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Abstract

Computable general equilibrium (CGE) studies are increasingly in-
terested in informing keys parameters of their models using empirical
data. Energy and environmental CGE findings have been found to be
particularly sensible to changes in the values of the elasticities of sub-
stitution between inputs of production. Although applied econometric
literature provides numerous estimates of substitution elasticities ob-
tained from flexible functional forms cost or production functions, the
number of papers dealing with Constant Elasticities of Substitution
(CES) production functions, generally favoured in a CGE framework,
is still limited. The contribution of this paper is to estimate the sub-
stitution relationship between energy and other inputs for the United
Kingdom using a new approach that allows to understand whether
a nested CES production function is adequate to describe the true
input-output relationship. Moreover, the approach can be used to
obtain an indication on which nested structure should is the most ap-
propriate for the data considered. Findings suggest that the analysed
dataset might support a four-input nested CES production function
where the energy-capital are combined in an inner nest.
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1 Introduction

One of the major criticisms of literature on Computable General Equilibrium

(CGE) is that the key parameters in both production and consumption used

in the models often lack an empirical foundation and are assumed a priori

or borrowed from previous studies. Indeed, the value of these parameters

(mainly elasticities of substitution) can significantly affect the results of the

simulations and, as a consequence, the economic insights that can be derived

from them. In particular, it has been shown how the substitution elasticities

between inputs of production play a crucial role in the energy/environmental

CGE models. For example, Saunders (2000), Allan et al. (2007), and Turner

(2009) demonstrates how energy use and the size of rebound effects in pro-

duction are strongly sensible to variations in their value. To address this

concern, in this paper, we focus on the estimation of the elasticities of sub-

stitution using data on multiple industrial sectors for the United Kingdom

and a production function consisting of four inputs (i.e. capital, labour, en-

ergy, and materials).

Although flexible functional forms (FFF) are sometimes used in CGE

models to describe production functions (Despotakis and Fisher, 1988; Li and

Rose, 1995; Hertel and Mount, 1985), the great majority of the studies which

include at least three factor inputs exploit nested CES functions (see Perroni

and Rutherford, 1995). The choice is due to the convenient characteristics

and greater tractability of these functional forms: they satisfy the regularity

conditions by construction guaranteeing the convergence of the numerical

solution of CGE optimization procedures, they are easy to model because

their substitution elasticities do not vary with input and output quantities,

and yet they allow a certain degree of flexibility as it is possible to specify

different pairwise substitution elasticities at each nest.

The empirical literature on substitution elasticities estimation is exten-

sive, from the early work of Berndt and Wood (1975) to the more recent

Zha and Ding (2014) and Haller and Hyland (2014), and it is usually based

on a FFF cost function, i.e. the Translog, due to the ease with which its

share equations and Allen elasticities can be derived. However, as Translog

functions are characterized by elasticities that vary with inputs and output

quantities, neither the results nor the estimation method can be exploited in

a CGE framework.
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Unfortunately, the number of papers that estimate nested CES functions

to obtain the value of the elasticities of substitution is still very limited. The

earliest are those by Prywes (1986) and Chung (1987), followed by Kemfert

(1998) and, later, by van der Werf (2008), Okagawa and Ban (2008), Bac-

cianti (2013) and Koesler and Schymura (2015). All these studies have the

common intent of informing a CGE model. However, two main problems

have been overlooked so far. Firstly the choice of the functional form should

be empirically justified: the CES offers the convenient aforementioned char-

acteristics to the detriment of the fact that it is built on strong maintained

hypotheses (i.e. homogeneity and separability) which are seldom satisfied by

real datasets. Secondly, the use of a nested CES entails the choice of how

to specify nesting relationships between inputs. Lecca et al. (2011) show

that the choice of a particular form for the nested CES has a remarkable

impact on CGE simulation results. While the first CGE papers empirically

estimating elasticities of substitution imposed the nested structure a priori

(Prywes, 1986; Chang, 1994), Kemfert (1998) tried to discriminate between

nesting options using the R2 statistic and this approach was replicated in all

the subsequent studies. Whereas it seems convenient, this method does not

have a theoretical foundation. The choice of a particular nested structure

should instead reflect the separability relationships between inputs. More-

over, mathematical and econometric literature agree that researchers should

refrain from using R2 statistics to compare non-nested non-linear models.

