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Abstract

Hull and propeller performance have a primary role in overall vessel efficiency.
Vessel fouling is a common phenomenon where undesirable substances attach
or grow on the ship hull. A clear understanding of the extent of the degra-
dation of the hull will allow better management of assets and prediction of
the best time for dry docking and hull maintenance work. In this paper,
the authors investigate the problems of predicting the hull condition in real
operations based on data measured by the on-board systems. The proposed
solution uses an unsupervised Machine Learning (ML) modelling technique
to eliminate the need for collecting labeled data related to the hull and pro-
peller fouling condition. Two anomaly detection methods based on Support
Vector Machines and k-nearest neighbour have been applied to predict the
hull condition using the available parameters measured on-board. Data from
the Research Vessel The Princess Royal has been exploited to show the ef-
fectiveness of the proposed methods and to benchmark them in a realistic
maritime application.
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1. Introduction

Hull and propeller performance have a pivotal role in ship efficiency. Ac-
cording to the Clean Shipping Coalition, poor hull and propeller performance
are responsible for around 10% of world fleet energy costs and Greenhouse
Gases emissions (IMO) 2011)). This data is translated into billions of dol-
lars in extra cost per year and contributes to a 0.3% increase in Greenhouse
Gas emissions. This is caused by a combination of mechanical damage and
biofouling.

Ship hulls are designed to withstand hydrostatic and hydrodynamic load-
ing while operating at designed speed (Tupper, 2013). The hull design is
streamlined to minimise the resistance when the body moves through the
water, however the surface condition of the hull deteriorates over time due to
fouling (Soares et al., 2009)). Hull degradation may be caused by ship fouling,
which is the common phenomenon where living organisms such as barnacles,
slime and seaweed grow on the surface of the hull (Flemming, [2002)). This
creates additional viscous resistance for the vessel during operations (Schultz,
2007)). The difference in applied coatings, type of material of the vessel hull,
and different operating surroundings causes the hull condition to degrade at
different levels and intensities (Kane, 2012). A clear understanding of the
extent of degradation of the hull will allow better management of assets and
the prediction of the best time for dry docking and hull maintenance work
(Schultz et al., [2011)).

Hull condition assessment is carried out typically through surveys and
routine dry docking. The typical approach to assess the hull condition is to
compare vessel performance to the speed performance curve. This curve is
developed from the ship log and sea trials at specific loading conditions. The
deviation from the speed performance curve cannot differentiate between the
contribution of machinery degradation and the degradation of the hull. A
real-time assessment of the hull fouling condition will assist in the decision
making process of when to clean the hull or dry dock, which is typically
carried out at fixed intervals determined by the classification society for a
specific type of vessel.

The proposed machine learning hull condition assessment takes advantage
of the advancement of smart data collected when the vessel is in operation



(Lohr} 2012). Information gathered, such as vessel speed through the wa-
ter, engine torque and thrust, and fuel consumption, is used as inputs and
variables to learn and assess the hull condition. Data monitoring for ship
performance analysis was first presented in 1989 (Chen| [1989) where data
was saved on a ship database with manual input of the environmental condi-
tion every six hours and compared to the World Meteorological Organisation
reports (Jensen et al., [1984). The advancement of technology has led to the
possibility to record and transmit data to shore directly via satellite, whilst
synchronised with up-to-date metocean datasets (Premkumar et al.; |2000;
Venkatesan et al., 2013)).

Conventional use of shipboard measurements to estimate hull fouling is
carried out by filtering the data using a mixture of computation simulation
and empirical methods (Foteinos et al.;|2017)). The reliability of this method-
ology depends on the accuracy of each layer of filtering. A ship performance
index using the Propulsion Diagnosis Number (PDno) was developed using
real-time data and is claimed to address the hull and propeller roughness,
however parameters such as propeller mean speed cannot be defined accu-
rately (Deligiannis, 2017). Moreover, the method does not take into ac-
count the propeller cavitation and degradation as well as having constant
fuel calorific values.

Data Analysis is improving our ability to understand complex phenom-
ena much more rapidly than a priori physical models have done in the past
(Anguita et al.; 2010; Peng et al. 2010). Real-world systems are usually
very complex and influenced by many exogenous factors, which make them
very challenging to model, relying solely on the a priori knowledge of the
problem (Witten et al., [2016)). Data Analysis can use raw sensor data to
provide useful information about the efficiency of a ship (Smith et al.| [2013),
identify operational profiles (Oneto et al., 2016), reduce the fuel consumption
(Coraddu et al., |2015)), and improve maintenance activities (Coraddu et al.|
2016).

With the support of Data-Driven Models it is possible to exploit advanced
statistical techniques to build models directly based on historical data pro-
duced and stored by the logging and monitoring equipment, without requir-
ing any a priori knowledge of the underlining physical phenomena (Vapnik,
1998; Newton, [2000). This data represents strategic information for ship-
yards, operators, ship owners, and crews since it can be used for advisory,
control, and fault detection purposes (Oneto et al. [2016). Furthermore,
Data-Driven Models allow exploitation of exogenous data as well, such as



weather conditions, which could contain hidden information, potentially not
easily representable with a conventional approach (Coraddu et al., |2015)).

Frequently used Data Analysis techniques applied to different problems
include Neural Networks (NNs), Kernel Methods (KMs), and Ensemble Meth-
ods (EMs). Examples of Data Analysis approaches applied to the marine
industry can be found in (Palmé et al., 2011), where a standard Neural Net-
work approach is used to improve monitoring of Gas Turbines, while Kernel
based methods are applied in (Singer et al.,[1995)), and (Coraddu et al.,|2016).
In (Akinfiev et al.| 2008)) and (Bagavathiappan et al., [2013) image process-
ing techniques are adopted for hull condition assessment. In (Basurko &
Uriondo, 2015)) the engine and propeller state is predicted adopting an Arti-
ficial Neural Network. A complete overview can be found in (Lazakis et al.
2016)).

