 2 continues with the same 
hardening as of Curve 1 from the first step of loading. The fact that Curve 2 does not follow hardening of 

Curve 3 with reference Point 3 means that with crossing the boundary of the shifted supersurface 1
sF , the 

loading state does not come back into the previous shifted supersurface but returns back inside the reference 

supersurface 0
sF . As a conclusion, only two shifted supersurfaces which alter between each other whenever 

reversal of loading occurs are enough to describe the loading process and history of plastic deformation. 

    To describe the deformation process with switching between the two supersurfaces, switching operators 

1  and 1  are introduced as: 

 1 0 2 1( ) 1 ( )
x

x sG
G H F p

p
     


    

                                            (52) 

 2 0 1 2( ) 1 ( )
x

x sG
G H F p

p
     

    
                                            (53) 

The evolution equations for the shifted supersurfaces 1
sF  and 2

sF  and coefficient   are then modified as: 

   1 1
1

x s
s x s

ij ij ij ij ij

G R
c G X X X c p

p L


 
    

 


    

                                               (54) 

   2 2
2

x s
s x s

ij ij ij ij ij

G R
c G X X X c p

p L


 
    

 


    

                                             (55) 
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2
2 2 36

3

  


  
                                                                    (56) 

where coefficients of the quadratic equation 2  and 3  are determined as:  

 
  

2

1 2 1 2 2
3 1 2 1 2

2

2

3

ij ij ij

s s s s
ij ij ij ij ij ij s

n X c

c c X c c X R





 

        
                                           (57) 

 

Fig. 15 – Testing with loading to define number of supersurfaces; (a) loading program , (b) stress vs. total strain 
and (c) back stress vs plastic strain 
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8.2 Case 2 

Another reason for the shift of deformation curves is transition between curves such as from Curve 3 to 
Curve 1 in Fig. 8. This situation means that current stress crosses the boundary of one of the supersurfaces 
and the reference point relaxes to zero value without reversal of load. To modify the equation for the back 
stress shift tensor, a new parameter   responsible for the transition between deformation curves is introduced 

into the equation of back stress reference tensor: 

 1

2ij ij ijO Z X                                                                     (58) 

Parameter   should be equal to one whenever the loading is inside of all of the three supersurfaces and 

takes zero once current stress approaches the boundary of one of the supersurface. Evolution equation for 

parameter   for the case when the current stress approaches the boundary of the shifted supersurface 1
sF  is 

formulated as: 

 1 1
s sF F                                                                        (59) 

or in terms of accumulated plastic strain rate as: 

  1
1

s
s F

F p
p

 


 


                                                                  (60) 

While moving inside of one of the supersurface the current stress can cross the border of any of the 
supersurface leading to relaxation of the reference point. Therefore the parameter   should include the 

condition for relaxation for the three cases of crossing the boundary. Once the boundary is crossed, the 
parameter   is equal to zero. A new reversal of loading should return it to one. To include these requirements 

into the evolution equation, the following modifications are made: 

 
2

0

( ) ( )
s x

s xi
i

i

F G
h F G H p

p p
   



 
    
 




 
 

                                                   (61) 

     0 1 21 s s sh H F H F H F                                                             (62) 

Once one of the supersurfaces is crossed, the deformation process continues with the stress state inside or 
on the reference supersurface further evolving the reference supersurface. Solution of equation (61) for 
uniaxial loading provides an instant relaxation of the reference point such that Curve 3 closes the loop with 
Curve 1. However, in the real behavior of the material, there is no closed loop such that a deviation effect 
occurs when stress approaches the upper point of the hysteresis loop, inducing a ratcheting phenomenon. This 
behavior will be discussed in the companion paper (Part II), where an approximate form of the Dirac delta 
function is used for modelling the deviation effect.  

9. Non-proportional hardening  

The proposed model of kinematic hardening in the form (19) evolves back stress only in the direction of 
plastic strain. This behaviour has been observed experimentally but only for proportional loading. Lamba and 
Sidebottom (1978) demonstrated that better agreement with experimental results of non-proportional loading 
is achieved when back stress can evolve in a different direction according to the Mróz (1967) kinematic 
hardening model. In A-F models, the directionality is provided by the dynamic recovery term, which pulls the 
back stress towards the centre of the coordinate system in the deviatoric stress space. 
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In this study, the proposed kinematic hardening rule (19) is modified to include dynamic recovery in the 
following way: 

