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Abstract 

In this work we investigate the role played by viscoelasticity on the thermocapillary motion 

of a deformable Newtonian droplet embedded in an immiscible, otherwise quiescent non-

Newtonian fluid. We consider a regime in which inertia and convective transport of energy 

are both negligible (represented by the limit condition of vanishingly small Reynolds and 

Marangoni numbers) and free from gravitational effects. A constant temperature gradient is 

maintained by keeping two opposite sides of the computational domain at different 

temperatures. Consequently the droplet experiences a motion driven by the mismatch of 

interfacial stresses induced by the non-uniform temperature distribution on its boundary. The 

departures from the Newtonian behaviour are quantified via the “thermal” Deborah number, 

TDe , and are accounted for by adopting either the Oldroyd-B model, for relatively small 

,TDe or the FENE-CR constitutive law for a larger range of 
TDe . In addition, the effects of 

model parameters, such as the concentration parameter 1c    (where   is the viscoelastic 

viscosity ratio), or the extensibility parameter, 
2L  have been studied numerically using a 

hybrid volume of fluid-level set method. The numerical results show that the steady-state 

droplet velocity behaves as a monotonically decreasing function of 
TDe , whilst its shape 

deforms prolately. For increasing values of 
TDe , the viscoelastic stresses show the tendency 

to be concentrated near the rear stagnation point, contributing to an increase in its local 

interface curvature. 
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1. Introduction 

In this work we study the role played by viscoelasticity on the thermocapillary induced 

motion of a deformable droplet in a polymeric fluid, which arises when the system is 

subjected to a temperature gradient. There are many industrial and technical applications in 

which non-uniform heating is applied to a polymeric liquid. Typical examples include (but 

are not limited to) processes for plastics joining,1,2 the heat treatment of polymers aimed at 

mechanical and tribological properties improvement (Aly3 and references therein), the 
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welding of plastics,4 and thermocapillary actuation of synthetic and biopolymeric fluids for 

dispersing, mixing and pumping at the microscale,5 amongst many other manufacturing 

processes in engineering.6,7 What sets these examples apart from similar processes using 

Newtonian fluids is the presence of additional (elastic) stresses in the fluid phase. Indeed, 

polymeric materials are known for their ability to display both viscous and elastic stresses 

when subjected to deformation, that is, they exhibit viscoelastic behaviour. Superimposed 

onto this conceptual characteristic, we often find the presence of immiscible phases, which 

allow surface-tension driven effects to influence the fluid dynamics.  

There have been several works dedicated to the effect of surface tension on polymer liquid 

dynamics (the interested reader may consider, e.g., Dee and Sauer8 for an exhaustive review). 

Firstly, whenever two immiscible fluids are in contact, the interfacial tension acts to minimise 

the surface energy of the system by reducing the area separating the two phases. If the 

conditions are favourable, the formation of disconnected droplets is a direct consequence of 

such process of energy minimisation. Then, since frequently the components are also 

characterised by different densities, gravity can induce subsequent droplet displacement. 

There is indeed a large body of literature dedicated to the study of the motion of bubbles and 

drops undergoing sedimentation or flotation in the presence of non-Newtonian fluids under 

isothermal conditions. To the best of our knowledge, the first documented experiments on the 

motion of bubbles in viscoelastic fluids is due to Philippoff9 who investigated the motion of 

air bubbles rising through elastic solutions made of rubber dissolved in organic solvents. The 

experiments revealed that the bubbles assumed a characteristic tear-like shape with the 

presence of a trailing cusp which was observed to become more pronounced when the fluid 

relaxation time was increased. For such reason, the behaviour was ascribed to the presence of 

memory effects. Subsequently, the motion of bubbles rising on otherwise quiescent 

viscoelastic fluids have been investigated by a number of other authors (see, e.g.10-16). In 

particular, Hassager16 was the first to realise that the cusp might not be axisymmetric even 

though the flow conditions were such that there was no apparent motivation to predict such 

asymmetry. Later Liu et al.17 conducted systematic experiments considering air bubbles 

rising through viscoelastic solutions in containers with different cross-sections (i.e., rounded, 

squared and rectangular) and discovered that the trailing cusp might actually assume a variety 

of different shapes. Another interesting phenomenon that can be observed with regard to the 

motion of both solid and fluid particles translating in a viscoelastic liquid, is the presence of a 

“negative wake”16. The term ‘negative’ originates from the fact that although very close to 

the rear stagnation point the velocity is in the direction of the particle motion, immediately 

further away from the trailing end the flow reverts direction. On the contrary, when the 

continuous phase is Newtonian, the velocity in the wake is everywhere in the same direction 

of the motion of the particle. 
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Although buoyancy-induced motion is the most immediate effect one can imagine, other 

mechanisms based on a different type of forces exerted directly at the droplet interface can be 

responsible for the activation of the droplet displacement, one typical example being the so-

called thermal Marangoni migration. In this case, a non-uniform temperature distribution 

within the fluid generates interfacial tension gradients. The thermally induced capillary 

stresses generate flow inside and around the droplet in addition to droplet displacement, 

which is produced to counter-balance, through viscous (if the fluid is Newtonian) or both 

viscous and elastic stresses (if the fluid is viscoelastic), the mismatch of the capillary stresses 

at the interface separating the two immiscible components. In the present work we 

specifically concentrate on the Marangoni migration of a droplet in the presence of 

viscoelastic effects (no buoyancy present). 

The existing literature on thermal Marangoni droplet migration for the case of Newtonian 

fluids is vast. Starting from the seminal work by Young et al.18 a wealth of research has been 

published encompassing experimental works both in labs (see for instance19-21) as well as 

under microgravity conditions (see, e.g., Hadland et al.22), analytical solutions23-25, numerical 

simulations based on a variety of numerical methods, such as volume of fluid,26-28  level-

set,29,30  lattice Boltzmann,31,32 and hybrid techniques.33,34 All these efforts pertain to 

Newtonian fluids, i.e., there is a clear lack of work on the Marangoni migration of droplets in 

viscoelastic fluids, which we address in the present work.  

Although there is a relevant amount of literature dedicated to the study of thermocapillary 

flows of fluid layers in the presence of viscoelastic fluids (see, e.g.35-39), the non-Newtonian 

thermocapillary problem for bubbles and drops seems to be relatively unexplored. To the best 

of our knowledge, the analytical solution by Jiménez-Fernández and Crespo40 is the only 

existing attempt where the migration phenomenon induced by Marangoni effects was 

considered in combination with viscoelasticity under very restrictive conditions. They used a 

perturbation procedure to find an analytical solution for the case of a non-deformable gas 

bubble surrounded by an Oldroyd-B fluid in the limit of weak viscoelastic effects (i.e. 

Deborah numbers smaller than unity), and found that the migration velocity decreases 

monotonically with the square of the Deborah number for this range of Deborah numbers. 

In this work we go well beyond the analysis of Jiménez-Fernández and Crespo40 by taking 

into account droplet deformability and investigating the role played by the presence of 

viscoelasticity on the thermocapillary motion of drops over a much wider range of Deborah 

numbers ( 30TDe  ). We rely on numerical computations based on a hybrid volume of fluid-

level set method implemented into OpenFOAM for the so-called Stokes regime, i.e. for 

vanishingly small Reynolds ( Re ) and Marangoni ( Ma ) numbers, considering a Newtonian 
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drop embedded in a viscoelastic continuous fluid modelled using two different constant 

viscosity constitutive equations (i.e., Oldroyd-B and FENE-CR models). 

