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Abstract—This paper proposes a novel memetic algorithm
for the solution of constrained min-max problems that derive
from the optimal design of complex systems under worst-case
conditions. In this context the maximisation of a quantity of
interest over the space of uncertain variables is required to
identify the worst-case scenario (or worst-case solution under
uncertainty). An optimal design vector is then identified such
that the worst-case value of the quantity of interest is minimised.
In the most general case, both maximisation and minimisation
are subject to strict feasibility constraints. The ultimate goal of
the minimisation problem is to identify the design solution that
is feasible for all possible values of the uncertain parameters.

Index Terms—worst case scenario, min-max, epistemic uncer-
tainty, benchmark

I. INTRODUCTION

One aspect of Resilience Engineering is the design of
systems that are robust against uncertainty of different nature.
Different sources of uncertainty are possible: uncertainty on
model definition, measurement noise, manufacturing and fab-
rication errors, human error, numerical error, etc [1]. All these
forms of uncertainty are commonly classified into groups:
aleatory and epistemic. The former group collects irreducible
uncertainties while the latter group collects uncertainty due to
lack of knowledge and/or subjective probability. Uncertainty
can be reduced to aleatory as information increases.
An engineering system can be optimised using a model for the
Quantity of Interest (QoI) f that is a function of both decision
(or design) variables d and uncertain parameters u:

f = f(d,u), (1)

with d ∈ D and u ∈ U , where D is a design/decision space
and U the uncertainty space. Considering, without loss of
generality, a minimisation problem, we can now define the
worst-case scenario as the uncertainty vector u∗ such that f
attains the maximum value in U . The resulting unconstrained
min-max problem then reads as:

min
d∈D

max
u∈U

f(d,u) (2)

A simple approach to solve Eq. (2) is described in [2] as
Best Replay: for a fixed value u∗, dmin is evaluated minimising
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f (d, u∗); then dmin is fixed and f is maximised over u and
this two optimisation steps are alternated until convergence is
achieved. Another simple approach is in Eq. (3) where the
maximum of f over u is minimised over d:

mind∈D f(d)
s.t.
f(d) = maxu∈U f(d,u)

(3)

It has been proven, however, that the Best Replay approach
often does not converge or it cycles through wrong design
candidates. On the other side, the direct approach proposed
in Eq. (3) is too computationally expensive. Thus, a lot
of effort has gone into developing methods that solve the
min-max problems with an affordable computational cost: a
number of papers have been published about mathematical
programming [3]–[13] and heuristic methods [14]–[17]. Math-
ematical programming approaches require strong assumptions
on the nature of the function f and tend to be tailored on
specific problems. On the other hand heuristic approaches
appear to be more flexible. In particular, evolutionary-based
algorithms represent a promising alternative to mathematical
programming methods. In the existing literature, only few
papers could be found that have explored how to deal with
constraints in bi-level optimisation. Most of them need to start
from some strong assumptions on the nature of constraints
and cost functions and have been developed for constrained
bi-level problems and not specifically for the treatment of min-
max problems [18], [19].

This paper proposes MacMinMax, an extension of the
algorithm presented in [20] to treat min-max problems under
strict constraints. In this case the goal is to find a design
solution d∗ that is feasible for all values of the uncertain
variables u and minimises the worst case value of the quantity
of interest f . In formulas this constrained min-max problem
reads:

mind∈D maxu∈U f(d,u)
s.t.
maxu∈U C(d,u) ≤ 0

(4)

The paper is structured as follows. Section II presents the
proposed memetic algorithm for the solution of constrained
min-max problems. Section III introduces the experimental
benchmark on which the algorithm is tested where the results



are shown in Eq. (III-B). Section IV, finally, comments the
performance of the algorithm at identifying feasible and robust
solutions.