In this paper, we apply for the first time the new approach proposed in

Chapter ?? because it allows us to cope with the two illustrated issues at the

same time. The first phase of this approach is based on a FFF, i.e. Translog,

whose estimated coefficients can be exploited to test whether the homogeneity

and input (approximate) separability conditions maintained in a nested CES

are satisfied by the dataset. This not only sheds light on whether a CES is the

appropriate functional form to describe the data we analyse, but also testing

for different input separability conditions informs on which nested structure

best represents the underlying true functional form. If we cannot reject the

CES assumptions, in the second phase we perform a graphical analysis of the

non-constant distribution of the Translog elasticities and a formal test to find

confirmation of whether a non-linear nested CES is supported by the data.

Finally, conditional on the result of the previous phases, we proceed with the

non-linear estimation of the recommended nested CES, observe the values of
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its elasticities of substitution and compare them with those obtained from

the Translog estimation.

We base our analysis on the EU-KLEMS database provided by the Eu-

ropean Commission. We build a panel dataset composed of 23 industrial

sectors followed between 1970 and 2005. As the time component is more

developed than the number of cross-sectional observations, we correct for

multiple econometric issues that are common to this panel structure (i.e.

stationarity, serial correlation and contemporaneous correlation).

Results from the first phase indicate that a CES might not be appropri-

ate to describe the dataset under analysis. As discussed Lagomarsino (2017),

this could be due to a large model bias resulting from the estimation of a CES

using a log-linear function. We proceed with analysis with the aim of assess-

ing which nested CES would best approximate our dataset and of estimating

the relative constant elasticities. We find that the form ((E,K), L,M) is the

most appropriate to describe the UK production technology with estimated

inner outer elasticities of 0.88 and 0.47 respectively.

The structure of the paper is the following. In Section 2, we provide

a brief review of the existing literature. Section 3, describes the selected

data. In Section 4, we present the estimation procedure with the relative

potential econometric issues. In Section 5, we show the results and report

the estimated Translog elasticities of substitution. In Section 6, we test

for the CES functional form and the in following Section 7 we estimate it.

Finally, Section 8 concludes.

2 Literature review

The substitution relationship between inputs of production has been largely

investigated from the seminal paper of Berndt and Wood (1975). While

the initial interest was connected with the sky-rocketing energy prices which

followed the oil crisis in the 1973 (e.g. Berndt and Wood (1975), Griffin and

Gregory (1976), Pindyck (1979)), the following studies have been justified

by issues like the investment in less energy-intensive physical capital and the

depletion of fossil fuels and gas reserves (e.g. Ozatalay et al. (1979), Kim and

Heo (2013), Haller and Hyland (2014)) or, more recently, by the increasing

energy consumption in developing countries (e.g. Zha and Ding (2014), Zha

and Zhou (2014)). The common aim has been to assess whether it is possible
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to substitute energy with other inputs and mitigate the effects of the rise in

energy costs on the economic activity. These studies were generally exploiting

a Translog functional form for its generality and the fact that it allows a very

straightforward derivation of Allen elasticity of substitution.

More recently, CGE researchers contributed to these literature with the

aim of empirically informing the elasticities of substitution for the production

side of their models. Indeed, the magnitude of the elasticities have been

proven to have an impact on simulation results especially for what concerns

analyses on energy shocks and rebound effects. The first paper with this

purpose was Kemfert’s (1998) for Germany whose work was then further

developed by van der Werf (2008) who considered twelve European countries

and the U.S. and proposed a new method to estimate the nested CES using

cost shares. His work was then followed by those of Okagawa and Ban (2008),

Koesler and Schymura (2015) and Baccianti (2013). The common trait of

these studies is the use of a CES functional form to describe production.

Indeed, although flexible functional forms could be used in a CGE framework,

the fact that they are not globally regular and that their elasticities vary

with inputs and output make them less appealing from a computational

standpoint.