After this introduction, in Section 2 we describe the problem under examination and list the 

full set of governing equations. Section 3 focuses on the numerical methodology, followed by 

the validation of the viscoelastic multiphase solver. The results of the present investigation 

are then discussed in the subsequent Section 4, in which we first assess the dynamics of 

droplet migration in an infinitely diluted solution and then describe the effects of polymer 

concentration for varying Deborah numbers. The impact of other relevant parameters, such as 

molecule extensibility, are also analysed. Chapter 5 summarises the main findings and 

conclusions. 

 

2 Mathematical Formulation  

2.1 Statement of the problem  

We consider the thermocapillary motion of a Newtonian droplet of radius 0.5 cmR   

surrounded by an otherwise quiescent immiscible viscoelastic liquid contained in a 

parallelepipedic domain having dimensions   34.5 4.5 6 cm  with walls on all sides (see 

Fig. 1). These geometrical constrains are similar to those adopted in the experiments of 

Hadland et al.22 and have also been used in our previous investigations.41,42 

 

 

Figure 1: Schematics of the parallelepipedic configuration (equivalent to the experiment of 

Hadland et al.22) and coordinate axes considered in the numerical study. 



 

5 

 

The outer (matrix) viscoelastic phase is characterised by a shear independent viscosity, 

0, , ,m s m p m    , resulting from the summation of the Newtonian (solvent) contribution, 

, ,s m with the viscoelastic (polymer) contribution, 
,p m . A constant temperature gradient, 

  /T hot coldG T T L  , is maintained by external means. The fluid properties are assumed to be 

constant with the exception of the interfacial tension,  , which decreases with temperature, 

T, with a constant rate of change, 
T d dT   .8  

In order to introduce the various dimensionless parameters governing the physics of the 

problem under discussion, we use R  as a reference length scale and define the reference 

velocity scale as 0,/T T T mU RG  , having assumed that the thermocapillary stresses at the 

interface generate velocity gradients of order of magnitude /TU R .  Pressure and stresses are 

non-dimensionalised with the characteristic viscous stress, 
, /s m TU R , whilst the temperature 

is made dimensionless by subtracting the reference value 
0T  (

0T  is defined as the 

temperature at the centre of mass of the translating drop) and then dividing the temperature 

difference by the scaling temperature,
TRG . Finally, time is scaled with the quantity / TR U . 

Using these scalings, we introduce the Reynolds number, 
0,/m T mRe RU  , the Marangoni 

number, 
, /m p m T mMa c RU  , and the Prandtl number 

0, , /m p m mPr c   (these quantities 

are not independent since Ma RePr ), where 
,p mc  and 

m  are heat capacity and thermal 

conductivity of the outer phase, and the Deborah number defined as /T TDe U R  (here 

called “thermal” Deborah number to distinguish from the usual Deborah number definition

/De U R  adopting the droplet velocity, U , instead of 
TU ). The dimensionless 

description of the problem is complete with the introduction of the capillary number, 

0, /m TCa U   and all the material property ratios between the two phases. 

In all the numerical simulations proposed in the present study, we adopted the following 

values for the dimensionless parameters: 
41 10Re   , 

51 10Ma    and 
12 10Ca   , while 

the Deborah number, 
TDe  has been varied within the range 0 to 30. According to the fluid 

dynamic regime considered, the flow is purely “diffusive” both in terms of momentum and 

energy, and the temperature field can be assumed to be linear everywhere as the thermal 

properties of the two fluids are the same (as explained later in Sect. 2.2).  

 

2.2 Governing Equations 

It is customary to describe the motion of a non-isothermal system composed of two 

incompressible immiscible fluids by a single set of governing equations.43 With such a 

description, the conservation of mass and momentum, in the absence of gravity and other 

body forces, can be cast in compact form as: 
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0 u            (1) 

D
p

Dt
     

u
f            (2) 

where ρ is the density of the fluid, u  and t represent velocity vector and time, respectively, p 

is the pressure and 
s  D   is the total extra stress tensor, comprising the Newtonian 

contribution, 
s2 D , and the viscoelastic extra-stress tensor,  . In the Newtonian part, 

 T1

2
 D u u   is half the rate-of-strain tensor. The symbol ( ) ( ) ( )D Dt t       u   

denotes the substantial derivative. The last term on the right hand side of Eq. (2), 
f , accounts 

for the capillary, (
nf ), and thermocapillary, (

tf ) forces at the interface: 

 S S Sk T        
n t

f f f n          (3) 

The operator,  S  n n    , is the projection of the operator   to the direction tangent 

to the interface, n  and k  are the normal unit vector and the curvature at the interface, 

respectively. Finally, the term 
S  is a scalar-valued distribution which identifies the interface. 

As illustrated by Dee and Sauer,8 the surface tension for many polymer molecules can be 

assumed to vary linearly with temperature: 

     0 0TT T T T              (4) 

The mathematical formulation of the problem is completed by including the energy balance 

equation:  

 p

DT
c T

Dt
    ,          (5) 

where 
pc  is the specific heat and   the thermal conductivity coefficient, and the constitutive 

equation for the viscoelastic stresses. 

It is instructive to point out that in the regime of interest (small Marangoni and Reynolds 

number), the temperature field can be assumed to be linearly uniform everywhere, provided 

the thermal properties of the two fluids are the same (which is indeed the case in the present 

work). The problem could therefore have been addressed leaving aside the energy equation. 

Nonetheless, since the solution of the energy equation did not produce specific problems for 

the present computations (not contributing to increase significantly the computational cost), 

the equation has been retained in the solving algorithm.  



 

7 

 

To model the viscoelastic fluid behaviour, we consider both the Oldroyd-B44 and the 

FENE-CR45 constitutive models (see e.g.7,46-49) generally represented by the following 

evolution equation for the conformation tensor: 

   trf


    I            (6) 

where  TD Dt


    u u       represents the upper-convected derivative of the so-

called conformation tensor A . For the FENE-CR model, the function f  appearing in Eq. (6) 

reads: 

  
 

2

2
tr

tr

L
f

L



A

A
,         (7) 

where 
2L  is the so-called extensibility parameter of the polymer molecule. The specific 

condition   tr 1f A  corresponds ideally to a polymer molecule with infinite extension, 

i.e. 
2L  , for which the standard Oldroyd-B model is recovered. The elastic extra-stress 

tensor   included in the momentum equation can finally be obtained from the conformation 

tensor via the relationship:50 

   p
trf




  I            (8) 

Although the governing equations are solved in dimensional form, it is useful to show their 

non-dimensional counterpart in order to appreciate the dependence of the considered problem 

on the non-dimensional parameters introduced in Sect. 2.1. It is worth noting that all the 

material properties appearing in the governing equations may, in general, vary across the 

interface. For this reason, a generic fluid property,  , is generally expressed as a linear 

combination (although other types of combination are sometimes used, see e.g., Capobianchi 

et al.51) of the values assumed inside the two phases using the volume fraction 
k  as 

combination parameter (
k  being 0 or 1 depending on the considered fluid):  

 1k d k m                 (9) 

Considering the generic material property of the matrix fluid 
m  as the reference for the 

property, fluid properties can be written in dimensionless form as  1r k d m k       . It 

is worth pointing out that in the present investigation we assumed that the two fluids have the 

same properties (except for the viscoelastic properties, for obvious reasons). Therefore, in the 

present case, Eq. 9 becomes relevant only when applied to the values of  
p  and  . 
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Taking into account the dimensionless characteristic numbers defined in Sect. 2.1, the 

following set of dimensionless governing equations is obtained 

 0, 0

1
(1 ) ( )r r S S S

D
Re p c k T T k T

Dt Ca
               

u
D n n I nn     (10) 

 ,

1
r p r r

DT
c T

Dt Ma
            (11)

   
1

tr
r T

f
De



   I          (12)

   trr,0

r T

c
f

De




  I           (13) 

where 
0,p,m mc    is a parameter proportional to the concentration of polymer molecules 

dispersed into the solution, related to the viscoelastic viscosity ratio, 
0,s,m m   , by the 

simple relation 1c   .  