II. A MEMETIC MIN-MAX APPROACH

The algorithm proposed in this paper is inspired by the
procedure, alternating optimisation and restoration loops, sug-
gested by Shimizu and Aiyoshi [21], [22]. Following this idea,
other methods [20], [23] were developed to solve the uncon-
strained problem in Eq. (2). MacMinMax, first introduced
in [24], solves, instead, the more general constrained min-max
problem defined in Eq. (4). The original contribution of this
paper consists in a new benchmark to test constrained min-
max algorithms and the extensive testing of MacMinMax.
MacMinMax is a bi-level optimisation algorithm where the
optimisation loop (upper or outer level) minimises the function
f over the decision vector d considering the worst condition
uA in an subset Au of the uncertain space (Au ⊂ U ):

min
d∈D

(
max

uA∈Au

f(d,uA)
)
. (5)

The restoration loop (lower or inner level), instead, maximises
the objective function f over the uncertainty vector u for the
design vector d∗ fixed in the optimisation loop:

max
u∈U

f(d∗,u). (6)

Both loops are considered under the constraint function C.
Note that in the case of a vector of constraint functions
[C1, ..., Cnc] we consider the scalar:

C(d,u) =

nc∑
i=1

max(Ci(d,u), 0). (7)

The resulting algorithm proceeds as follows:
1) [Optimisation] Given a set of maxima in Au = Af

⋃
Ac,

from the restoration loop, solve the constrained minimi-
sation problem:

mind∈D maxu∈Au
f(d,u)

s.t.
maxu∈Au C(d,u) ≤ 0

(8)

The solution d∗ is then saved in an archive Ad.
2) [Restoration] Given the solution of problem (8), d∗,

solve the two maximisation problems:

maxu∈U f(d∗,u)
s.t.
C(d∗,u) ≤ 0

(9)

max
u∈U

Ci(d
∗,u) ∀i ∈ [1, ..., nc]T (10)

The solution of Eq. (9), uaf = arg maxu∈U f(d∗,u) s.t.
C(d∗,u) ≤ 0, from the space of the feasible maxima of
f is added to the archive Af . The solutions of Eq. (10),
uac,i = arg maxu∈U Ci(d

∗,u) ∀i from the space of the
maxima violation of the constraint C are stored in the
archive Ac if maxu∈U Ci(d

∗,u) > 0. The archive Au =
Af ∪ Ac is then used in the upper loop to evaluate the

new d∗. Note that Eq. (10) has to be understood as
a maximisation for every constraint function in C and
not as a vector optimisation. This approach pushes the
optimiser to find design solutions that are feasible for all
values of the uncertain variables. If a feasible solution
cannot be found, the constraints are relaxed by defining
the new constraint C∗ = C + ε with ε the minimum
constraint violation over U .

The optimisation and restoration loops are repeated one after
the other for a prescribed number of iterations and all d∗ and
associated maxima in Au are stored in a global archive Ag (for
the relationship between the archives please refer to Fig. 1).
The global archive is then used to perform a cross-check of
the solutions. Given a finite number of iterations, one might
obtain a solution d∗ associated to non-globally optimal value
of ue ∈ Au. In order to mitigate this problem one can evaluate
f and C taking multiple pairs d∗,ue taken from the archive
Ag .

The overall procedure is summarised in Algorithm 1 where,
without loss of generality, a single constraint C is considered.
First, the design vector d̄ is initialised and two optimisations
over the uncertain domain U are run keeping fixed d̄ (line
1): a constrained maximisation of f and a maximisation of
the constraint violation C. The archives - Af , Ac, Ad -
are initialised (line 2). Then the inner and outer loops are
alternated until the maximum number of iterations is reached
(lines 3-22). In particular, the archive Ad of the design vectors
d is updated after each outer loop (line 6) while the archives
Af of the uncertainty vectors uaf - from the maximisation of
the objective function - and Ac of the vectors uac - from the
maximisation of the constraint violation - are updated after
each inner loop (respectively in lines 10 and 13) if they are
not already saved in the archives. During the last loops of the
algorithm the relaxation procedure could be activated if the
condition expressed in line 13 is satisfied: a fixed number of
iterations - arbitrarily lower than the maximum allowed - has
to be reached and none of the solution saved in the whole
archive Au = Af ∪Ac has to be feasible in all the uncertainty
domain U . If this happens, a small violation ε of the constraint
C is accepted and increased as long as a feasible solution is
obtained. The relaxation procedure is helped by the elimination
from the archive A of all the vectors u previously saved with
a constraint violation smaller than the actual ε (line 17).
The archive Au = Af ∪ Ac is a growing set: at each i-th
iteration (lines 6 and 10 of Algorithm 1) 0 ≤ nu,i ≤ 1+nc new
vector(s) are included. Therefore, the number of crosschecks
that has to be performed in the outer loop (for both f and C) at
the k-th iteration for each candidate solution d is