Despite the considerable existing literature and the growing interest, find-

ings are mixed even among studies which use the same dataset and functional

form, especially for what concerns the energy and capital relationship.1 Apos-

tolakis (1990), Thompson and Taylor (1995), and Koetse et al. (2008) for-

mulate different hypotheses to justify the discording results. In particular,

Apostolakis (1990) proposes as an explanation the use of different data struc-

tures, time-series and cross-section, which lead respectively to long or short

period elasticity estimates. Thompson and Taylor (1995) try to demonstrate

that results converge using the same type of elasticity of substitution (i.e.

the Morishima elasticity). Koetse et al. (2008), instead, use a meta-analysis

conclude that the reasons for diverging results can be found in the different

economic context, econometric procedures, and data characteristics. Chap-

ter ?? builds on Koetse et al. (2008) and shows the main differences between

using a CES and a Translog production function and ?? describes a proce-

dure to discriminate between them and to understand which nested structure

1See the famous debate between Berndt and Wood (1975) and Griffin and Gregory
(1976).
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provides the best representation of the unknown input-output relationship.

This helps the reconciliation between the two strands of literature, the pure

econometric and the CGE one.

3 Description of the data

A common problem to most of previous literature on the estimation of sub-

stitution elasticities has been the lack of a reliable source of data. Often,

authors were compelled to create their own input prices and volumes indices

using national sources and this was giving rise to problems of measurement

errors and comparability of results. For many years the majority of applied

studies focused on a single country and sector (generally the entire manu-

facturing sector) with a very small sample size due to the short time-series

availability.

Although gradually single countries became more efficient in collecting

data on production allowing researchers to develop analyses based on a big-

ger sample size, the first harmonised database became available only in 2008,

when the EU-KLEMS2 database was released by the European Commis-

sion. This was then followed, in 2012, by the World Input-Output Database

(WIOD)3. The EU-KLEMS provides data on productivity at industrial level

for the members of the European Union from 1970 onwards (the length of the

time-series differs between states), harmonising data on capital, labour and

intermediate inputs from official national sources and input-output tables.

The WIOD provides environmental and socio-economic data at industry-

level for 27 European countries and 13 other major countries from 1995 to

2009.

As our analysis is based on a production function, we are interested in

the quantities of the four inputs and output for the UK. We opt for the

EU-KLEMS database as it provides longer time-series and also produces

information on volumes of the materials input which is missing in the WIOD

database. In particular, we use data from the March 2008 release as they

are the most recent ones that include volume indices for the disaggregated

2The data series are also publicly available from the EU-KLEMS website
(http://www.euklems.net).

3The data series are also publicly available from the WIOD website
(http://www.wiod.org).
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intermediate inputs, i.e. energy and materials.

Our dataset is composed of 23 industrial sectors listed according NACE

1 industry classification (see Table A1 in the Appendix) followed for 36 years

(1970-2005) for a total of 828 observations. We use Gross Output volume

index as our dependent variable as it measures GDP plus intermediate inputs.

Capital quantity is represented by the capital services volumes index which is

a quality adjusted measure based on the calculation of a capital stock (using

the Perpetual Inventory Method) that takes into account the age-efficiency

of different asset types. For labour quantity we use labour services volumes

index which is also a quality adjusted measure where the number of hours

worked are weighted according to skill types. For the quantities of energy and

materials, EU-KLEMS provides two volumes indices. Unfortunately, these

are not ideal measurements as they are calculated applying shares from the

Use tables to the total intermediate input from national account series.4 All

indices base year is 1995.

4 Estimation procedure

4.1 Analysis of the time-series

Given the finite number of panels and the long time-series component, we

begin our econometric analysis checking for stationarity and cointegration

of the inputs and output series.5 Given the panel nature of the data, we

use panel unit-root tests to investigate the order of integration of the series.