In the following, not to increase excessively the complexity of the mathematical model, we 

assume that the capillary number is small enough to guarantee that the condition 

 0

1
S Sk T T k

Ca
  n n  is satisfied. Accordingly, the fourth term on the right-hand-side of 

Eq. 10 is neglected in the ensuing calculations. 

It is worth emphasising that, although the contribution of the neglected term discussed above 

is of the same order of magnitude of the 5th term of the same equation (note that both are 

proportional to the temperature difference established at the drop interface), their effects on 

the droplet dynamics are profoundly different. In fact, the 4th term is essentially a force acting 

along a direction perpendicular to the surface of the droplet. It can be seen as a temperature-

induced ‘perturbation’ of the local surface tension and it is generally balanced by a 

corresponding change in the distribution of normal stresses at the interface. Its effects are 

limited to minor variations in the shape of the droplet and, if its relative strength is negligible 

compared to the normal stress associated with  0T . The 5th term, on the other hand, is a 

force acting tangentially to the interface. It has to be balanced by the tangential viscous 

stresses produced in the fluid and plays an important role in propelling the droplet, being the 

main force driving the dynamics of interest. 

 

3 Numerical method 

3.1 The hybrid Level-Set VOF solver 
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The numerical results presented in the following sections were obtained using a 

thermocapillary solver42 based on a hybrid level-set volume of fluid implemented in the 

OpenFOAM code.52 The solver is based on the original formulation of Albadawi et al.53 and 

has been thoroughly described and tested in Capobianchi et al.,41,42,51 hence here we provide 

only a general overview. 

In the standard algebraic volume of fluid (VOF) “interFoam” solver available in 

OpenFOAM, the volume fraction phase, 
k , is advected using a surface compression 

approach54 in combination with high-resolution numerical schemes, thereby making 

unnecessary a geometric reconstruction of the interface. The main advantage of such 

procedure lies in its robustness and ability to handle complex interfaces with limited 

computational cost. This approach uses the specific variant of Albadawi et al.,53  who 

combined the excellent mass-preserving properties of the VOF with the ability of the level-

set method to improve the representation of the interface. In the following, we describe 

briefly the simplified LS-VOF methodology of Albadawi et al.53 as implemented in 

OpenFoam by Yamamoto et al.52  

In standard LS-VOF codes, the volume fraction 
k  and the level-set function 

k  are 

integrated in time by means of the following advection equation on the basis of an operator 

splitting technique (see e.g., Tryggvason et al.55): 

  0k
k

G
G

t


  


u ,         (14) 

where 
kG  is either the volume fraction (i.e., 

k kG  ) or the level-set function (i.e., 
k kG  ). 

Afterward, the interface is geometrically reconstructed from the volume fraction field, and 

the curvature is subsequently updated by means of the level-set function. As referred to 

above, since in the interFoam code of OpenFOAM there is no geometric reconstruction of 

the interface, such a strategy cannot be applied in a straightforward manner. In the alternative 

methodology proposed by Albadawi et al.53 used here, the initial level-set function is 

computed in a simplified way from the volume fraction 

 0, 2 1k k    ,         (15) 

where   is a dimensionless number which depends on the mesh resolution (Albadawi et 

al.53), set as 0.75 x   , where x  is the grid resolution. Subsequently, a re-initialisation 

equation is solved for 
k  with the initial condition set as    0,,0k k x x  

  0,sgn 1k
k k

f


 




 


 ,    (16) 
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where  0, 0, 0,sgn k k k    is the sign function and 
f x    is a fictitious time. 

Subsequently, the field 
k  is used to evaluate the interface normal and curvature, which in 

turn are used for the calculation of the capillary force 
f . According to our experience, the 

hybrid code of Yamamoto et al.52 appears to be more accurate than the original interFoam 

solver, nevertheless we further improved its performance by introducing a smoothing strategy 

(notice that by definition the level-set function is per se already a smooth function) to better 

describe the interface. This simple strategy is based on the solution of a purely diffusive 

equation for the level-set function for a prefixed number of mollification cycles m  

 1 2

, , ,

m m m

k mol k mol k mol mol              (17) 

where 
mol  is a fictitious time defined by means of stability considerations (the reader is 

referred to Capobianchi et al.42 for a more detailed description of the method) that depends on 

the grid spacing. Once the smoothed level-set function, 
,k mol , is known, the normal unit 

vector and curvature at the interface are evaluated in the usual manner 

  ,

,

,

k mol

k mol

k mol





 n




,        (18) 

   , ,k mol k molk   n .    (19) 

Finally, the terms accounting for the capillary and thermocapillary forces (Eq. 3) are 

computed using Eqs. (13) and (14), yielding the following form of the momentum equation: 

     

    

s , , ,

, ,

k mol k mol k mol

T k mol k mol k

D
p k I

Dt

T

     

   

     

 

u
D

I n n

   

 

    (20) 

where  

0                                   if 

1
1 cos       if 

2

k

k k
k

I

 

  
 

 

 


    
   

  

   (21) 

is an “indicator function” and   is an empirical parameter such that 1.5 x   , in accordance 

to previous works (see, e.g.,56-58).  

 

3.2 Viscoelastic solver  

For the solution of the viscoelastic flow problem, we used a multiphase version of the 

viscoelasticFluidFoam solver originally developed by Favero et al. (2010).59 Our solution 
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procedure is formally identical except in the approach used to update the stress tensor 

(formalised by Eq. 8) before solving the momentum equation, since for our purposes we 

found advisable to re-formulate the governing equation in terms of conformation tensor. 

Additional specific information on the treatment of the viscoelastic stress term can be found 

in Appendix A, with the remainder of this section providing detailed information about the 

validation strategy used. 

Towards this end, we considered the deformation of a two-dimensional droplet subjected to 

shearing, inertialess motion inside a planar Couette cell either in the presence of one or two 

viscoelastic phases (see, for instance, the cases discussed in Pillapakkam and Singh60 and in 

Chinyoka et al.61).  

A circular droplet of radius R  is placed at the centre of a domain of height h  and width h  

(see Fig. 2) delimited by two parallel walls moving in opposite directions along the x-axis 

direction with a constant velocity of magnitude 
0U . At the moving walls, we imposed no-slip 

and no-through flow boundary conditions for the velocity, while the wall pressure is assigned 

the values calculated at the nearest neighbour cells centre (i.e., denoted as the “zeroGradient” 

boundary condition in OpenFOAM). At the two lateral boundaries, periodic conditions have 

been applied. The flow field is initialised by imposing fully developed uniform shear flow in 

the whole domain (including also the interior of the droplet) and zero viscoelastic stresses 

(i.e., A I ). Even though the initial condition for the stresses is not consistent with the 

imposed velocity field, this does not impact the steady state solution as long as the Capillary 

number is low enough to guarantee relatively moderate droplet deformations (for more details 

about this assumption, see again Chinyoka et al.61). In all the simulations, we employed a 

uniformly spaced mesh of resolution 25x R  . 
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Figure 2: Schematic of the domain and initial flow conditions (top) considered for the shear 

flow validation case. Steady state deformed droplet shape (bottom), showing the major and 

minor axes used to calculate the deformation parameter, D, and the orientation angle,  . 