One of the most useful tools in real world data analytics problems is the
novelty detection algorithm. Novelty (or outlier) detection methods address
the problem of identifying new or unknown data that a data analytics sys-
tem has not been trained with and was not previously aware of (Swersky
et al. [2016; Markou & Singhl [2003; Pimentel et al., 2014)). Novelty detec-
tion is also referred to as one-class classification because it is trained only
on the one class of known data. Novelty detection is one of the fundamen-
tal problems in a classification system. A data analytics system cannot be
trained with all of the possible object classes and hence the performance of
the model will be poor for those classes that are under-represented in the
training set. A good classification system must have the ability to differ-
entiate between known and unknown objects during testing. Several mod-
els for novelty detection have been proposed, such as Support Vector Data
Description, Gaussian Data Description, Parzen Window Data Description,
k-Nearest Neighbor Data Description, and Global-Local Outlier Scores from
Hierarchies (Markou & Singh, [2003; |Pimentel et al., 2014)).

The work presented in this paper is focused on building effective Data-
Driven Models to predict the hull state condition utilising the data collected
from an automation system when the vessel was in operation. The innovative
contribution of this work lies in the fact that the proposed approach does
not try to solve a traditional classification problem where the target is to
estimate the label state of the hull. On the contrary, the problem has been
tackled with an approach which, in principle, does not need any labeled
samples since it searches for novel behaviour in the data though a novelty
detection algorithm (Markou & Singhl [2003; [Scholkopf et al., 2000). The
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results show that with just a few samples from data collected during sea trials
in the nominal state for the vessel, where the performances are unaffected
by degradation due to hull and propeller fouling, it is possible to fine tune
this methodology to achieve satisfactory performances in prediction of the
hull state. Data obtained from Research Vessel (RV) The Princess Royal,
a twin hull catamaran, operating mainly off the coast of Blyth, UK has
been exploited to show the effectiveness of the proposed approaches and to
benchmark them in a realistic maritime application.

The paper is structured as follows: in Section [2] a general explanation of
the physical problem is provided, including the vessel description, the data
acquisition system and data pre-processing. In Section [3|a description of the
mathematical framework and the proposed ML techniques for the novelty
detection are described. Section {4|illustrates the results obtained. Finally,
in Section |5| the conclusions of the paper are drawn.

2. Vessel Description and Data available

2.1. Introduction

The novelty detection procedure proposed in this paper for the prediction
of the hull state is applied to a case study based on the RV The Princess
Royal. The vessel is a multi-purpose science and technology vessel with a
flexible speed range for carryng out a wide variety of full-scale marine mea-
surements and observations. The primary vessel duties include performance
monitoring, coating/fouling inspection, cavitation and noise research. The
main particulars of the vessel are described in Table[I] a complete description
of the main vessel duties can be found in (Atlar et al., [2013)).

Table 1: Main particulars of The Princess Royal

’Ship feature \ Value \Unit‘
Length overall 18.9 [m)]
Length between Perpendicular 16.45 | [m]
Breadth Moulded 7.03 [m)]
Displacement (Lightship) 36.94 [t]
Draught (Lightship) (Amid - FP - AP)|1.65-1.6-1.7| [m]
Deadweight 7.32 [t]




(a) Clean Hull (b) Fouled

Figure 1: RV The Princess Royal.

Hull surface degrades through time when a vassel is placed in the water.
Figure [1| shows the two different hull conditions of the The Princess Royal
in clean (a) and fouled (b) conditions. The proof of concept of the proposed
method uses real time data collected when the vessel was in operation. Fig-
ures [2] and [J] illustrate samples of data for the problem description where
the overlapping data sets of engine torque and fuel consumption from both
port and starboard are presented. From Figures [d] and [f]it can be seen that
the same overlapping is present when the engine speed is also considered.
Finally in Figures [f] and [7] the fuel consumption is reported as a function of
the vessel speed for both the shaft-lines. The figures show that for the two
shaft-lines, port and starboard, a visual distinction is not possible between
the clean and fouled hull conditions.

In order to classify and distinguish the hull conditions without visual
identification, Data-Driven models are used to carry out hull condition as-
sessment of the RV The Princess Royal. Physical parameters of the vessel
and the particulars of the propulsion system are shown in Table [2]

2.2. Sea Trials

Two separate sea trials were carried out six months apart to allow fouling
to take place on the hull surface under normal operational conditions. The
first set of sea trials was conducted when the vessel was just out of dry dock
and her hull was clean whilst the second set of sea trials was conducted when
the vessel had been in operation for six months off the coast of Blyth, in the
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Figure 2: Overlapping data sets of fuel consumption and engine torque - starboard shaft
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Figure 3: Overlapping data sets of fuel consumption and engine torque - port side shaft
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Figure 4: Overlapping data sets of fuel consumption, engine speed and engine torque -

starboard shaft
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Figure 5: Overlapping data sets of fuel consumption, engine speed and engine torque -

port side shaft
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Figure 6: Overlapping data sets of fuel consumption and vessel speed - starboard shaft
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Figure 7: Overlapping data sets of fuel consumption and vessel speed - port side shaft



Table 2: Propeller, engine and gearbox particulars of The Princess Royal

Propeller particulars

Number of Propellers 2
Propellers Type Fixed
Propeller Diameter 0.75 [m]
Number of Blades )
Engine particulars
Number of Engines 2
Engine Make and Model | MAN D2676 LE443
Rated Power 537 [kW]
Rated Speed 2300 [rpm]
Rated Fuel Consumption 142 [Ltr /hr]
Gearbox particulars
Number of Gearbox 2
Reduction Ratio 1.75:1

North Sea.