If we find evidence of non-stationarity, the standard regression techniques

are biased and we need to find a stationary combination of the series. In

recent years, numerous panel unit-root tests have been proposed which are

based on the same principles as the well-known Augmented Dickey-Fuller

(ADF) or Phillips-Perron (PP) tests but take into account the unobserved

heterogeneity component typical of panel data models. In particular, we

4While Gross Output and real fixed capital stock match across the different databases
(EU-KLEMS, WIOD and OECD), data on labour and energy are very different both in
values and trends.

5In this paper, we have used Stata 13 by StataCorp (2013) and the following user
written programs: Baum et al. (2002), Kleibergen and Schaffer (2007) (see also Hoyos
and Sarafidis, 2006a), Hoyos and Sarafidis (2006b), Schaffer (2005), Schaffer and Stillman
(2006), Hoechle (2006) (see also Hoechle, 2007b), Baum (2000a), Baum (2000b).
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consider the Fisher type test by Maddala and Wu (1999) that is feasible with

a fixed number of panels N and when the time periods T tend to infinity.

The Fisher type test performs separate unit-root tests on each panel and then

combines the relative p-values to obtain an overall test statistic. The basic

autoregressive model on which the test is based can be expressed formally

as:

yit = ρiyi,t−1 + z′itγi + εit (1)

where yit is the series under analysis, i = 1, ..., N indexes panels and t =

1, ..., T indexes time. εit is an idiosyncratic stationary error and zit represents

panel specific means and a time trend (i.e. the fixed effects). We test the null

thatH0 : ρi = 1 against the alternativeHa : ρi < 1, e.g. we test that all panels

contain a unit-root against the null that at least one panel is stationary.

At this point we have three alternative outcomes: i) the K, L, E, M, Y

series are stationary, ii) the K, L, E, M, Y series are trend-stationary, iii)

the K, L, E, M, Y series are integrated. In the first case, we can proceed

with the formulation of the model, in the second case we can both de-trend

the series or include a time trend in the model, in the third case we perform

a panel cointegration test such as the one described in Pedroni (2000). If

we find evidence of cointegration, we need to use the Fully Modified OLS

(FMOLS) estimator, otherwise we need to differentiate the series according

to their degree of integration.

4.2 Model specification and panel diagnostics

We begin our analysis assuming a Translog structure for the production func-

tion. All previous studies based on a Translog opted for the dual cost function

as it allows to use a convenient “standard” procedure based on input demand

functions to calculate the Allen elasticities of substitution. However, we base

our analysis on the production function for two reasons. First, we do not

need to impose assumptions on input prices (i.e. homogeneity) and on com-

petitive markets. Second, we consider fewer data series and this reduces the

risk of measurement errors.
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Our model is described by the following equation:

ln(Qit) = a0 + a1ln(Eit) + a2ln(Kit) + a3ln(Lit) + a4ln(Mit)

+ 0.5a11ln
2(Eit) + 0.5a22ln

2(Kit)

+ 0.5a33ln
2(Lit)

2 + 0.5a44ln
2(Mit)

+ a12ln(Eit)ln(Kit) + a13ln(Eit)ln(Lit) + a14ln(Eit)ln(Mit)

+ a23ln(Kit)ln(Lit) + a24ln(Kit)ln(Mit) + a34ln(Lit)ln(Mit)

+ αi + εit

(2)

where y denotes output, αi are sector fixed effects and εit is the error term.

In case of trend-stationary series, we add a time-trend t to equation (2).

Our estimation strategy is carried out in three steps. Given the panel

structure of our dataset, we first need to assess if an error component struc-

ture is appropriate and, in case, which estimator is the most efficient. We

initially test whether αi are jointly different from zero, e.g. we test for a

pooled OLS estimator. If we find an indication that industry unobserved

heterogeneity should be included in the model, we perform the Hausman-like

overidentifying restriction test on the orthogonality conditions proposed by

Arellano to choose between a fixed-effect and a random-effect estimator.