2 2
exp

3 3
pkl kl

ij ij ij kl kl ij

X n
X AB X X n n p

B
         

  
                                   (63) 

where   is a material constant. The term 
2

3 kl kl ijX n n p   is a projection of the increment of back stress 

ij ijX X p    on the yield surface normal ijn  (Fig. 16). Equation (63) implies that the second term in the right 

hand side comes into play only when non-proportional loading occurs. For any proportional loading, with a 
coincident direction of the yield surface normal ijn  and back stress radios vector ijr , the second term is 

cancelled out. By subtracting the projection of the back stress increment 
2

3 kl kl ijX n n p  , it is ensured that the 

back stress increment along the yield surface normal is defined by the first term in the right hand side of 
equation (63). The second term therefore affects only non-proportional loading, depending on the scalar 
product kl klX n . It is noted that in this study, proportional loading during plastic deformation occurs whenever 

the back stress radios vector ijr  coincides with or opposite in direction to the yield stress normal ijn  in the 

deviatoric stress space.    

Equation (63) is a convenient way of representing the directional behaviour of the back stress evolution, 
as the increment of back stress due to non-proportional hardening does not interact with proportional 
hardening. This allows more flexibility in modelling non-proportional hardening responses, as shown for 
simulation examples of model application presented in the companion paper, Part II, where for the same 
proportional stress-strain curve, different nonproportional responses are simulated depending on the material 
constant  . As the non-proportional loading term of equation (63) does not interact with the proportional one, 

all subsequent model developments presented in this study are written for the case of proportional loading 
only. The non-proportional term can always be added if required.  

 

Fig. 16 – Representation of kinematic hardening rule (63) 

10. Transition from the initial stress-strain curve 

For many metals the shape of initial stress-strain curve is different from the subsequent curves of cyclic 

loading. Figure 2 demonstrates a typical stress-strain response for carbon steels where the initial stress-strain 

τ3

σ
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curve has a plateau. It is seen that initial monotonic stress-strain curve is different from other curves and 

cannot be approximated by the same hardening law as other curves directly. 

The occurrence of a plateau during monotonic loading is known as the Luder’s band phenomenon, which 

is highly localised plastic deformation of single crystals. Jiang (2001); Zhang and Jiang (2005a, 2005b) 

presented experimental evidence of the localised nature of the plastic deformation of the plateau, as well as 

cyclic deformation in general, for 1045 steel under uniaxial and multiaxial loading conditions. The 

experimental procedure included force and strain controlled cyclic loading tests, where strain was measured 

by means of a standard extensometer and local strain gauges located along the gauge section of the specimens. 

The measurements showed that the local strains from the strain gauges are all different from the extensometer 

strain for monotonic deformation on the plateau, due to the localised nature of the Luder’s band phenomenon. 

The difference persists for subsequent strain hardening regions and during cyclic loading. However, an 

average value of stain calculated from all measurements of the local stain gauges were seen to be close to the 

extensometer strain measurement. This indicates that the bulk behaviour of structures can be approximately 

described using experimental inputs of engineering stress-strain responses obtained by means of extensometer 

measurement, not only for strain hardening behaviour, as widely used in practice, but also for 

phenomenological description of the plateau behaviour. Such an approach is used by Ucak and Tsopelas 

(2011, 2012) to describe the plateau behaviour of carbon steels, where the concept of Chaboche nonlinear 

hardening is coupled with an introduced pseudo memory surface. The bounding surface initially coincides 

with the yield surface and is not allowed to translate and expand. Specific nonlinear hardening rules are 

defined inside and on the bounding surface, such that loading-on and unloading-from the plateau are properly 

simulated. The boundary surface vanishes when a condition for exiting the plateau region is satisfied.  

This study attempts to describe transition between the initial monotonic and subsequent stress-strain curves 

by a unified set of differential equations with the same kinematic hardening rule and the same set of material 

constants. To extend the developed evolution rules for cyclic plastic deformation for the case of cyclic loading 

with the plateau, a few test with different loading programs were performed. Figures 17a, 17b, 17c and 17d 

show stress-strain curves after tension-compression tests with different loading programs. An important 

observation here is that regardless of loading direction and program the material must undergo a certain value 

of plastic strain ̂  before hardening occurs. Figure 17a suggests that the value of ̂  is the same for tensile and 

compression load and for both cases the plateau occurs at the same stress magnitude of 255 MPa. Figure 3.15b 

shows that the sum of plastic strain which was accumulated during loading at the plateau for tensile load 

following compression load is equal to ̂ . It is also found that plastic strain accumulated during cycling with 

loading below y  does not change the value of ̂  such that once the value of y  is attained hardening occurs 

only after plastic strain has accumulated the value of ̂  (Figure 17b). Initial plastic flow starts before the stress 

reaches the value of y  when the plateau initiates as established in Figure 2. It occurs when stress exceeds 

the value of  0  and continues until the initiation of the plateau. This observation suggests existence of a 

stress surface inside which plastic deformation with large hardening can occur. Once the stress state is on the 

surface, plastic deformation occurs with no hardening until accumulated plastic strain has the value of ̂ . It 

is convenient to associate this surface with already introduced reference supersurface 0
sF : 