The sea trials are designed to allow the vessel to operate over the full
range of allowable speeds. This is to allow the recording of all parameters
that change with the speed of the vessel. During the sea trials, the ship track
chosen covers the same ground area which is in line with ISO 15016:2015 (ISO
15016:2015)). The vessel is allowed to run on a straight course for at least two
miles between the same start and end points to ensure that the corresponding
speed to the shaft power is achieved with a good accuracy. The sea trials
were carried out at a range of engine rotational speeds which were 600, 750,
900, 1200, 1500 and 1750rpm. This was to capture the added wave resistance
effect during higher speeds. Each speed run was carried out twice, once in
the direction heading into the waves and once in the direction following the
waves. The rudder was kept at a low angle to minimise its potential effect of
vessel speed loss. The sea trials were conducted in a location of deep water
with small variations of seabed contours to minimise any shallow water effects
on the vessel and avoid the need to correct the data set. To compare data
from the two sea trials, the weather condition needs to be taken into account.
Experience of the vessel crew and weather forecasts were used to determine
the calmest condition to carry out the sea trials to eliminate the effect of
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further external variables such as wind, wave, and current that might affect
or corrupt the data.

In order to further verify that the environmental conditions did not play
a big role in this set of data, comparison was made with the weather data
collected from the North East Coastal Observatory.

Given the location of the trials, data collected from the Newbiggin Ness
Waverider buoy has been utilised. The buoy provides information about
significant wave height, wind speed and peak period of the spectrum. A
detailed list of parameters is reported in Table [3|

Table 3: Newbiggin Ness buoy data

’ Parameter \ Unit ‘
Significant Wave Height [m]
Wave zero up crossing period [s]

Wind Wave Significant Wave Height | [m]
Wind Wave Peak Period [s]
Wind Wave Peak Period Direction °]

Swell Significant Wave Height [m]
Swell Peak Period [s]
Swell Peak Period Direction [°]
Sea Surface Elevation [m]
Sea Temperature [°C]

Influence from the environmental conditions affects the power required to
keep the vessel on course.

The use of the rudder to maintain the vessel heading will increase resis-
tance and causes changes in the parameters recorded such as shaft torque,
shaft speed and ship speed.

Beaufort number 3 was recorded during the dirty hull sea trial whilst
Beaufort number 4 was recorded on the day of the clean hull sea trial.

This is in accordance with the International Towing Tank Conference
(ITTC) recommendation that a vessel less than 100 m in length should con-
duct sea trials at wind speeds not higher than Beaufort number 5.

In terms of the sea state, the total wave height was calculated from the
recorded significant wave heights and swells during the sea trials. The total
wave height was 0.77 m for the clean hull sea trials and 0.35 m for the dirty
hull sea trials. The sea state conditions also satisfy the I'TTC recommenda-
tion where the total wave height calculated from the spectrum H is within
the limit set:

11



H< 2.25+/Lpp/100 (1)

2.3. Data Logging System

The data recorded on the vessel uses a single common platform installed
on-board RV The Princess Royal to enable-real time data to be collected and
time stamped accurately.

The data gathered includes the monitoring systems of fuel oil and engine
monitoring.

Strain gauges are fitted on the shaft through an in-house design which
captures the thrust, torque and bending moment of the shaft on both port
and starboard sides. The data collected from this single platform monitoring
system has been verified through other studies that monitor vessel perfor-
mance and holistic energy flow on the vessel (Carchen et al.,[2017)). Moreover,
data from the automatic identification system (AILS) such as vessel speed over
ground, speed through water, vessel position (longitude and latitude), course
over ground and vessel true heading are also recorded. Weather data, wind
apparent speed and apparent direction are obtained through the NMEA(0183
specification which includes data from an anemometer and gyro-compass.
The wind apparent speed values take into account the vessel heading and
the values are important to quantify additional wind load applied on the
vessel at different speeds.

Data from the built-in sensors of the engines was obtained through a
CANBus data source. Table [l shows the measured values available from the
sea trials measurements.

2.4. Data Pre-Processing

Prior to building the machine learning models, it is necessary to perform
data-cleaning steps to prepare the data for training and testing. The qual-
ity of the prepared data can significantly influence the success of a model
(Kotsiantis et al., 2007)). Since all data collected was from physical systems,
outliers with extreme values were removed from the dataset.