The effect of viscoelasticity on the droplet deformation was taken into account in the 

framework of the Oldroyd-B viscoelastic model considering the four possible different flow 

configurations: Newtonian droplet in a Newtonian phase (N-N), viscoelastic droplet and 

Newtonian matrix phase (V-N) and the other two possible combinations, N-V and V-V. The 

flow conditions are such that, 
2 4

0,/ 3 10m mRe= R     , 
0, / 0.24mCa R    , 

0.4i iDe   , 
, 0,/ 0.5s i i     (the subscript “i” stands for “m” or “d” depending on 

whether the viscoelastic phase is the matrix or the droplet), where 
02 /U h   is the imposed 

shear rate. The two fluids are assumed to have the same density and viscosity (i.e. 

0, 0,/ 1d m    and 
0, 0,/ 1d m   ) and the same   when both phases are viscoelastic, while 

the geometric confinement is set to / 0.125R h   as in Chinyoka et al.61).  

Table I summarises the steady state results of the orientation angle,  , and the deformation 

parameter    D a b a b   , with a   and b  being the major and minor axes as indicated in 

Fig. 2. The present results are in good agreement with those obtained by Chinyoka et al.61 

with a maximum relative difference of ~4% both in terms of deformation and orientation 

angle. 
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Table I: Comparison between our steady state results and those of Chinyoka et al.61 in terms 

of droplet deformation, D , and orientation angle,  . 

 

Chinyoka et al.61 Current Deviation % 

 
D φ [°] D φ  [°] D φ [°] 

N-N 0.288 32.3 0.283 31.8 < 2 < 2 

V-N 0.282 31.2 0.271 31.9 < 4 2  

N-V 0.265 28.2 0.265 28.2 < 1 0  

V-V 
0.26 28.2 0.258 29.2 < 1 < 4 

 

4 Results 

As explained in the introduction, the objective is to investigate the role of elasticity on the 

thermocapillary motion of a droplet in the absence of gravity. We performed a series of three-

dimensional simulations for a single Newtonian drop translating in an otherwise stagnant 

viscoelastic fluid (c.f. the 3D configuration shown in Fig. 1.) using an adaptive mesh with 

resolution 28x R   in the region of the droplet. The outcomes of the related mesh-

refinement study performed to guarantee grid-independent 3D solutions are described in 

Appendix B.  

To model the viscoelastic phase and investigate a broad range of Deborah numbers, the 

simulations were carried out considering a) the Oldroyd-B model, for relatively small 

Deborah numbers (up to 3.75TDe  ), and b) the FENE-CR model, for larger Deborah 

numbers (up to 30TDe  ). This twofold choice is dictated by the presence of an unphysical 

singularity in the solution of the Oldroyd-B model in extensional flows, which in this specific 

case develops at the rear stagnation point of the drop (the reader being referred, e.g., to7,62-64 

for additional insights). In the following sections, we discuss the effect of the various relevant 

dimensionless numbers (namely 
TDe , c  and  

2L ) on the droplet dynamics and in particular 

on the migration and deformation of the droplet. 

 

4.1 Infinitely dilute solution 

First, we consider the case of the Oldroyd-B fluid (
2L  ) in the limiting situation in which 

the concentration of polymer molecules in the solution is infinitely small, i.e., 0c   (in 
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practice, we set 0c   in our simulations, which corresponds to a Newtonian fluid). However, 

we can still determine the conformation tensor evolution by solving Eq. (12), thus allowing 

us to separate effects and therefore to better understand the dynamics of droplet motion and 

deformation, since, in this case, we are able to observe the deformation and orientation of 

polymer molecules as they flow around the droplet without taking into account the presence 

of viscoelastic stresses that would modify the flow field and the droplet shape. Then, in Sect. 

4.2 the presence of viscoelastic stresses will be analysed corresponding to finite (non-zero) 

values of c . 

Figure 3a shows the temporal evolution of the scaled droplet velocity for 0c   and 

3.75TDe  . After a relatively short transient, the droplet velocity approaches the theoretical 

value obtained by Young et al.18 for Newtonian fluids under the assumption of negligible 

inertia and negligible convective transport of energy, given by 

 

0,
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.      (22) 

 

In this case the shape is nearly spherical (for a discussion on the small departures from the 

exact shape please refer to appendix B). In particular, to analyse the distribution of the 

conformation tensor at the droplet interface, we consider the centreplane 0.5x w   passing 

through the centre of the drop, as shown in Fig. 3b. 

The three components of the conformation tensor on such region are reported in Fig. 4 

(qualitatively similar results were obtained for other planes passing through the axis of the 

drop). We do not display the xx-component as we found it to remain nearly constant 

throughout the reference interface.  
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Figure 3: (a) Scaled droplet migration velocity as a function of the dimensionless time for 

the Oldroyd-B model with 3.75TDe   and 0c  . The dashed line indicates the theoretical 

steady state value obtained by Young et al.18 for Newtonian fluids. (b) Sketch of the flow 

domain and the droplet cut by the plane 0.5x w   (for the sake of representation, only the 

portion of the drop where the reference interface (contour 0.5k  ) is taken is shown). The 

 ', ', 'x y z  coordinate system we consider is also shown and is not fixed in space but 

advected with the drop, and has the origin of the axes coincident with the rear stagnation 

point. 

 

 

Figure 4: Conformation tensor along the droplet reference interface for the Oldroyd-B model 

with 3.75TDe   and 0c  , showing the normal and shear components Azz, Ayy, Azy (a) and its 

trace (b). 'z  is taken in such a way that 
1'/ 0z D   corresponds to the rear stagnation point, 
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and 
1'/ 1z D   to the front stagnation point (as shown in Fig. 3b and in the inset of Fig. 4a). 

The component 
zzA  for 

1'/z D  < 0.04 has been cut off to make the representation more 

intelligible, since its maximum value is far larger than the maximum value of the other 

components. In the inset of plot (a) the conformation tensor has been represented at four 

different locations of the interface by drawing ellipses that have major and minor axes 

parallel to the eigenvectors of A  and lengths proportional to the corresponding eigenvalues. 