In the second step, we test for heteroskedasticity and serial correlation

within panels. In the first case, we use a modified Wald test statistic for

group-wise heteroskedasticity as proposed by Greene (2008) which is dis-

tributed as a χ2 with N degrees of freedom under the null of no heteroskedas-

ticity. If we reject the null, we impose White-Huber robust standard errors

and, because of the panel structure, we also relax the assumption of indepen-

dently distributed residuals using clustered standard errors. To test for serial

correlation, we use a test for panel data proposed by Wooldridge (2002). If

we reject the null of no serial correlation, we use Newey-West standard errors

since otherwise our t-tests and F -test would be biased.

Finally, as our panel is characterized by a large T and a small N , we to

test for cross-sectional dependence, i.e. contemporaneous correlation. Indeed,

we suspect a certain degree correlation across industrial sectors. We use the

Breusch-Pagan Lagrange Multiplier test of independence whose statistic un-

der the null hypothesis is asymptotically distributed as a χ2 with N(N−1)/2

degrees of freedom. If we reject the null, we find that panels are not inde-

pendent from one another. To confirm this result, we also use the Pasaran
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Cross-Sectional Dependence test which under the null is distributed as a

standardised normal distribution. The presence of contemporaneous correla-

tion between panels leads to efficiency loss for least squares estimation and

to invalid statistical inference. Thus, in this case, we can use Driscoll and

Kraay (1998) approach that adjusts the standard errors estimates for various

forms of cross-sectional and temporal dependence.

5 Estimation results

5.1 Diagnostic tests results and Translog estimation

As described above, we begin our econometric analysis looking at the five

time-series E, K, L, M and Y. In particular, we want to understand whether

the series are stationary over time. We run five separate Fisher type unit-

root tests based on the augmented Dickey-Fuller test. We consider a number

of lags equal to 1, however results are invariant to other lags specifications.

Table 1 presents four sets of results for each series: the inverse χ2, the inverse

normal transformations, the relative statistics, and p-values with and without

a drift. According to Choi (2001), the inverse normal statistic should be

preferred because is the one characterized by the best trade-off between size

and power. However, when the number of panels is finite, also the inverse

χ2 test can provide a reliable indication on the presence of unit-roots. We

can see that the results of both tests when we do not include a drift in the

test reject the null hypothesis for all the series apart from the energy one, E.

However, when we include a drift (e.g. a linear trend), we reject the null that

all panels contain a unit-root in all cases. Hence, we can conclude that the

series are trend-stationary and we account for this including a linear time

trend in our estimation.

Now, we present the results of the diagnostic tests described in the pre-

vious section. Firstly, we test between pooled, random-effect and fixed-effect

estimators. We strongly reject the pooled estimator and the results of the

Hausman test on the additional orthogonality restrictions imposed by the

random effect estimator indicate that we reject the null with a χ2 statistics

of 287.4 and p-value of 0.

Secondly, we test for heteroskedasticity and serial correlation of the id-

iosyncratic error. In the first case, we find a χ2 statistic of 969.6 with a
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No Drift Drift
Series Transformation Statistic P-value Statistic P-value

E
Inv. χ2 72.2997 0.0079 164.1673 0.0000
Inv. normal -1.8503 0.0321 -8.4278 0.0000

K
Inv. χ2 47.6096 0.4070 96.3217 0.0000
Inv. normal 4.5852 1.0000 -2.0317 0.0211

L
Inv. χ2 38.1780 0.7871 107.5631 0.0000
Inv. normal 2.3134 0.9897 -5.0401 0.0000

M
Inv. χ2 63.8453 0.0418 142.0422 0.0000
Inv. normal 0.1367 0.5544 -6.5974 0.0000

y
Inv. χ2 58.2289 0.1066 135.6058 0.0000
Inv. normal 0.5050 0.6932 -6.3568 0.0000

Table 1: Unit-root test results with and without drift

p-value of 0, thus we reject the null of homoskedasticity. In the second case,

we strongly reject the null of no first order autocorrelation with a F-statistic

of 137.4 and a p-value of 0.

Lastly, we test for simultaneous correlation of the error terms first with

Breusch-Pagan LM test and then with Pesaran test: in both cases we strongly

reject cross-sectional independence (with χ2 statistics of 1932.1 and 8.28

respectively and with p-values of 0 in both cases).