∑k
i=1 nu,i.

Then, while the cost of the inner loop is constant with the
number of iterations, the outer loop becomes more and more
costly. However, this increment of the number of function
evaluations allows a better exploration of the space of the
feasible maxima of f , reduces the risk of the red queen effect
[20] and reduces the total number of iterations the algorithm
needs to converge.



Algorithm 1 Constrained min-max
1: Initialise d̄ at random and run uaf = arg max f(d̄,u) s.t.
C(d̄,u) ≤ 0 and uac = arg maxu∈U C(d̄,u)

2: Af = {uaf}; Ac = {uac}; Ad = ∅
3: while Nfval < Nmax

fval do
4: Outer loop:
5: dmin = arg mind∈D{maxu∈Af∪Ac f(d,u)} s.t.

maxu∈Af∪Ac C(d,u) ≤ 0
6: Ad = Ad ∪ {dmin}
7: Inner loop:
8: uaf = arg maxu∈U f(dmin,u) s.t. C(dmin,u) ≤ 0
9: uac = arg maxu∈U C(dmin,u)

10: Af = Af ∪ {uaf}
11: if Nfval < Nrelaxation

fval ∨
∃d ∈ Ad t.c. maxu∈U C(d,u) ≤ 0 then

12: if maxu∈U C(dmin,u) > 0 then
13: Ac = Ac ∪ {uac}
14: end if
15: else
16: update ε
17: A = {A \ ua | C(dmin,u) ≤ ε}
18: if maxu∈U C(dmin,u) > ε then
19: Ac = Ac ∪ {ua,C}
20: end if
21: end if
22: end while

Inner Loop

Af Ac Ad

Outer Loop

Au Ag

Fig. 1. Diagram of the relationships between the archives in Algorithm 1.

III. TESTING PROCEDURE

The approach to the solution of constrained min-max prob-
lems, MacMinMax, presented in this paper, is here applied
to the benchmark in TABLE I and TABLE III using the testing
procedure explained in Algorithm 2 that is a generalisation
of what presented in [27]. Each problem pi,j corresponds
to a combination of the objective function TC-i(d, u) as
in TABLE I and a constraint function TCC-j(d, u) as in
TABLE III: pi,j = TC-i ∧ TCC-j. Problems are solved with
MacMinMax for different numbers of maximum function
evaluations Nmax

feval and each combination of pi,j and Nmax
feval is

repeated n = 100 times (line 3 of Algorithm 2). The solutions,
finally, are compared with the exact min-max presented in TA-
BLE II and TABLE IV. As suggested in [27], the Success Rate
SR is used for the comparative assessment of the algorithm
performance instead of best value, mean, and variance. SR is

defined as the ratio js
n where js is the index of performance

as described in lines 5-10 of Algorithm 2. The number of
successes of MacMinMax on the generic pi,j depends on the
tolerances tolf and tolu - on the objective function solution
f and on the uncertain vector u respectively - and on the
constraint C satisfaction. The condition is given in line 8
and it depends on the errors δpi,j ,k

f , δpi,j ,k
u (with references

in TABLES II and IV) and on νpi,j ,i
c as described in lines 5-

7. fopt(pi,j) in line 5 and uopt(pi,j) in line 6 are the reference
solutions for the problem pi,j . di,j,k, and ui,j,k in lines 5-6
are the solution vectors calculated with Algorithm 1 at the k-
iteration. ūi,j,k in line 7 is, finally, the uncertain vector that
maximise the constraint C violation with the design solution
di,j,k. tolu is necessary to verify the convergence on the
maximisation in the inner loop (restoration in section II) and
then to avoid counting as success solution an fi(di,j,k,ui,j,k)
close to fopt(pi,j) that is coming from a lucky combination of
a wrong maximisation and a wrong minimisation in the outer
loop (optimisation in section II).