By performing preliminary analysis on the remaining data, useful infor-
mation has been extracted. Due to the nature of the sea-trials, there were
some factors that had to be filtered out before the classification process. The
factors that were not considered for the classification process included the ge-
ographical coordinates (Features 3 and 4) that map the position of the vessel
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Table 4: Measured values available from the monitoring system

’Feature‘\/ariable name HUnit ‘
1 Magnetic Heading [deg]
Z2 True Heading [deg]

3 Latitude [°. 1
T4 Longitude [°,
z5 Speed through water [kn]

Z6 ‘Water Depth [m]

7 Humidity (%]

zs Rudder angle [deg]
Z9 Course over ground [deg]
210 ‘Wind Apparent Speed [m/s]
T11 'Wind Apparent Direction [deg]
T12 Air Temperature [°C]
13 Air Pressure [mbars]
T14 Relative Humidity %]

15 Coolant Pressure (port) [bar]
Z16 Coolant Temperature (port) [°C)
17 Engine Speed (port) [rpm]
T18 Engine Torque (port) (%]

Z19 Fuel Delivery Pressure (port) [bar]
20 Oil Pressure (port) [bar]
Z21 Oil Temperature (port) °C
z22 Crankcase Pressure (port) [bar]
23 Oil Level (port) (%]

24 Fuel Flow (port) [Ltr/hr]
o5 Fuel Return (port) (%]

26 Fuel Supply Pressure (port) [Ltr]
27 Fuel Consumption (port) [Ltr/hr]
28 Coolant Pressure (starboard) [bar]
29 Coolant Temperature (starboard) ||[°C]
30 Engine Speed (starboard) [rpm]
31 Engine Torque (starboard) (%]

z32 Fuel Delivery Pressure (starboard)||[bar]
33 Oil Pressure (starboard) [bar]
34 Oil Temperature (starboard) [°C]
z35 Crankcase Pressure (starboard) [bar]
T36 Oil Level (starboard) (%]

37 Fuel Flow (starboard) [Ltr/hr]
38 Fuel Return (starboard) (%]

39 Fuel Supply Pressure (starboard) ||[bar]
240 Fuel Consumption (starboard) [Ltr/hr]
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Figure 8: Trials geographical coordinates and water depth

during sea trials with corresponding water depth (Feature 5). These param-
eters have clear distinction shown in Figure [§ and will have a direct impact
if taken into consideration as a dataset for the machine learning, creating a
false indication of hull condition.

Figure [9] shows the Principal Component Analysis of the data which is
possibly the best visual understanding and a useful tool to understanding
the complexity of this classification problem. In Figure[J] two sets of data are
presented. The first set is characterised by the fouled hull condition (blue
coloured), while the second set of data (red coloured) is characterised by the
clean hull condition. The figure shows, in the Euclidean plane, that the two
sets of data are not linearly separable.

3. Novelty detection

In this section, the authors will present the Machine Learning (ML) tech-
niques adopted to assess the hull condition of the vessel described in Section
2 based on the data outlined in the same section.

Consider an input space X C R? and an output space ). Note that,
for the purpose of this paper, X takes into account the different sensors’
measurements, also called features, reported in Table 4], while the output
space Y € {£1} represents a clean hull with —1 and a fouled hull with
+1 (see Section [2). ML techniques aim at estimating the unknown rule
i X — Y which associates an element y € ) to an element x € X. Note
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that, in general, ;1 can be non-deterministic. An ML technique estimates pu
through a learning algorithm <7 : D, x F — h, characterised by its set
of hyperparameters #H, which maps a series of examples of the input/output
relation contained in a dataset of n samples D,, : {(x1,vy1), -, (€n, yn)} into
a function f: X — ) chosen in a set of possible ones F.

When both x; and y; with i € {1,--- ,n} are available, the problems is
termed supervised and consequently supervised ML techniques are adopted
(Vapnik, 1998). When only «; with i € {1,--- ,n} are available, which
means that the associated element of the output space y; with i € {1,--- ,n}
it is not explicitly known, it has to be assumed that “similar” ax; values
are associated with “similar” gy; where the concept of similarity is something
that needs to be defined based on . In the latter case, the ML problems are
called unsupervised, and consequently, unsupervised ML techniques need to
be adopted (Hastie et al.; [2009)).

Anomaly (novelty or outlier) detection is a common example of an unsu-
pervised learning problem where the unknown y € ) can assume only two
possible values: —1 for “non-anomaly” and +1 for “anomaly” (Shawe-Taylor
& Cristianini, |2004). In the proposed framework anomaly means that the
ship is fouled.
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The error that f generates in approximating p is measured with reference
to a loss function ¢ : X x Y x F — [0,00). Obviously, the error that f
generates over D,,, is optimistically biased since D,, has been used, together
with F, for building f itself. For this reason, another set of fresh data,
composed of m samples and called the test set T, = {(x},4}), -+, (%, 9.)},
needs to be used. Note that, ! € X and y! € Y with ¢ € {1,---,m}, and
the association of y! to @} is again made based on p. Moreover, both for
supervised and unsupervised problems 7, must contain both ! € X and
yl € Y withi € {1,--- ,m} to estimate the error of f, while, for unsupervised
learning problems, y; with 7 € {1,--- ,n} in D,, is unknown.

3.1. Measuring the Error

In order to perform this analysis, different measures of error must be
defined, also called indices of performance, which are able to characterise
the quality of the hull condition prediction system. Once f has been chosen
based on D, it is possible to use the new set of data 7,, in order to compute
the error based on different losses. The choice of the loss strongly depends
on the problem under examination (Rosasco et al., |2004)).

In the anomaly detection framework, the most natural choice as loss func-
tion is the Hard loss one, which counts the number of misclassified samples
lu(f(x),y) = [f(x) # y]. Note that the Iverson bracket notation is used.
Based on the Hard loss it is possible to define different indexes of performance
(Powers|, 2011)):

e the Average Misclassifications Rate (AMR) is the mean number of mis-

classified samples: AMR = = 5" £ (f(ah), y!);

e the Confusion Matrix, which measures four different quantities:

— TN = 100/, 37" [ f(xf = y! Ayl = —1] which is the percentage of
true negative;

— TP =100/, S~ [f (2! = y! Ayl = +1] which is the percentage of
true positive;

— FN =100/, 3" [f (2! # y! Ayl = —1] which is the percentage of
false negative;

— FP =100/, 37" [ f (! # yf Ayl = +1] which is the percentage of
false positive.