To provide a direct visual representation of the deformation and orientation of the polymer 

molecule as it flows around the droplet, in Fig. 4a we have also represented the conformation 

tensor by including ellipses with axes parallel to the principal axes defined by the 

eigenvectors of A  (while the extensions are proportional to the corresponding eigenvalues, 

see, e.g. Harlen, 200265). We now analyse the polymer molecule dynamics as it moves from 

the front (
1'/ 1z D  ) towards the rear stagnation point (

1'/ 0z D  ). It can be seen that as the 

polymer chains approach the front stagnation point, they initially experience a bi-axial 

extension along the y-direction while being compressed along the z-direction (cf. the ellipsoid 

shown at 
1'/ 1z D  ). Subsequently, when the molecules move further towards the rear of the 

drop
yyA  gradually decreases to a minimum (for 

1'/ ~ 0.6)z D where the deformation is 

“compressive” ( 1yyA  ). On the other hand, 
zzA  follows the opposite trend: it gradually 

increases, becomes extensional and reaches a peak approximately at the same location where 

the other component attains its minimum value (i.e. at 
1'/ ~ 0.6z D ). It is worth noticing that 

for 
1'/ ~ 0.6z D ,

zyA is approximately zero. As the molecules move further towards the rear 

region, they extend along the y-direction, with 
yyA  reaching a maximum value and finally 

vanishing as they approach the rear stagnation point. On the other hand, 
zzA  decreases and 

reaches a minimum at 
1'/ ~ 0.1z D  (where 

zzA  is close to unity, indicating a nearly relaxed 

state along the z-direction) after which the deformation suddenly increases and eventually 

reaches its largest value when 
1'/z D  is almost zero. Note that the values for small 

1'/z D  are 

not shown in Fig. 4 for sake of representation (cf. the caption in Fig. 4). Regarding the shear 

component, 
zyA , it is worth highlighting its sudden decrease near the rear region, which is 

responsible for the change of the orientation of the molecules along the z-direction. As 

illustrated by the ellipse for 
1'/ ~ 0.04z D , although the polymer filaments are relatively close 

to the rear region, their orientation is still far from being aligned with the z-axis. The large 

shear component will guarantee that the molecules are oriented in the direction of z axis when 

they reach the rear stagnation point. 

Figure 4b shows the distribution of the trace of the conformation tensor,  tr A , along the 

same reference interface providing an indication of the degree of stretching of the molecules. 

We notice that the largest deformation occurs in a narrow region near the rear stagnation 

point  1'/ ~ 0z D , where the flow field is essentially a uniaxial straining flow. The 

occurrence of the largest molecular stretching at the rear of the droplet is qualitatively similar 
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to what can be observed for the analogous case of the gravitational motion of a Newtonian 

drop in a viscoelastic liquid in isothermal conditions, where the drop assumes a tear-drop 

shape with a characteristic pointed tail (the interested reader being referred to the collection 

of experimental images available in Chhabra6 or the numerical results of Pillapakkam et 

al.66). This suggests that the viscoelastic stresses tend to concentrate in a small area around 

the rear of the drop, with significant consequences on the morphological evolution of the 

droplet and distribution of the velocity field near the rear stagnation point. 

 

4.2 The effect of the polymer concentration 

In this section we focus on the effect of finite, non-vanishingly small, polymer 

concentrations. In contrast to the case addressed in the previous section, the molecular 

deformation associated with the flow field generates viscoelastic stresses, which are related to 

the presence of polymer molecules in the viscoelastic phase. 

Fig. 5a shows the comparison between the normal components of the conformation tensor for 

three different values of the parameter c , 0c  , 0.5c   and 0.89c  , for a fixed value of 

the Deborah number, 3.75TDe  . Irrespective of the value of c , the trends for 
zzA  remain 

qualitatively similar to those discussed in Sect. 4.1, with the main quantitative difference 

being a small increment of the peak observed in the region corresponding to the front half of 

the droplet (
10.5 '/ 1z D  ) as the concentration is increased. On the contrary, 

yyA  remains 

substantially unvaried in the front half, then, as the polymer molecules move towards the rear 

region, the trends appear remarkably different. In particular, for 0c  , the maximum extent 

of the elongation along the y-direction appears very close to the rear stagnation point. As the 

polymer concentration is increased, the maximum value of 
yyA  is gradually shifted towards 

higher values of 
1'/z D . 
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Figure 5: (a) Normal components of the conformation tensor 
zzA , 

yyA  and (b) trace of the 

conformation tensor A  along the droplet reference interface obtained using the Oldroyd-B 

model for three different polymer molecules concentrations ( 0, 0.5 and 0.89c  ) and for 

3.75TDe  . The inset in figure (b) shows the trace of A  in the region near the rear 

stagnation point in linear scale. 

Figure 5b shows the trace of A  for the same three values of c . As the molecules approach 

the rear of the drop,  tr A  is smaller for higher concentration (at the stagnation point, the 

value of  tr A  for 0.89c   is about four times smaller than that for the case 0c  ). This 

means that the maximum elongation decreases when the concentration of polymer increases. 

It is worth noticing that although the results are obtained at a constant thermal Deborah 

number, the alternative Deborah number evaluated using the actual droplet velocity (typically 

used in the literature for the case of buoyant-driven isothermal flows) would decrease for 

increasing values of c  since, as it will appear clear soon, the migration velocity is a 

monotonic decreasing function of the polymer concentration. In addition there are a number 

of influential factors affecting the flow field near the rear of the droplet, as tentatively 

illustrated in the following. As in the considered simulations the total viscosity is maintained 

constant, the reduction of the Newtonian solvent contribution implies a reduced solvent 

viscosity   01s c   , which, in turn, leads to a reduction of the Newtonian contribution 

to the total stress. Simultaneously, the polymer contribution generates increasingly higher 

viscoelastic stresses, which are mainly concentrated in a small area near the rear stagnation 

point where they are essentially extensional. These stresses “pull back” the droplet interface 

and, if they are large enough to overcome the capillary force, they can contribute to increase 

the local interface curvature. In turn, resulting in a localised increment of the pressure jump 

across the droplet interface affecting the flow conditions near the rear region of the droplet.  

The influence of polymer concentration on the droplet velocity is illustrated in Fig. 6a, where 

the scaled droplet speed is shown as a function of the dimensionless time for a constant value 
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of 3.75TDe  . Initially, the droplet speed increases rapidly, exhibiting an overshoot before 

reaching steady state conditions. We notice that the magnitude of the velocity peak depends 

on the parameter c , becoming larger when c  is increased. Note also that for higher values of 

c the overshoot is followed by undershoot before the velocity tends to the steady state value. 

Such behaviour can be understood considering that the viscoelastic stresses need a certain 

amount of time to develop, and, hence (at least in an initial stage) the stresses at the interface 

are mainly of a “Newtonian nature”. In other words, since the concentration is given by the 

ratio of the polymer viscosity to the total viscosity, having assumed the latter property 

constant for each simulation, a larger value of c  implies a smaller solvent viscosity, thus the 

Newtonian stresses prevailing at the first stage of the transient determine the observed 

behaviour. The corresponding steady state velocity for the cases under discussion are shown 

in Fig. 6b, which shows that when the amount of polymer is increased, the droplet speed 

decreases monotonically. 

 

 

Figure 6: Effect of concentration on the droplet migration velocity. (a) Time evolution of the 

scaled droplet speed for different polymer concentrations (the points are taken at every 0.5s 

and the lines are guide to the eye) and (b) scaled steady state velocity as a function of the 

concentration of dumbbells c. In both cases the Oldroyd-B model has been used considering 

3.75TDe  . 

 

 

4.3 The effect of the Deborah number 

Figure 7a shows the steady state droplet velocity as a function of 
TDe  obtained using the 

Oldroyd-B model for two different values of the parameter c , 0.5c   and 0.89c  . The plot 
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indicates that for both cases the droplet velocity decreases with 
TDe . The two trends can be 

well approximated by a quadratic polynomial, 2

1 2/ 1YGB T TU U k De k De   , with 
1k  and 

2k  

being two constants that depend on the value of c . The steady state droplet shapes are 

illustrated in Fig. 7b for different values of 
TDe  and c . 

 

Figure 7: (a) Scaled migration velocity for a droplet surrounded by the Oldroyd-B fluid as a 

function of the Deborah number for two values of c . (b) Droplet shapes for different values 

of the thermal Deborah for 0.5c   (top), and for 0.89c   (bottom). Note the presence of a 

“pointed end” for the largest values of the Deborah number. 