0

3

2
s

ij ij s yF X X R X                                                              (64) 



27 
 
where yX  is back stress yield point defined from uniaxial tensile or compression tests which corresponds to 

initiation of the plateau.  

 

Fig. 17 – Plateau behavior of S355J2 steel during (a) one step of tensile and compression, (b) tensile following by 
compression, (c) cyclic below plateau stress and (d) ratcheting below the plateau 

 

Fig. 18 – Modelling of the plateau 

To define the evolution rule for the back stress shift tensor for loading inside the supersurface, several 
loading-unloading tests were performed. Figure 18 suggests that the initial hardening of the material before 
the stress state reaches the yield point can be described with the stress-strain relationship defined by the 
developed kinematic hardening rule (25) with a shift point which coincides with the back stress yield point. 
That means the reference supersurface 0

sF  coincides with subsurface sf  in the initial state. When load 
reversal occurs on the plateau, the shift point has a non-zero value. Once the plateau region is passed and 
hardening occurs, reversal compression curves have a reference point equal to zero. This means the back 
stress shift tensor has a different evolution rule when loading is inside and on the reference supersurface. 
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Figure 18 shows that during reversal of loading to compression from the plateau, the reference points are 
changed according to the logarithmic function (20). Therefore, it is convenient to introduce a variable which 
is responsible for the back stress shift during loading below and on the plateau associated with the hardening 
law as:      

 3 2
1 exp

2 3
h

h

X
X AB C p

B
    
 

                                                            (65) 

where parameter C  is defined as follows: 

   01 1 2s
h yC H F H X X                                                           (66) 

The combination of Heaviside functions in (66) means that when loading is on the reference supersurface 

0
sF  defined by  0

sH F  and hX  has not reached the value of yX  defined by  1 h yH X X    , C  is equal to 

zero and hX  develops according to (65).  

Once loading is inside the main supersurface or hX  exceeds the value of yX , C  is equal to one and hX  

stays unchanged. It should be noted that attaining the value of  yX  by hX  is equivalent for accumulated plastic 

strain p  to reach the value of ̂  while loading on the plateau. The definition of ̂  is also similar to plateau 

region strain defined in (Ucak and Tsopelas, 2011, 2012).  

The kinematic hardening rule is modified to the following form: 

 2
exp

3
pkl kl kl

ij ij

X O n
X ABC

B



 

 
 
 

                                                         (67) 

The modified expression of the kinematic hardening law ensures that when stress reaches the yield point, 
the plateau begins with no hardening. Once unloading starts from the plateau, hardening occurs with the back 
stress shift defined by ijO . Finally, when hX  exceeds the value of yX , C  is equal to one and loading is defined 

by the developed hardening rules. 

To ensure that the reference supersurface 0
sF  develops only when loading leaves the plateau, the evolution 

rule of the radius sR  should also be modified: 

   0 2 eqs
s h yX

X
R H F H X p

p
 


 


                                                    (68) 

Finally, the evolution rule for the back stress shift tensor that describes all deformation process including 
initial hardening, plateau and subsequent deformation is updated to:  

 2

2
y h

ij ij ij
y

X X
O Z X

X



                                                         (69) 

Generalising the case of loading with the plateau for multiaxial loading conditions based on the developed 

form for the back stress reference tensor (69) suggests that the initial reference supersurface 0
sF  and subsurface 

sf  coincide as shown in Fig. 18. With loading on the plateau, the subsurface decreases its size for the direction 

of plastic deformation based on the evolution rule (65). Finally, when the diameter of the subsurface becomes 
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equal to the radius of the reference supersurface, loading leaves the plateau region and deformation continues 
with kinematic hardening.    