Algorithm 2 Testing Procedure
1: Set for each problem p the maximum number of function

evaluation Nmax
feval;

2: set js = 0;
3: Run n times with Nmax

feval the algorithm MacMinMax
on each problem p;

4: for k = [1,2,.., n] do
5: Compute δpi,j ,k

f = |fopt(pi,j)− fi(di,j,k,ui,j,k)|;
6: Compute δpi,j ,k

u = ||uopt(pi,j)− ui,j,k||;
7: Compute νpi,j ,k

c = C(di,j,k, ūi,j,k);
8: if νpi,j ,k

c ≤ 0 ∧ δpi,j ,k
f < tolf ∧ δ

pi,j ,k
U < tolu then

9: js = js + 1
10: end if
11: end for
12: SR = js

n

A. Benchmark

Objective functions from TC-1 to TC-6 are convex-concave
test functions defined in Chapter5 of [25] and used in [23].
Functions from TC-7 to TC-12 are selected from [16], [17],
[26]. TC-13 is a modification of the Rastrigin function where
half of the variables are design parameters and the others are
epistemic uncertainties. The dimensions of TC from TC-1 to
TC-12 range from dimd = 1 and dimu = 1 up to dimd = 4
and dimu = 3; dimensions of TC-13 can go from 1 to infinite
and is here kept up to dimd = 3 and dimu = 3. Refer-
ence solutions for pi,1 and pi,2 are presented in TABLE II:
for the unconstrained test cases from TC-1 to TC-12 they
can be found in [16], [17], [23], [25], [26] while for the
unconstrained TC-13 the min-max can be easily evaluated
from the minimum of the Rastringin function. Design d and
uncertainty u parameters, indeed, are not coupled and then the
solution of mind maxu TC-13(d, u) can be found decoupling
the problem: for dimd = dimu = 1, the solution is shown in



TABLE I
TEST CASES FOR THE OBJECTIVE FUNCTION f

name objective function TC

TC-1 f(d, u) = 5(d21 + d22)− (u21 + u22) + d1(−u1 + u2 + 5) + d2(u1 − u2 + 3)
TC-2 f(d, u) = 4(d1 − 2)2 − 2u21 + d21u1 − u22 + 2d22u2
TC-3 f(d, u) = d41u2 + 2d31u1 − d22u2(u2 − 3)− 2d2(u1 − 3)2

TC-4 f(d, u) = −
∑3

i=1(ui − 1)2 +
∑2

i=1(di − 1)2 + u3(d2 − 1) + u1(d1 − 1) + u2d1d2
TC-5 f(d, u) = −(d1 − 1)u1 − (d2 − 2)u2 − (d3 − 1)u3 + 2d21 + 3d22 + d23
TC-6 f(d, u) = u1(d21 − d2 + d3 − d4 + 2) + u2(−d1 + 2d22 − d23 + 2d4 + 1) + d3(2d1 − d2 + 2d3 − d24 + 5) + 5d21 + 4d22 + 3d23 + 2d24 −

∑3
i=1 u

2
i

TC-7 f(d, u) = (d1 − 5)2 − (u1 − 52)
TC-8 f(d, u) = min(3− 0.2d1 + 0.3u1, 3 + 0.2d1 − 0.1u1)

TC-9 f(d, u) =
sin(d1−u1)√

d21+u2
1

TC-10 f(d, u) =
cos(

√
d21+u2

1)√
d21+u2

1+10

TC-11 f(d, u) = 100(d2 − d21)2 + (1− d1)2 − u1(d1 + d22)− u2(d21 + d2)
TC-12 f(d, u) = (d1 − 2)2 + (d2 − 1)2 + u1(d21 − d2) + u2(d1 + d2 − 2)