3.2. Machine Learning Techniques

In this section, the unsupervised learning algorithms used for building
the data driven models are presented. In addition, how to tune the model
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performances by tuning their hyperparameters during the so-called Model
Selection (MS) phase (Kohavi et al., [1995; Bartlett et al., 2002; Anguita et al.,
2012)) will also be discussed. Finally, checks for possible spurious correlation
in the data will be carried out by performing the Feature Selection (FS)
phase (Guyon & Elisseeff, 2003; Friedman et al., 2001; Chang & Lin|, [2008;
Yoon et al., 2005} [Hong, 1997; Franceschi et al. [2017). In fact, once f has
been built based on the different learning algorithm and has been confirmed
to be a sufficiently accurate representation of p, it can be interesting to
investigate how the model f is affected by the different features that have
been exploited to build f itself during the feature ranking procedure (Guyon
& Elisseeff, 2003). For some algorithms, the feature ranking procedure is
a by-product of the learning process itself, allowing simple checking of the
physical plausibility of f.

3.2.1. Unsupervised Learning Algorithms for Anomaly Detection

Unsupervised ML methods can be divided into different families. Since
this work deals only with anomaly detection problems, the authors consid-
ered only the most well-known and effective techniques for solving these
problems according to (Swersky et all [2016). In particular (Swersky et al.,
2016)) shows that two anomaly detection methods based on Support Vector
Machines (SVM) (Cristianini & Shawe-Taylor, [2000) and k-nearest neigh-
bourhood (KNN) (Cover & Hart), [1967) respectively, are the most commonly
used and reliable techniques in this context.

In particular One-Class SVM (OCSVM) is a boundary-based anomaly
detection method, inspired by SVM, which encloses the inlier class in a mini-
mum volume hypersphere by minimizing a Tikhonov regularization problem,
similar to the one reported for the SVM framework. Like traditional SVMs,
OCSVM can also be extended to non-linearly transformed spaces using the
“Kernel trick” for distances. The hyperparameters OCSVM HOSVM are:
the kernel, which is usually fixed and in this paper the authors chose the
Gaussian Kernel for the reasons described in (Keerthi & Lin) 2003} Oneto
et al. [2015)), its hyperparameter h; and the regularization hyperparameter
hg.

The Global KNN (GKNN), inspired by the KNN, was originally in-
troduced as an unsupervised distance-based outlier detection method (Ra-
maswamy et al., [2000; Swersky et al., 2016). The hyperparameter GKNN
HEENN s the number of neighbours to be considered h;.
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3.2.2. Model Selection

MS deals with the problem of tuning the hyperparameters of each learn-
ing algorithm (Anguita et al., 2012). Several methods exist for MS includ-
ing resampling methods, like the well-known k-Fold Cross Validation (Ko-
havi et al., 1995) or the nonparametric Bootstrap (BTS) approach (Efron &
Tibshirani, 1994; Anguita et al., [2000), which represent the state-of-the-art
MS approaches when targeting real-world applications. Resampling methods
rely on a simple idea: the original dataset D, is resampled once or many (n,.)
times, with or without replacement, to build two independent datasets called
training, and validation sets, £] and V] respectively, with r € {1,--- ,n,}.
Note that £ NV, = @, L7 UV, = D,,. Then, in order to select the best com-
bination of hyperparameters H in a set of possible ones = {H, Ha, - - - } for
the algorithm .27 or, in other words, to perform the MS phase, the following
procedure has to be applied:

min n_rz > Uy (@), v0), (2)

r=1 (wzayz EV

where @, oy is a model built with the algorithm & with its set of hyperpa-
rameters H and with the data £;. Since the data in £} is independent from
that in V], the idea is that H* should be the set of hyperparameters which
achieves a small error on a data set that is independent from the training
set.

Note that, for the anomaly detection problem, the algorithms do not need
any labels in £}, consequently only labeled data for V! is required (Swersky,
et al., 2016).

In this paper the BTS is used because it represents the state-of-the-art
approach (Efron & Tibshirani, [1994; Anguita et al., 2012). For implementing
the bootstrap, | = n and L] must be sampled with replacement from D,,
while V] and 7, are sampled without replacement from the sample of D,
that has not been sampled in £] (Efron & Tibshirani, 1994; |Anguita et al.,
2012)). Note that for the bootstrap procedure r < (2” 1)

3.8. Feature Selection

Once the models are built and have been confirmed to be a sufficiently
accurate representation of the hull condition, how these models are affected
by the different features used in the model identification phase (see Table |4))
is investigated.
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In DA this procedure is called Feature Selection (FS) or Feature Ranking
(Guyon & Elisseeft, 2003; Friedman et al. [2001; (Chang & Lin|, 2008; Yoon
et al., 2005; Hong, 1997). This process allows investigating whether the
importance of those features, that are known to be relevant from a physical
perspective, is appropriately described by the different models. The failure of
the statistical model to properly account for the relevant features might indi-
cate poor quality in the measurements or spurious correlations. FS therefore
represents an important step of model verification, since it should generate
consistent results with the available knowledge of the physical system under
examination.

Given the limited number of features available in this work, the authors
decided to proceed with a brute force approach (Guyon & Elisseeft, 2003). In
particular, one feature at a time was removed from the training phase, and
a check on the effect of this removal on the final mean AMR of the model,
averaged over multiple runs of the learning phase, was perfomed.

The higher the mean increase in AMR due to the removal, the more
important the removed feature. This procedure was adopted since it is rela-
tively straightforward to implement during the main prediction process and
computationally inexpensive.