 

 

Figure 8: Contours of the trace of the conformation tensor, A, around the droplet 

(logarithmic scale) at steady state obtained using the Oldroyd-B model for 0.5c  : (a) 

1.5TDe  , and (b) 3.75TDe  .  

As already discussed, the droplet tends to be stretched along the direction of motion in the 

presence of a viscoelastic surrounding phase. For 1.5TDe   the droplet is nearly spherical, 

while for the largest value of 
TDe , the loss of fore-and-aft symmetry is evident, with the 

droplet displaying a “pointed end” (similar to the gravity-driven motion case discussed in the 
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introduction) generated by the large viscoelastic stresses localised at the rear stagnation point 

(cf. Fig. 8 a,b). The effect of the concentration parameter on these shapes is only minimal 

under those conditions (even though for larger concentrations, slightly larger deformations 

are observed), whereas the effect of the thermal Deborah number is far more pronounced.  

 

Figure 9: (a) Droplet interface in a polar coordinate system attached to the drop at the rear 

stagnation point for different viscoelastic cases obtained using the Oldroyd-B model (c = 0.5 

and 0.89 at DeT = 2.25 and 3.75), in comparison with the Newtonian solution. For 

completeness, the “reference” spherical shape has been also included (continuous line). (b) 

Corresponding Ayy, – Azz and Ayz distribution along the reference interface for the viscoelastic 

simulations for DeT = 3.75 when a cusp is visible in the rear region of the drop. 

To better highlight the effect of elasticity on the droplet shape, it is convenient to plot the 

interface in a polar coordinate system as shown in Fig. 9a (notice that in the current 

representation we are using absolute dimensions). This plot includes the results of our 

computations for the Newtonian case and various viscoelastic cases obtained with the 

Oldroyd-B model for different values of c and DeT. We notice that the simulated Newtonian 

shape (red dashed line) is nearly spherical, but a small deviation (~1%) is seen in the 

numerical curve resulting in a slightly oblate interface for the reasons explained in Appendix 

B. On the other hand, when we are in the presence of viscoelasticity, the droplets become 

prolate and the shapes deviate further from a sphere as DeT is increased. It is worth noticing 

that at the rear stagnation point, the interface assumes different configurations depending on 

the value of the Deborah number: for DeT = 2.25, the droplet is, in fact, still rounded near the 

rear stagnation point (cf. also Fig. 7b), and the corresponding polar plots are qualitatively 

similar to the Newtonian case; while for DeT = 3.75, a cusp is seen in this region (also visible 

in Fig. 7b). We also observe that the polar plots for all cases intersect as a direct consequence 

of the conservation of mass. More interestingly all viscoelastic cases intersect the 

corresponding Newtonian plot in the same region, which we believe is related to the 

distribution of the first normal stress difference (proportional to Ayy – Azz) and viscoelastic 
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shear stresses (proportional to Ayz) at the interface, which are shown in Fig. 9b for DeT = 3.75 

and two different values of c. We notice that regardless the value of the polymer 

concentration, the first normal stress difference shows a relative minimum in the region in 

which the intersection of the polar plots occurs (here the deformation in the z-direction 

prevails, since the value of the difference is negative), while the shear component is roughly 

zero. 

A comparison of the flow patterns for the Newtonian flow field and some representative 

viscoelastic cases obtained at different values of DeT with the Oldroyd-B model are shown in 

Fig. 10. In the absence of elasticity, a large portion of the flow field is occupied by two main 

recirculations passing through the droplet, while a second pair of minor rolls is established 

next to the “cold” wall. When DeT is increased, the latter two recirculations tend to shrink and 

two new rolls become visible at the opposite “hot” wall. Finally, for the largest considered 

DeT, the region covered by the new vortices embraces the whole area adjacent to the “hot” 

wall. 
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Figure 10: Streamlines in a diagonal plane passing through two opposite edges of the domain 

under different conditions as the droplet is moving upward for Newtonian (a) and Oldroyd-B 

matrix fluid with b) DeT = 1.5, c = 0.5, c) DeT = 2.25, c = 0.5 and d) DeT = 3.75, c = 0.5. 

 

As discussed in Sect. 3.2, the Oldroyd-B model imposes severe restriction on the maximum 

allowable value of the Deborah number because of the singular nature of its solution when 

the flow field is extensional. For such reasons, the simulations shown using the Oldroyd-B 

model were limited to a maximum value of the Deborah number of DeT = 3.75. In order to 

study the impact of larger Deborah numbers, we performed a series of additional simulations 

on the basis of the alternative FENE-CR model. This constitutive law bounds the maximum 

elongation of the polymer chain through the extensibility parameter 
2L , thereby allowing the 
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investigation of flows at significantly higher Deborah numbers, when the Oldroyd-B model 

becomes unphysical. 

 

 

Figure 11: Scaled steady state migration velocity obtained with the FENE-CR model as a 

function of 
TDe  for two values of c  and 

2 100L   (a), and as a function of the extensibility 

parameter for 7.5TDe   and 0.5c   (b). The results for the Oldroyd-B case are also shown 

for comparison. 

Fig. 11a shows the scaled migration velocity for the FENE-CR cases (
2 100L   and two 

values of c , 0.5c   and 0.89c  ) as a function of 
TDe . The migration velocity for the 

Oldroyd-B cases (
2L  ) for 3.75TDe  are also shown for comparison and it is clear that 

both models yield similar terminal velocities for 3.75TDe  . In fact, the relative velocity 

difference between these two cases is about 1%, providing evidence that, for relatively small 

Deborah number, the maximum extensibility of the molecules does not affect the migration 

velocity significantly. In addition, in line with what has been observed for the case with the 

Oldroyd-B model at low 
TDe , the steady-state droplet velocity decreases monotonically with 

increasing 
TDe ; moreover, larger values of the polymer concentrations result in smaller 

terminal velocities. The main qualitative dissimilarity in the trends for low 
TDe  and for 

higher 
TDe  is the different concavity of the curve, with the scaled velocity tending to a 

plateau region for high Deborah numbers. 

In order to investigate the influence of the extensibility parameter, we conducted a series of 

simulations for some representative values of 
2L , considering 7.5TDe   and 0.5c  . Figure 

11b shows how the terminal migration velocity decreases as the maximum allowable 

molecular extension is increased, tending to plateau at large values of 
2L . It is also interesting 

to notice that for 7.5TDe  , the velocity reduction relative to the YGB limit (Young et al.,18) 
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is about 15% for 
2 400L  , highlighting the large impact of elasticity on the migration 

velocity for this range of Deborah numbers. 

 

 

Figure 12: Contours of the trace of the conformation tensor, A , at steady state obtained 

using the FENE-CR model for 7.5TDe  , 0.5c   and: (a) 
2 10L  , (b) 

2 100L  , (c) 

2 200L   and (d) 
2 400L  . 

Fig. 12 shows the contours of the trace of the conformation tensor for different values of the 

extensibility parameter, confirming, as expected, that the normal stresses grow as the 

extensibility parameter 
2L  is increased. It is also evident that the region of large extension, 

corresponding to higher values of  tr A , occupies a wider region near the rear of the droplet 

for small values of 
2L  (

2 10L   shown in Fig. 12a), whereas it is very localised for large 

values of 
2L  ( 2 100, 200 and 400L   shown in Fig. 12b-d). These localised stresses will 

arguably have a direct impact on the deformation of the droplet surface and the formation of 

the cusp as shown in Fig. 13, where we plot the droplet interface in a polar coordinate system 

(akin to that used in Fig. 9) to highlight the differences in droplet shape for varying L2. Notice 
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that the shape for the three largest values of 2L  studied is very similar, exhibiting a cusp near 

the rear stagnation point ( / 2  ), while this cusp is absent for 
2 10L  . 