TC-13 f(d, u) = A(dimd + dimu) +
∑N

i=1(d
2
i + u2i −A

[
cos(2πdi) + cos(2πui)

]
− 5

TABLE II
REFERENCE SOLUTIONS FOR THE TEST CASES IN TABLE I, WITHOUT CONSTRAINTS

Test Function D U Reference d Reference u f min-max

TC-1 [-5; 5]2 [-5; 5]2 -0.4833 0.0833 -1.6833
-0.3167 -0.0833

TC-2 [-5; 5]2 [-5; 5]2 1.6954 0.7186 1.4039
-0.0032 -0.0001

TC-3 [-5; 5]2 [-3; 3]2 -1.1807 2.0985 -2.4688
0.9128 2.666

TC-4 [-5; 5]2 [-3; 3]3 0.4181 0.709 -0.1348
0.4181 1.0874

0.709
TC-5 [-5; 5]3 [-1; 1]3 0.1111 0.4444 1.345

0.1538 0.9231
0.2 0.4

TC-6 [-5; 5]4 [-2; 2]3 -0.2316 0.6195 4.543
0.2228 0.3535
-0.6755 1.478
-0.0838

TC-7 [0; 10] [0;10] 5 5 0
TC-8 [0; 10] [0;10] 0 0 3
TC-9 [0; 10] [0;10] 10 2.1257 9.7794 × 10−2

TC-10 [0; 10] [0;10] 7.0441 10 4.2488 × 10−2

TC-11 [-0.5; 0.5]×[0; 1] [0;10]2 0.5 0 0.25
0.25 0

TC-12 [-1; 3]2 [0;10]2 1 Any 1
1 Any

TC-13 [-5.14; 5.14]Nd [-5.14; 5.14]Nu 0 ± 4.5230 A(Nd +Nu)− 10Nd + 30.3533Nu − 5
... ...
0 ± 4.5230

Nd = 1 Nu = 1 35.3533
Nd = 2 Nu = 2 75.7066
Nd = 3 Nu = 3 116.0599
Nd = 4 Nu = 4 156.4132

Fig. 6 where d = 0 and u ∈ [−5.14, 5.14]T is given by the
maximisation of TC-14(d, u)d=0 = C + u2 −A cos(2πu).
Constraint functions TCC-1, TCC-2 and TCC-4 depends

on the design vector d only. In particular TCC-1 (Fig. 2)
introduces a narrow concave area for the min-max solution,
TCC-2 (Fig. 3) is multi-modal and TCC-4 presents plateau
areas for both feasible and unfeasible regions. TCC-1, TCC-

2 and TCC-4 introduce difficulties in the convergence but they
do not move the exact min-max of the unconstrained TCs in
TABLE II.
Functions TCC-3 and TCC-5, instead, depend on both design
d and uncertain u. Also they force the solution to move from
the unconstrained one in TABLE II to TABLE IV.
TCCs functions are scalable and are translated by means of



TABLE III
TEST CASES FOR THE CONSTRAINT FUNCTIONS C

name constraint function TCC

TCC-1 C(d) =


∑n−1

i=1

√
A2

1 − (d1 − x0)2 +B1,i − di+1 if d1 ≥ x0 - R∑n−1
i=1

√
A2

1 − (d1 − x0 + 2A1)2 +B1,i − di+1 else
TCC-2 C(d) = A2 · n+

∑
[d2i −A2 · cos(2πdi)]−B2

TCC-3 C(d, u) =
∑N

i=1

[
max

(
0, di + ui −A7

)]
TCC-4 C(d, u) =

{
1 if any |di − d∗i | ≤ ν9
−1 else

TCC-5 C(d, u) =

{
−1 if |d− d∗| ≤ C
A14(||d||+ ||u||) +

∑N
i=1(d

2
i + u2i −A14

[
cos(2πdi) + cos(2πui)