4. Experimental results

In this section, the results obtained from the different novelty detection
methods are discussed. The problem was solved in an unsupervised fashion
by modelling the problem as a novelty detection one to further reduce the
need for labeled data. In the unsupervised case, different dimensions of the
training set and the MS procedure were performed as described in Section
3.2.2]

1. OCSVM: the set of hyperparameters is HO“VM = {h; hy} and au-
thors chose it in HOSVM = 107410737 ... [ 10%} x {1074, 10738, ... |
10-101;

2. GKNN: the set of hyperparameters is HEENN = {h;} and authors
chose it in HEENN = {1,3,7,13,27,51};

The V; cardinality was varied, to test the possibility of building an efficient
model with a small number of samples.

The performance of each model was measured according to the metrics
described in Section [3] Each experiment was performed 30 times in order to
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()

AMR

TP

TN

FP

FN

OCSVM

10
20
30

0.04 £0.01
0.04 £ 0.01
0.03 £0.01

478 £1.2
48.0£0.9
484+1.0

478 £1.0
480+ 1.1
48.4£0.9

22+£1.0
20+£1.0
1.6 £1.0

1.8+1.1
20+£1.0
1.4£1.0

GKNN

10
20
30

0.05 4+ 0.02
0.04 £ 0.02
0.03 £ 0.01

476 £2.3
48.2£2.0
487+ 1.2

476 £ 1.8
482+1.9
487+ 1.1

24+19
1.8+£2.3
1.3+£1.0

2619
22+20
1.7£0.8

Table 5: AMR, TP, TN, FP, and FN of the models learned with the different algorithms
(OCSVM and GKNN) when [ = 150 and v € {10, 20, 30}.

obtain statistically relevant results, and the t-student 95% confidence interval
is reported.

For OCSVM the R package of Meyer et al. (2015) was used to test the
OCSVM while GKNN was implemented by the authors in R.

The AMR, the TP, the TN, the FP, and the FN of the models learned
with the different algorithms (OCSVM and GKNN) are reported in Table
5l where the number of unlabelled samples in the learning set is I € {150}
and when varying the number of labeled samples in the validation set v €
{10,20, 30} (half positively and half negatively labeled). In Table[6|the AMR,
the TP, the TN, the FP, and the FN of the models learned with the different
algorithms (OCSVM and GKNN) are reported, where the number of labeled
samples in the validation set is v € {30} and when varying the number of
unlabelled samples in the learning set I € {30, 70,150} (half positively and
half negatively labeled).

From the tables it is possible to observe that:

e both OCSVM and GKNN perform quite well on the problem and there

is no clear distinction between them;

e changing the [ or v values does not significantly affect the performance
of the models;

e with just a few labeled samples, around 10, it is possible to obtain
satisfactory accuracy; this is quite a remarkable result, since 10 samples
can be easily manually labeled by an expert operator;

e FP and FN rates are quite balanced and this is a further indication of
the quality of the result.

Finally, in Table [7| the FS phase is presented. In particular, for each
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l AMR TP TN FP FN
30 [0.22£0.11139.5 £10.8|39.5 £ 11.3]10.5 £ 10.7|11.5 £ 11.5
OCSVM| 70 [0.07 £0.04| 46.4+3.5 | 46.4+3.6 | 3.6 3.7 | 3.4£3.8
15010.034£0.01| 484+£1.0 | 48409 | 1610 | 1.4£1.0
30 10.25£0.15{37.9£15.0{37.9 £10.5|12.1 £ 14.3{12.9 £ 16.9
GKNN | 70 [0.11+0.06| 45.1 +6.6 | 45.1+6.2 | 4.94+6.0 | 6.1 £6.1
15010.034+£0.01| 48.7+1.2 | 487+1.1| 1.3+£1.0 | 1.7£0.8

Table 6: AMR, TP, TN, FP, and FN of the models learned with the different algorithms
(OCSVM and GKNN) when v = 30 and [ € {30, 70, 150}.

feature (see Table {4]) the top five sorted list of features (from the most im-
portant one to the least important) together with its mean increase in AMR
(as described in Section is reported. The results of both OCSVM and
GKNN are presented with [ = 150 and v = 30.

From Table [7]it is possible to observe that both the OCSVM and GKNN
models can adequately account for the relevant features as the outcome is
consistent with the available knowledge. As expected, the parameters such
as speed through the water, shaft torques and shaft speeds have the highest
predictive power. In fact, these parameters are the most important for the
fuel consumption assessment as reported in (Coraddu et al., 2015), and in
turn for the hull and propeller fouling estimation.

These results also support the assumption made by the authors in Sec-
tion 2.2} that the meteo-marine conditions do not affect the model for this
particular case. The authors conclude that the added resistance in waves and
the wind resistance contributions are negligible compared to the calm-water
resistance, and under these environmental conditions, the proposed novelty
detection is a reliable tool for the hull and propeller fouling assessment.
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OCSVM
x5 Speed through water [kn]  |0.12 £ 0.03
x17|  Engine Speed (port) [rpm] |0.07 +0.03
z30 | Engine Speed (starboard) [rpm]|0.07 4 0.03
r1g|  Engine Torque (port) [%]  [0.06 £+ 0.04
r31| Engine Torque (starboard) [%] |0.06 & 0.04

GKNN
x5 Speed through water [kn] 0.14 £ 0.04
x17|  Engine Speed (port) [rpm] |0.08 £ 0.03
r1g|  Engine Torque (port) [%]  [0.07 £+ 0.04
x30 | Engine Speed (starboard) [rpm]|0.07 4 0.04
r31 | Engine Torque (starboard) [%] [0.06 & 0.04

Table 7: The top five sorted list of features (from the most important one to the least
important) together with its mean increase in AMR (as described in Section computed
with both OCSVM and GKNN with [ = 150 and v = 30.