 

 

Figure 13: Droplet interface in a polar coordinate system attached to the drop at the rear 

stagnation point obtained using the FENE-CR model for 7.5TDe  , 0.5c   and: (a) 
2 10L  , 

(b) 
2 100L  , (c) 

2 200L   and (d) 
2 400L  . The spherical reference shape (continuous black 

line) has been added for comparison. 

Additional insights can be gathered from Fig. 14, which shows the droplet shape evolution 

for the cases 0.5c   (a) and 0.89c   (b) for 30TDe   and 
2 100L  . Initially (instant 

1t ), 

the drop does not display a significant deformation, and its shape is a prolate ellipsoid. As 

time passes (instant 
2t ), the viscoelastic stresses, which are mainly developing around the 

rear of the droplet (as already discussed for the cases with the Oldroyd-B model), lead to 

fore-and-aft symmetry breaking (though the pointed end is not yet visible). In particular, at 

this stage the rear of the drop is more flattened for the case 0.89c   than for the case for 

0.5c  , indicating that during the transient the viscoelastic stresses tend to be distributed 

differently depending on the value of the parameter c . At the instant 
3t , for 0.5c   the 

presence of a pointed end can be noticed, which is not yet visible for the higher concentration 

0.89c  . Finally, at the last stage (instant 
4t ) the presence of the pointed end can also be 

clearly noticed for the larger value of c . Interestingly, even though the terminal velocity is 

larger for smaller values of c , between the instants 
1t  and 

2t  the droplet has travelled for a 

longer distance for 0.89c   rather than in the case 0.5c  . Such a difference has to be 

ascribed to the well-known fact that the viscoelastic stresses require a certain amount of time 

to develop. Initially, the contribution to the hydrodynamic resistance is mainly due to the 

presence of viscous stresses. As these stresses are proportional to the solvent viscosity, ,s m , 

and since for 0.89c  , ,s m  is lower than that for 0.5c  , the velocity is initially larger. 
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We conclude that independently of the Deborah number, polymer concentration and 

extensibility parameter, the flow patterns established in the first half of the drop seem to be 

qualitativley similar. On the contrary, in the rear part of the drop, the differences are much 

more pronounced, and might be attributed to memory effects that become more prominent as 

the polymer molecules travel around the drop. 

 

 

Figure 14: Droplet shape temporal evolution obtained using the FENE-CR model for 

30TDe   and 
2 100L  , for 0.5c   (a), and for 0.89c   (b). The time frames are the same 

for the two pictures, evidencing the different droplet transient velocity evolution. 

 

5. Conclusions 

The thermocapillary motion of a Newtonian deformable droplet surrounded by a viscoelastic 

immiscible liquid has been investigated numerically over a relatively wide range of 

conditions. The impact of viscoelasticity on the droplet morphology and migration 

mechanism has been assessed in the framework of two viscoelastic constitutive laws. In 

particular, the classical Oldroyd-B model, used for relatively small values of the thermal 

Deborah number (due to its simplicity and widespread success in the literature), has been 

replaced by the more stable and realistic FENE-CR model (in order to circumvent the typical 
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unphysical singularities that develop for such conditions in the equations governing fluid 

flow when using the Oldroyd-B model) in this way higher values of DeT have been attained, 

up to a maximum value of 30. In addition, two distinct flow conditions have been addressed, 

namely the case of an “infinitely dilute” solution, expressly considered to analyse the 

deformation history of polymer molecules flowing in a Newtonian flow field (i.e., in absence 

of viscoelastic stresses), and the case of a finite small dilution, where the coupling between 

the viscoelastic stresses and the flow field is expected to modify such a process and the extent 

of the deformation of the molecules (as they flow around the drop). 

The numerical experiments show that large viscoelastic stresses tend to be concentrated in 

proximity to the rear stagnation point, where owing to the extensional nature of the flow the 

largest polymer molecules deformation is attained. The value of the parameter c has a strong 

impact on the maximum dumbbell elongation, which decreases for increasing values of the 

concentration. For finite values of c , it has a remarkable influence on the viscoelastic 

stresses and, as a natural consequence, on both the migration velocity (higher droplet 

migration velocities are seen for lower concentrations) and droplet shape. 

In terms of the effect of Deborah number, the migration velocity of the droplet has been 

found to be a monotonic decreasing function of 
TDe  for the range of conditions considered. 

With regard to the droplet morphological evolution, the droplet initially becomes a prolate 

ellipsoid and then a certain degree of loss of fore-and-aft symmetry develops as the Deborah 

number increases. Specifically, for the largest values of the thermal Deborah number, the 

concentration of viscoelastic stresses near the rear stagnation point has been found to be 

responsible for the development of a “pointed tail”. 

Finally, the effect of the extensibility parameter on droplet dynamics has been investigated 

for some selected cases. The results show that the related impact in terms of the steady state 

droplet speed and shape (when compared to the Newtonian case) is more pronounced for 

larger values of 
2L , for which the normal stresses are larger and more localised near the rear 

stagnation point, than for small values of 
2L . For large values of 

2L   2 100L  , the droplet 

shape and speed become nearly independent of the value of 
2L . 
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APPENDIX A: Algorithm description 

The governing equations are solved in a structured Cartesian grid using a Finite Volume 

Method (FVM) relying on their integral formulation over a set of control volumes. All the 

variables are stored at the centre of cells, however the solution methodology employed by 

OpenFOAM involves also their values interpolated at the cell face. In order to avoid 

unphysical oscillation (checkerboard effect) due to the non-staggered collocation of the 

variables, the Rhie-Chow67 interpolation is used.  

The solution of the entire set of equations can be summarised as follows: 

1. Set the boundary and initial conditions; 

2. Solve the re-initialisation equation (11) to calculate the level-set function 
k ; 

3. Solve the diffusion equation (12) to obtain the smoothed level-set function 
,k mol ; 

4. Calculate the interface normal and curvature by means of  Eqs. 13 and14; 

5. Advect the volume fraction, 
k , by means of Eq. 14 using the MULES algorithm 

(Multidimensional Universal Limiter with Explicit Solution) (see, e.g.,Deshpande et 

al.68). Applying Gauss’ theorem, the integration of Eq. (14) leads to 

  
. .

c1 n 0
c i c i

k
k k kdV dS

t


  
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  u u     (22) 

where 
,c i is the volume of the computation cell i and 

,c i  its boundary. Using the 

forward Euler scheme, the discrete counterpart of Eq. (22) can be written as  
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where the flux term 
uF  arises from the integration of  k u , and the term 

cF  is a 

linear combination of the flux associated with the integration of the compressive term 

  c1 0k k   u  and the previous flux 
uF  (see Deshpande et al.68 for more 

details). The coefficient 
M  appearing in the second term on the right-hand-side of 

Eq. (18) is the MULES limiter. The term 
cF  is active only across the interface, where 

1M  , whereas 0M   away from the interface, which makes 
cF  inactive. The 

limiter therefore splits the numerical treatment of the advection term into two parts: 

away from the interface, the second summation appearing in Eq. (23) is set to zero, 

and 
uF  is treated with an upwind scheme, while across the interface, where a better 

accuracy is required, a higher order scheme is employed. This strategy allows to 

reduce the computational effort by activating the more accurate scheme only in the 

region of the interface, where higher accuracy is required. Finally, the compressive 

velocity 
cu  defined previously takes the following form 
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Here, 
fu , 

fS  and 
fn  are the velocity vector interpolated at the cell face, cell face 

vector and cell face normal, respectively. The numeric constant constant, C
, is a 

user defined parameter and usually is set in the range 0 (the compressive velocity is 

inactive) to 2. Larger values of C
 correspond to a sharper interface but higher 

spurious currents. In our simulations we used 2C   for all cases. 