]
− 5 else

TABLE IV
REFERENCE SOLUTIONS FOR THE TEST CASES IN TABLE I,WITH CONSTRAINTS THAT MOVE THE MIN-MAX

TC TCC Reference d Reference u f min-max
dimd,u = 1 dimd,u = 2 dimd,u = 3

TC-13 3 [-4.140 ... -4.140] [-4.5229 ... -4.5229] 56. 118 117.2373 178.3559
TC-13 5 [-0.9950 ... -0.9950] [± 4.5229 ... ± 4.5229] 36.3482 77.6965 119.0447

Fig. 2. Contour of TCC-1 where the white area is the feasible domain and
min-max solution (red point) for p6,1.

coefficients Ai, Bi and Ci, as written in TABLE III, in order
to be applied to the different TCs in TABLE II. TCC-1 and
TCC-2 requires at least 2 elements in the design vector and
then they are applied to test functions from TC-1 to TC-6,
TC-11 and TC-12.

The optimiser used for both optimisation and restoration
loops is MP -AIDEA [28]. MP -AIDEA has been used
with one and three populations. Parameters have been set as
follows: the number of agents for each population is equal to
the number of variables (dimd in the outer loop and dimu in
the inner loop); the maximum number of local restart is iun
= 20 for one population and it is adaptive for 3 populations;
the crossover probability, CR, and the differential weight, F
are self adapted; the size of the convergence box is ρ= 0.25;

Fig. 3. Contour of TCC-2 where the white area is the feasible domain and
min-max solution (red point) for p1,2

the distance from the cluster centres for the global restart is
δglobal = 0.1 and the dimension of the bubble for the local
restart, if not adapted, is δlocal = 0.1.

B. Test Results

The convergence of MacMinMax has been tested with
different values of Nmax

feval that results from the combination
of the number of function evaluation in the inner loop N in

f

and in the outer loop Nout
f . Different tolerances tolf and tolu,

also, have been considered. TABLE IX reports some results
with 1 and 3 populations. Fig.5 shows an example of success
rate for an increasing number of function calls, for the case
of problem p6,1. In the figure, for each Nmax

feval the best SRs
- over all combinations of N in

f and Nout
f - is evaluated with

the three criteria in line 8 of Algorithm 2.



Fig. 4. Contour of TCC-5 where the white area is the feasible domain. The
min-max solution of TC-13 without TCC-5 is the black point while the red
point is the feasible solution for p13,5

Fig. 5. Success Rates for problem p6,1 (TC-6 and TCC-1) with different
Nmax

feval, evaluated from the three tolerances described in Algorithm 2 - tolf ,
tolc and tolu - independently. In particular, SRf has been evaluated with
three values of tolf .

In TABLES V, VI, VII, VIII, IX, X, XI and XII it is shown that
the higher both N in

f and Nout
f are, the more accurate are the

maxima and minima evaluated at each optimisation-restoration
loop but the overall cost of the min-max algorithms increases
accordingly. If the total cost is kept fixed an increase of N in

f

and Nout
f does not necessarily lead to an improvement of the

solution. In Fig. 7, for example, for N in
f = Nout

f = 200 the
algorithm has a poor success rate for all function evaluations.
When the number of function evaluations of the inner and
outer levels is increased to 300, the success rate improves
rather quickly. When the number of function evaluations
of the inner and outer loops is increased even further, the
success rate progressively decreases, for a constant number
of total function evaluations. By setting N in

f too small, the
convergence is not guaranteed even with a very high Nout

f and

usually the solution is underestimated. On the other hand for
a low Nout

f , the algorithm stagnates at different local minima
- if TC-i and/or TCC-j are multimodal - and it does not
converge, or converges slowly, even with an high N in

f .