5. Conclusions

In this paper, the authors presented two Data Analysis unsupervised
techniques for the identification of the most influential parameters for the
prediction of hull and propeller fouling in real operations based on data mea-
sured by the onboard automation systems. The preferable time interval for
cleaning the ship’s hull depends on many factors such as the type of paint
covering the underwater surface, the ratio between the standing and move-
ment times, the water temperature and surrounding environmental condition
of the hull. The proposed approach allows for better management of assets
which in turn allows owners to predict the hull condition and suggest the
best time for dry docking and carrying out hull maintenance work. More-
over, the method can be applied in many ship operational activities: from
the assessment of the right intervals between maintenance actions for the
propeller and the hull cleaning to the efficiency of these measures.

The Data-Driven approach proved to be successful in the identification of
the fouled hull condition and is validated as a tool for a better understanding
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of the extent of degradation of the hull and propeller. The novelty detection
method shows a satisfactory accuracy and this is a remarkable result, since
the few (10) required samples can be easily manually labeled by an operator.
This study proved that it is possible to treat the problem of the prediction
of the hull condition in an unsupervised fashion. The proposed models can
be adopted for real-time applications directly onboard, to easily and quickly
identify maintenance requirements and limit any decrease of performances.
Although it was not tested in this particular study, the method can be fore-
seen to be of use also for the evaluation of energy-saving technologies, such
as new propeller designs and sails. The authors recognise the contribution
of this work as a significant development for speeding up the uptake of new
technologies, particularly for providing a better way to estimate performance
and compare it to a reliable benchmark.

References

Akinfiev, T. S., Armada, M. A., & Fernandez, R. (2008). Nondestructive
testing of the state of a ship’s hull with an underwater robot. Russian
Journal of Nondestructive Testing, 44, 626—633.

Anguita, D., Boni, A., & Ridella, S. (2000). Evaluating the generalization
ability of support vector machines through the bootstrap. Neural Process-
ing Letters, 11, 51-58.

Anguita, D., Ghio, A., Greco, N., Oneto, L., & Ridella, S. (2010). Model
selection for support vector machines: Advantages and disadvantages of
the machine learning theory. In International Joint Conference on Neural
Networks.

Anguita, D., Ghio, A., Oneto, L., & Ridella, S. (2012). In-sample and out-of-
sample model selection and error estimation for support vector machines.
IEEFE Transactions on Neural Networks and Learning Systems, 23, 1390
1406.

Atlar, M., Aktas, B., Sampson, R., Seo, K., Viola, I., Fitzsimmons, P., &
Fetherstonhaugh, C. (2013). A multi-purpose marine science & technology
research vessel for full-scale observations and measurements. AMT’13,

Gdansk, .

23



Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T.
(2013). Infrared thermography for condition monitoring-a review. Infrared
Physics € Technology, 60, 35-55.

Bartlett, P. L., Boucheron, S., & Lugosi, G. (2002). Model selection and
error estimation. Machine Learning, 48, 85-113.

Basurko, O. C., & Uriondo, Z. (2015). Condition-based maintenance for
medium speed diesel engines used in vessels in operation. Applied Thermal
Engineering, 80, 404-412.

Carchen, A., Pazouki, K., & Atlar, M. (2017). Development of an online ship
performance monitoring system dedicated for biofouling and anti-fouling
coating analysis. In Hull Performance and Insight Conference (HullPIC).

Chang, Y. W., & Lin, C. J. (2008). Feature ranking using linear svm. In
WCCI Causation and Prediction Challenge.

Chen, H. (1989). A new approach to ship speed performance monitoring and
prediction. In Ship technology and Research Star Symposium. volume 14.

Coraddu, A., Oneto, L., Baldi, F., & Anguita, D. (2015). Ship efficiency
forecast based on sensors data collection: Improving numerical models
through data analytics. In OCEANS 2015-Genova.

Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., & Figari, M. (2016).
Machine learning approaches for improving condition-based maintenance
of naval propulsion plants. Proceedings of the Institution of Mechanical

Engineers Part M: Journal of Engineering for the Maritime Environment,
230, 136-153.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE
transactions on information theory, 13, 21-27.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector
machines and other kernel-based learning methods. Cambridge university
press.

Deligiannis, P. (2017). Ship performance indicator. Marine Policy, 75, 204
- 209.

24



Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC
press.

Flemming, H. (2002). Biofouling in water systems—cases, causes and coun-
termeasures. Applied microbiology and biotechnology, 59, 629-640.

Foteinos, M., Tzanos, E., & Kyrtatos, N. (2017). Ship hull fouling esti-
mation using shipboard measurements, models for resistance components,

and shaft torque calculation using engine model. Journal of Ship Research,
61, 64-74.

Franceschi, L., Donini, M., Frasconi, P., & Pontil, M. (2017). On hyperpa-
rameter optimization in learning systems, .

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical
learning. Springer series in statistics Springer, Berlin.

Guyon, I.; & Elisseeff, A. (2003). An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3, 1157-1182.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In
The elements of statistical learning.

Hong, S. J. (1997). Use of contextual information for feature ranking and
discretization. IEEE Transactions on Knowledge and Data Engineering,
9, 718-730.