11. Isotropic hardening compensation 

Materials usually exhibit combined isotropic and kinematic hardening such that the yield surface can move 
and change its size. It has been established experimentally here that in the case of S355J2 steel the larger part 
of the deformation process is described by kinematic movement of the yield surface and the smaller part of 
isotropic hardening occurs when the initial size of the yield surface is decreased, as shown in Fig. 3d. To fully 
associate the uniaxial stress-strain curve shape with the kinematic hardening model, it is convenient to include 
the isotropic part of deformation hardening described by the equation (7) into the rule of kinematic hardening 
as shown in Fig. 19 in the form: 

T R
ij ij ijX X X                                                                         (70) 

where R
ijX  is kinematic hardening responsible for compensation of the isotropic hardening part and is written: 

R
ij ijX n R                                                                      (71) 

This separation is convenient, because all deformation process defined by uniaxial stress-strain curves can 
be calibrated directly to the developed kinematic hardening rule for the component ijX . In the case of uniaxial 

tensile loading, the integration of kinematic and isotropic hardening rules gives: 

0
RX R X                                                                       (72) 

Positive RX  cancels out negative R  giving: 0X   . The yield surface is then modified to the 

following form: 

   0

3

2
T T

ij ij ij ijf S X S X R                                                          (73) 

 

Fig. 19 – Representation of isotropic hardening compensation 

12. Elastic-plastic transition during unloading 

Figure 20a and Figure 20b shows the results of stress-strain slope modulus measurement during unloading 
stages, with reduction of up to 20% of initial value of the chord modulus. There are several modelling concepts 
to take into account variations of the unloading curve modulus during plastic deformation. They can be 
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Young’s modulus is represented as a chord modulus, which is a linear slope defined by a line connecting two 
points of an unloading stress-strain curve. Conventionally, these points are the stress where unloading starts 
and zero stress which corresponds to the unloaded state. Unloading slope is then defined as a function of 

plastic pre-strain ( )p
chordE g  . As an example, exponential form developed by Yoshida et al. (2002) can be 

used: 

   1 exp p
chord i i aE E E E                                                            (74) 

where iE  is initial chord modulus, aE  is chord modulus after large plastic pre-strain and   is a material 

parameter. 

As behavior of the material during unloading stage is known to be nonlinear, Chen et al. (2016); Sun and 
Wagoner (2011) proposed the following nonlinear equation for an unloading stress-strain curve: 

  1 2

                                                   for   

1 exp   for   

o c

o c c

E
E

E A A

 

   

            
                                       (75) 

where   is the absolute value of the increment of strain from the unloading path; c  is a value of critical 

transition strain which separates linear and nonlinear portions of deformation; 1A  and 2A  are material 

parameters.   

With the use of equation (75) the deformation process is divided into three stages. The first stage is elastic 
loading until the strain increment   reaches the value of c . After that, loading continues as quasi-elastic-

plastic (QPE) with unloading slope defined by (75) for c    up to the stage of normal plastic deformation 

after exceeding conventional yield stress.  

To provide consistent modelling of quasi-elastic-plastic deformation, the framework of introducing 
additional yield surfaces should be used. However, this may complicate a material modelling approach. As 
an alternative to the approach of quasi-elastic-plastic deformation, it is proposed to use the nonlinear 
kinematic hardening rule developed in this study. This model naturally accounts for variation of hardening 
slope for an unloading stress-strain curve starting from points of early yielding. This is achieved by the 
property of the hardening rule during reversal of the loading path. According to the developed model, the 
hardening slope during tensile plastic pre-strain is expressed as:   

3 2
exp

2 3p p

dX X
E AB

d B
    
 

                                                  (76) 

With loading reversal at point 0X , the hardening slope changes to 023
exp

2 3p

X
E AB

B
   
 

. With the use of 

small offset yield stress definition, this slope is usually several orders magnitudes harder than the elastic slope 
of the material p iE E , meaning that the total slope at point 0X  is: 

p i
T i

p i

E E
E E

E E
 


                                                          (77) 

With continuation of plastic deformation to the point of zero stress, the slope gradually develops to the 
value of: 
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2
3

i
T

i

ABE
E

AB E



                                                                     (78) 

As shown in Fig. 20c, the proposed nonlinear kinematic hardening model predicts the unloading stress-
strain curve with reasonable accuracy when compared with the QEP model and other unloading modulus 
definitions. The hardening property of the model provides a gradual transition between elastic and elastic-
plastic regions at the yield point with small plastic strain offset. 