6. Solve the energy Eq. 4 to get the temperature field. This equation was implemented in 

our method in a slightly different form, as discussed in detail by Capobianchi et al.42 

that was proved to be more stable, particularly for problems at large Marangoni 

numbers. Recalling the definition of the thermal diffusivity, th pc   , after some 

manipulations the energy equation can be written as: 

 
1

th th

p

DT
T T T

Dt c
  


               (25) 

The first term on the right hand side is treated implicitly, while the gradients 

appearing on the other two terms are treated explicitly; 

7. Calculate the thermocapillary force,     ,t , ,T k mol k mol kT     f I n n   ; 

8. Solve for the viscoelastic model Eq.  (6); 

9. Calculate of the elastic stress tensor   by means of Eq. (8); 

10. Evaluate the divergence of the total stress tensor:  s    D    . This term is 

treated into the code in the following form 

    s sp p           u u u             (26) 

 where all the terms on the right hand side are treated explicitly, with the exception of 

the first term, which is treated implicitly. Note the addition and subtraction of 

 p u  . The presence of this extra diffusive term serves to stabilise the solution of 

the momentum equation; 

11. Solve the momentum Eq. 15 for a prefixed number of predictor steps to get an initial 

value of the velocity field; 

12. Perform the PISO loop to calculate pressure and the velocity fields until momentum 

and mass conservation are both satisfied; 

13. Check convergence criterion and go back to step 2 or end of calculation. 

 

APPENDIX B: Grid refinement analysis 

The outcomes of a mesh-refinement study are described here. Following common practice in 

the literature (see, e.g., Ling et al.69), in order to save computational time we performed the 
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assessment in 2D under the assumption that, for the considered category of problems, the 

same level of grid refinement in the 3D space will lead to the same level of grid 

independence. In particular, the effect of the grid spacing was assessed for three different 

mesh resolutions, namely 
1M , 

2M  and 
3M  (as indicated in Table II) considering the both the 

Newtonian and viscoelastic configurations ( adopting the Oldroyd-B model considering DeT 

= 3.75,  = 0.5) and setting the maximum Courant number  at 
max 0.02Co  . The time step is 

already very restrictive, but this was deemed necessary to guarantee acceptable droplet 

shapes (as discussed below). The results summarised in Table II show the good convergence 

in terms of migration velocity and the relative difference between the cases 
1M and 

3M for all 

cases considered.  

 

Table II Characteristics of the 2D meshes used for the mesh-independence assessment study. 

The results are shown in terms of velocity at t’=40 for three different cases and the velocity 

difference is evaluated relative to the case 
3M . 

  
1M   

2M  
3M  

N° of cells per droplet diameter 37 56 84 

Grid spacing (z = y) 0.000268 0.000178 0.0001191 

Newtonian     

Velocity [mm/s] 2.296 2.290 2.286 

Relative velocity difference (magnitude) [%]  0.437 0.175  

Odroyd-B ( 3.75TDe  , 0.5c  )    

Velocity [mm/s] 2.146 2.113 2.085 

Relative velocity difference (magnitude) [%]  2.926 1.343  

FENE-CR ( 30TDe  , 0.5c  )    

Velocity [mm/s] 1.699 1.655 1.626 

Relative velocity difference (magnitude) [%]  4.489 1.784  

 

The effect of the time integration step has been investigated considering a Newtonian and 

viscoelastic case adopting mesh 
2M . We executed different simulations by considering four 

different values of the maximum Courant number, namely, 
max 0.1, 0.04, 0.02, 0.01Co   again 

for both a Newtonian-Newtonian system and a viscoelastic-Newtonian configuration using 

the Oldroyd-B constitutive equation to model the continuous phase (considering the same 
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parameters adopted for the previous spatial refinement study). As pointed out previously, we 

observed a dependence of the droplet shape on the time step. In order to quantify the 

magnitude of the deformation relative to the circular shape, we define the droplet aspect ratio, 

dAR , as the ratio between the droplet major and minor axes, 
1D  and 

2D  (unlike the case for 

the shear flow discussed before, where the droplet assumes ellipsoidal shapes, a Newtonian 

droplet migrating in a viscoelastic fluid can be affected by loss of fore-and-aft symmetry, 

therefore we found advisable to describe the droplet deformation adopting different 

quantities), respectively. Table III shows the values of 
dAR  and the terminal droplet velocity 

for the four Courant numbers considered. We notice that the departure from the reference 

circular shape ( 1dAR  ) decreases by decreasing the maximum time step allowable for the 

simulation. In particular, for 
max 0.1Co   the relative percentage deviation from the circular 

shape is 6.4%, while reaches a minimum value of 0.8% for the smallest 
maxCo . Additionally, 

we tested the effect of the grid spacing and noticed that by using a finer mesh, keeping the 

same maximum Courant number, does not have appreciable influence on the droplet shape. 

For completeness, we did the same tests also for the viscoelastic configuration. The results 

indicate a good convergence both in terms of deformation and the terminal velocity, when the 

time step is decreased (cf. Table II). 

 

Table III: Effect of the time integration step on the droplet aspect ratio and terminal velocity. 

We consider a two-dimensional droplet for a Newtonian case and a viscoelastic case using 

the Oldroyd-B model. All the simulations have been carried out by employing mesh 
2M . The 

relative differences have been evaluated considering the results obtained for 
max 0.01Co   as 

a reference. 

 MaxCo 0.1

 

MaxCo 0.04

 

MaxCo 0.02

 

MaxCo 0.01  

Newtonian case     

Droplet aspect ratio Da  0.936 0.973 0.986 0.992 

Relative aspect ratio difference [%] 5.60 1.90 0.60  

Terminal velocity [mm/s] 2.223 2.284 2.288 2.296 

Relative velocity difference [%]  3.18 0.52 0.35  

Viscoelastic case     

Droplet aspect ratio Da 0.967 0.997 1.008* 1.014* 

Relative aspect ratio difference [%] 7.70 4.00 0.60  

Terminal velocity [mm/s] 2.040 2.079 2.113 2.132 

Relative velocity difference [%]  4.30 2.49 0.89  
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*The prolate shape is consistent with the presence of the viscoelastic stresses that act to 

deform the droplet along the direction of the motion. 

 

In light of these results, we performed all subsequent three-dimensional simulations adopting 

a 3D equivalent of mesh 
2M  and setting 

max 0.02Co  , keeping in mind that the shapes we 

show might be affected by an uncertainty of the order of 1% or less. It is worth mentioning 

that the effect of the time step used to integrate Eq. (14) has also been investigated. In 

particular, we considered the configuration mesh 
2M  and 

max 0.02Co   by changing 

systematically the number of sub-cycles (in a number of 2, 5 and 10). No appreciable 

differences in the shape were observed, providing evidence that the droplet shape was 

insensitive to the time step adopted for the integration of Eq. (14). 

 