IMO (2011). A transparent and reliable hull and propeller performance stan-
dard, MEPC 63/4/8. Technical Report International Maritime Organisa-
tion, Marine Environment Protection Committee (MEPC).

ISO 15016:2015 (2015). Ships and marine technology — Guidelines for the
assessment of speed and power performance by analysis of speed trial data.
Standard International Organization for Standardization Geneva, CH.

Jensen, N. O., Petersen, E. L., & Troen, L. (1984). Extrapolation of mean
wind statistics with special regard to wind energy applications. World
Climate Programme Report No. WCP-86, .

Kane, D. (2012). Marine vessel environmental performance (MVEP) assess-
ment guide. Energy efficiency: Hull and propeller operations and mainte-
nance.

25



Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vector
machines with gaussian kernel. Neural computation, 15, 1667-1689.

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for ac-
curacy estimation and model selection. In International Joint Conference
on Artificial Intelligence.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2007). Data preprocess-
ing for supervised leaning. International Journal of Computer, Electrical,
Automation, Control and Information Engineering, 1, 4091-4096.

Lazakis, 1., Dikis, K., Michala, A. L., & Theotokatos, G. (2016). Advanced
ship systems condition monitoring for enhanced inspection, maintenance
and decision making in ship operations. Transportation Research Procedia,
14, 1679-1688.

Lohr, S. (2012). The age of big data. New York Times, 11.

Markou, M., & Singh, S. (2003). Novelty detection: a review. Signal pro-
cessing, 83, 2481-2497.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2015).
el071: Misc functions of the department of statistics, probability theory
group (formerly: E1071), tu wien. R package. R package version 1.6-7.

Newton, L. R. (2000). Data-logging in practical science: research and reality.
International Journal of Science Education, 22, 1247-1259.

Oneto, L., Anguita, D., Coraddu, A., Cleophas, T., & Xepapa, K. (2016).
Vessel monitoring and design in industry 4.0: A data driven perspective.
In IEEFE International Forum on Research and Technologies for Society
and Industry Leveraging a better tomorrow.

Oneto, L., Ghio, A., Ridella, S., & Anguita, D. (2015). Support vector
machines and strictly positive definite kernel: The regularization hyper-
parameter is more important than the kernel hyperparameters. In /EEFE
International Joint Conference on Neural Networks.

Palmé, T., Breuhaus, P., Assadi, M., Klein, A., & Kim, M. (2011). New
alstom monitoring tools leveraging artificial neural network technologies.
In Turbo Expo: Turbine Technical Conference and Exposition.

26



Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognos-
tics in condition-based maintenance: a review. The International Journal
of Advanced Manufacturing Technology, 50, 297-313.

Pimentel, M. A. F., Clifton, C. A., Clifton, L., & Tarassenko, L. (2014). A
review of novelty detection. Signal Processing, 99, 215-249.

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. Journal of Machine Learning
Technologies, 2, 37-63.

Premkumar, K., Ravichandran, M., Kalsi, S., Sengupta, D., & Gadgil, S.
(2000). First results from a new observational system over the indian seas.
Current Science, 78, 323-330.

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for
mining outliers from large data sets. In ACM Sigmod Record.

Rosasco, L., De Vito, E., Caponnetto, A., Piana, M., & Verri, A. (2004). Are
loss functions all the same? Neural Computation, 16, 1063-1076.

Scholkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., & Platt,
J. C. (2000). Support vector method for novelty detection. In Advances
in neural information processing systems (pp. 582-588).

Schultz, M., Bendick, J., Holm, E., & Hertel, W. (2011). Economic impact
of biofouling on a naval surface ship. Biofouling, 27, 87-98.

Schultz, M. P. (2007). Effects of coating roughness and biofouling on ship
resistance and powering. Biofouling, 23, 331-341.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern anal-
ysis. Cambridge university press.

Singer, R. M., Gross, K. C.; & King, R. W. (1995). A pattern-recognition-
based, fault-tolerant monitoring and diagnostic technique. In Argonne
National Lab., Idaho Falls, ID (United States).

Smith, T., O’Keeffe, E., Aldous, L., & Agnolucci, P. (2013). Assessment of
shipping’s efficiency using satellite ais data. In International Council on
Clean Transportation.

27



Soares, C. G., Garbatov, Y., Zayed, A., & Wang, G. (2009). Influence of
environmental factors on corrosion of ship structures in marine atmosphere.
Corrosion Science, 51, 2014-2026.

Swersky, L., Marques, H. O., Sander, J., Campello, R. J., & Zimek, A.
(2016). On the evaluation of outlier detection and one-class classification
methods. In IEEE International Conference on Data Science and Advanced
Analytics.

Tupper, E. C. (2013). Introduction to naval architecture. Butterworth-
Heinemann.

Vapnik, V. N. (1998). Statistical learning theory. Wiley New York.

Venkatesan, R., Shamji, V., Latha, G., Mathew, S., Rao, R., Muthiah, A., &
Atmanand, M. (2013). In situ ocean subsurface time-series measurements
from omni buoy network in the bay of bengal. Current Science, (pp. 1166—
1177).

Witten, 1. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

Yoon, H., Yang, K., & Shahabi, C. (2005). Feature subset selection and fea-
ture ranking for multivariate time series. IEEE transactions on knowledge
and data engineering, 17, 1186-1198.

28



	Introduction
	Vessel Description and Data available
	Introduction
	Sea Trials
	Data Logging System
	Data Pre-Processing

	Novelty detection
	Measuring the Error
	Machine Learning Techniques
	Unsupervised Learning Algorithms for Anomaly Detection
	Model Selection

	Feature Selection

	Experimental results
	Conclusions