 

Fig. 20 – Variation of unloading slopes of S355J2 steel; (a) Measurement of chord modulus during loading-
unloading, (b) measured unloading modulus vs. plastic pre-strain and (c) modelling with different models  

13. Effect of hydrostatic pressure 

It is observed in many metals that cyclic plasticity deformation curves have different hardening slopes for 
tensile and compression loading (Voyiadjis et al., 2012). Such difference is significant for notched samples 
with high hydrostatic pressure. As hydrostatic pressure is present during the uniaxial tension-compression 
stress state, its effect on stress-strain curves is also expected. Figure 21 shows the uniaxial monotonic stress-
strain curves obtained for both tensile and compression tests for S355J2 steel. It is shown that uniaxial 
compression curve has a steeper stress-strain slope. The difference in hardening was also found during 
subsequent loading cycles, as shown in Fig. 22 for the case of stabilised stress-strain hysteresis loops under 
two different strain ranges for the investigated S355J2 steel (Fig. 22a). This material behaviour is also present 
in 304 stainless steel (Kang et al., 2003) (Fig. 22b) and 2124-T851 aluminum alloy (Halama et al., 2017) (Fig. 
22c). Voyiadjis et al. (2012) proposed modelling the effect of different hardening through the influence of the 
first stress invariant on the parameter of isotropic hardening as: 

    1 2 1 1 2exp 1 expR Q Q b I b p                                                         (79) 

S
tr

es
s

0
Total strain

0.5 1.0 1.5 2.0 2.5 3.0

100

200

300

400

0

ε,%

σ,MPa

Yield point (0.01% offset)

E
 

=
 1

80
 G

P
a

ch
 

E
 

=
 1

76
 G

P
a

ch
 

E
 

=
 1

73
 G

P
a

ch
 

E
 

=
 1

70
 G

P
a

ch
 

E
 

=
 1

63
 G

P
a

ch
 

E
 

=
16

0 
G

P
a

ch
 

E
 

=
 1

59
 G

P
a

ch
 

E,GPa

150

200

E
la

st
ic

 m
od

ul
us

Total strain
0 1.5 2.0 2.5 3.01.00.5

175

Ei

E0

Ech

Chord Echord

Proposed model

QPE model

Offset E0

Initial E  i

Experimental

(a)

(b)

(c)

ε,%

ε,%



32 
 
where 1Q , 2Q , 1b  and 2b  are material parameters and 1I  is the first stress invariant defined as 1 iiI  . 

 

Fig. 21 – Difference between tensile and compression stress-strain curves of S355J2 steel (absolute stress values 
for compression) 

 

Fig. 22 – Difference between tensile and compression stress-strain curves for branches of stabilized hysteresis 
loops for (a) investigated S355J2 steel, (b) 304 stainless steel (experimental data from Kang et al. (2003)) and (c) 

2124-T851 aluminum alloy (experimental data from Halama et al. (2017)) 

Equation (79) allows the isotropic hardening to develop differently in tensile and compression dominated 
loads, such that compression accelerates increasing of the size of the yield surface. However, for the low 
carbon steel S355 investigated in this study, it is established experimentally that elastic domain does not 
change during plastic strain accumulation in both tensile and compressive loading. Therefore, the influence 
of the first stress invariant should be inserted into the kinematic hardening rule. A new parameter D  is then 
introduced only into the equation of kinematic hardening rule: 
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The role of the parameter D  is to provide variation of the slope of stress-strain curves whether tensile or 
compression stress state dominates. Based on the experimental observations, the evolution equation for the 
parameter is written in the form: 

 1 2 2 1 1expD d d d I I                                                                   (81) 

or in terms of accumulated plastic strain rate: 

 1 2 2 1expD d d J d I p                                                                  (82) 

where 1d  and 2d  are material parameters and J  is variation of the first stress invariant during accumulation 

of plastic strain: 

1IJ
p





                                                                         (83) 

Integration of the equation (82) for the uniaxial case with initial conditions of  0 1D  , yields: 

       1 2 1 21 exp 1 expD d d H d d H                                               (84) 

The result of the integration is illustrated in Fig. 23. It is seen that tensile load lowers the parameter D  
below one, thereby leading for decrease in the stress-strain curve slope, whereas compressive load tends to 
increase the slope of the stress-strain curve. It is noted that in the case of pure shear loading conditions with 

1 0I  , the parameter D  will not change and stay equal to one, meaning there is no additional change in the 

slope of deformation curves. Figure 24 shows application of the model to simulate stress-strain curves from 
upper and bottom branches of the hysteresis loop of S355J2 steel under strain amplitude of 1.6%. The stress-
strain curves are plotted together with a point of zero stress at the origin. It is seen that the developed modelling 
approach for the first stress invariant conforms well to the experimental results. More examples with 
application of the developed model with a calibration procedure for finding material constants 1d  and 2d  are 

considered in the companion paper (Part II). 