IV. CONCLUSION

In this paper we have presented a novel method for the
solution of the constrained min-max problem. The algorithm
was extensively tested on a new benchmark of objective and
constraint functions with a variety of features that can be
encountered in real-life applications. Results show that the
algorithm we proposed is generally successful at identifying
the constrained min-max solution with a limited number of
calls to objective functions and constraints. The unconstrained
version of the algorithm proposed in this paper was already
proven to be efficient and reliable compared to existing evo-
lutionary and non-evolutionary algorithms. We argue that also
this constrained version is equally reliable and efficient given
the good success rate displayed on most of the test functions.

Future developments will include the use of surrogate
models to further reduce the calls to objective and constraints
functions.

TABLE V
RESULTS FOR TCC-1

TC #feval SRTC #feval SRTC #feval SRTC

tolf = 0.001 tolf = 0.01 tolf = 0.1
tolu = 0.01

1 3000 95 3000 95 3000 95
2 30000 97 30000 97 30000 97
3 30000 88 30000 88 30000 88
4 20000 99 20000 99 20000 99
5 10000 99 10000 99 10000 99
6 50000 90 50000 90 50000 90
11 1500 97 1000 90 1000 99
12 5500 92 4000 95 2500 97

tolu = 0.1
1 3000 95 3000 99 2000 97
2 15000 92 10000 95 5000 95
3 20000 96 10000 93 10000 94
4 15000 94 10000 99 10000 100
5 10000 99 5000 99 2000 91
6 40000 92 25000 98 20000 95
11 1500 97 1000 90 1000 100
12 5500 92 4000 95 2500 97

TABLE VI
RESULTS FOR TCC-1 AND TC-13

dim #feval SRTC #feval SRTC #feval SRTC

tolf = 0.001 tolf = 0.01 tolf = 0.1
tolu = 0.01

1 5000 100 5000 100 1000 94
2 20000 94 20000 95 15000 90
3

tolu = 0.1
1 5000 100 5000 100 5000 100
2 20000 94 20000 95 15000 90
3



TABLE VII
RESULTS FOR TCC-2

TC #feval SRTC #feval SRTC #feval SRTC

tolf = 0.001 tolf = 0.01 tolf = 0.1
tolu = 0.01

1 15000 95 15000 96 15000 96
2 30000 98 30000 98 30000 98
3 90000 71 90000 71 90000 71
4 30000 94 30000 94 30000 94
5 30000 100 30000 100 30000 100
6 100000 13 100000 13 100000 13
11 2500 94 2500 97 1500 91
12 7000 78 7000 87 7000 89

tolu = 0.1
1 15000 95 10000 100 5000 91
2 20000 91 20000 98 10000 95
3 90000 89 50000 98 40000 93
4 30000 98 15000 98 10000 98
5 30000 100 10000 91 10000 98
6 100000 23 100000 74 90000 90
11 2500 94 2500 97 1500 91
12 7000 78 7000 87 6000 90

TABLE VIII
RESULTS FOR TCC-2 AND TC-13

dim #feval SRTC #feval SRTC #feval SRTC

tolf = 0.001 tolf = 0.01 tolf = 0.1
tolu = 0.01

1 1000 99 1000 99 1000 100
2 10000 95 10000 96 10000 96
3 90000 92 90000 93 60000 90

tolu = 0.1
1 1000 99 1000 99 1000 100
2 10000 95 10000 96 10000 96
3 90000 92 90000 93 60000 90

TABLE IX
RESULTS FOR TCC-3 AND TC-13

dim #feval SRTC #feval SRTC #feval SRTC

tolf = 0.001 tolf = 0.01 tolf = 0.1
1 population MP-AIDEA

tolu = 0.01
1 30000 68 5000 70 20000 71
2 80000 30 50000 73 70000 76
3 70000 3 90000 24 80000 36

tolu = 0.1
1 30000 68 5000 70 20000 71
2 80000 30 50000 73 70000 76
3 100000 3 90000 24 80000 36

3 population MP-AIDEA
tolu = 0.01

1 5000 94 5000 96 5000 96
2 100000 38 100000 86 90000 90
3 80000 3 80000 11 80000 32

tolu = 0.1
1 5000 94 5000 96 5000 96
2 100000 38 100000 86 90000 90
3 80000 3 80000 11 80000 32
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