 

Fig. 23 – Evolution of parameter D with tensile and compression loading 
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Fig. 24 – Upper and bottom branches of the hysteresis loop of S355J2 steel with modelling 

It should be noted that in the models (Bai and Wierzbicki, 2008; Spitzig and Richmond, 1984) of the 
hydrostatic pressure effect, the first stress invariant is incorporated into the yield criterion without affecting 
kinematic or isotropic hardening functions. However, the experimental results from Voyiadjis et al. (2012) 
clearly showed that there is a difference for hardening in tension and compression dominated loading for 
DIN1.6959 steel. Therefore, the hydrostatic pressure effect should also be included into the hardening rules. 
As in this study no visible difference between measured yield stress during tension and compression was 
found, the effect of the first stress invariant is incorporated into the kinematic hardening rule only which 
determines the shape of the stress-strain curves. 

14. Conclusions 

This paper proposes a new continuum model of cyclic plasticity in metals, capable of accurate 
representation of complex cyclic stress-strain curves. The theoretical development is based on experimental 
results from cyclic tension-compression tests of S355J2 low carbon steel and experimental stress-strain curves 
from the literature. The review of the literature on phenomenological cyclic plasticity models with A-F 
kinematic hardening rules indicates certain restrictions in modelling cyclic plasticity responses with this 
approach. This is attributed to the number of back stress components, combined with evolution rule 
modifications, required to represent some aspects of the cyclic behaviour accurately. Here, a new approach 
based on an alternative kinematic hardening formulation is developed. 

High accuracy of stress-stain curve shape description is achieved by introduction of a new kinematic 
hardening rule with a logarithmic function obtained after its integration. The model does not use back stress 
decomposition and the hardening slope of a stress-strain curve is modelled only with a few material 
parameters. Experimental studies showed that stress-strain curves from different loading stages share a similar 
form but differ in the way they occur in the deformation process. Therefore, a reference point for each stress-
strain curve is introduced and all deformation process described by movement of this point. Two cases of the 
change of the reference point are determined from experimental observations for proportional loading. They 
are reversal of the loading path and returning to the previous loading path after loading reversal. To define an 
evolution rule for the reference point, a new framework of Dirac delta functions is developed. This can 
simulate stepwise dependence for the reference point as well as other internal variables discussed in a 
companion paper (Part II). The method for moving the reference point for uniaxial loading is generalized to 
multiaxial stress by introducing a reference back stress tensor and a supersurface with a linked subsurface, 
which are located outside the yield surface and define the evolution rule for the reference back stress tensor. 
The case of loading at the yielding plateau is incorporated by introduction of a new variable associated with 
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the kinematic hardening rule that determines evolution of the subsurface. The developed approach has shown 
to be accurate in prediction of both the shape of the stress-strain curves and transition between curves at load 
reversals. 

Differences between tensile and compression stress-strain curves are attributed to the influence of the first 
stress invariant. Its effect is incorporated into the kinematic hardening rule by an incremental form of 
dependency of the hardening slope on the first stress invariant. This approach is able to precisely adjust the 
stress-strain curve slope, whether tensile or compression stress state dominates, as well as include the 
cumulative nature of the first stress invariant dependence. The new form of kinematic hardening rule gives a 
high value of hardening at the reversal of load. This provides a smooth transition between elastic and elastic-
plastic deformation. This allows cyclic plasticity modelling with accurate determination of the yield point 
(defined by a small offset value), such that elastic to elastic-plastic transition is modelled at the actual yield 
point of material. The ability of the model to simulate initiation of plasticity at the point of actual yield stress 
means that the nonlinearity of an unloading curve is included and the model naturally accounts for variation 
of unloading modulus during plastic strain accumulation without introduction of additional models to include 
this phenomenon. 

The proposed modelling approach incorporates accurate isotropic hardening determination, improved 
description of the stress-strain curve, transition between curves during cyclic condition at loading reversals, 
variation of Young’s modulus after plastic pre-straining and the effect of the first stress invariant in one 
mathematic model. To complete the model, additional experimental investigation and mathematical 
modelling of cyclic hardening/softening and ratcheting are considered in a companion paper (Part II), in which 
the model is validated experimentally. 
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