Given our findings on heteroskedasticity, serial correlation and cross-

sectional correlation, we perform an additional Hausman test between pooled

and fixed effect which accounts for the fact that ai and εit are not iid but are

affected by different forms of temporal and spacial dependence. We follow

Hoechle (2007a) and find confirmation that we need to reject a pooled esti-

mator. This is in line with our previous finding, i.e. the fixed effect estimator

is the one that should be preferred given the data under analysis.

Table 2 reports the coefficients and standard errors from four within

regressions. In particular, the first column shows fixed effect results with

OLS standard error, the second column with standard error robust to het-

eroskedasticity, the third column with standard errors robust to heteroskedas-

ticity and serial correlation and the last column with standard errors robust

to heteroskedasticity, serial correlation, and cross-sectional correlation.

Given the high correlation between regressors, we suspect a high degree

of multicollinearity that is reflected in the high R2 (0.837) and the not highly
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Variable FE White Newey Driscoll
ln(E) -0.1900 -0.1900 -0.1900 -0.1900*

(0.1996) (0.4657) (0.2942) (0.1979)
ln(K) -0.5788 -0.5788 -0.5788 -0.5788

(0.3239) (0.9754) (0.4833) (0.2456)
ln(L) 0.2342 0.2342 0.2342 0.2342

(0.3212) (0.8366) (0.4727) (0.3629)
ln(M) -0.7846* -0.7846 -0.7846 -0.7846*

(0.3350) (0.6922) (0.4862) (0.3816)
ln(E)2 0.0010 0.0010 0.0010 0.0010

(0.0096) (0.0410) (0.0138) (0.0132)
ln(K)2 0.2028*** 0.2028*** 0.2028*** 0.2028***

(0.0343) (0.0968) (0.0510) (0.0300)
ln(L)2 -0.0161 -0.0161 -0.0161 -0.0161

(0.0224) (0.0778) (0.0336) (0.0325)
ln(M)2 -0.1156*** -0.1156 -0.1156** -0.1156*

(0.0239) (0.0762) (0.0352) (0.0475)
ln(E)ln(K) -0.2356*** -0.2356 -0.2356*** -0.2356***

(0.0373) (0.1280) (0.0543) (0.0434)
ln(E)ln(L) 0.1053*** 0.1053 0.1053* 0.1053**

(0.0298) (0.0937) (0.0436) (0.0394)
ln(E)ln(M) 0.2070*** 0.2070 0.2070*** 0.2070***

(0.0262) (0.1409) (0.0379) (0.0587)
ln(K)ln(L) -0.1574*** -0.1574 -0.1574** -0.1574***

(0.0361) (0.0934) (0.0550) (0.0424)
ln(K)ln(M) 0.2025*** 0.2025 0.2025** 0.2025***

(0.0441) (0.0848) (0.0651) (0.0613)
ln(L)ln(M) 0.0580 0.0580 0.0580 0.0580

(0.0373) (0.1121) (0.0553) (0.0592)
t -0.0014 -0.0014 -0.0014 -0.0014

(0.0008) (0.0026) (0.0012) (0.0016)
constant 5.3653*** 5.3653* 5.3653***

(1.1795) (2.4045) (1.2525)

* indicates a level of significance of 10%, ** indicates a level of signif-
icance of 5%, *** indicates a level of significance of 1%,

Table 2: Fixed effect estimation with different standard errors (in parenthe-
sis)
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significant coefficients.6 However, the coefficients by themselves are generally

meaningless, thus, we are not interested in their single levels of significance.

We are more interested in combinations of them. For example, we can look

at the marginal product of the four inputs for the average observation of each

industrial sector. These are reported in Table 3 together with the relative t-

statistics. We can see that they, as the theory predicts, are all between 0 and

1 and given the critical value of t.025,35 = 2.03, most of the marginal products

are highly significant with few exceptions for the marginal products of labour

(MPL). From Table 3 we can see that the marginal product of energy (MPE)

and labour do not vary much across the different sectors as opposed to the

marginal product of capital (MPK) and materials (MPM). MPL are generally

the smallest and MPK the largest. We can also observe that the returns on

capital are the largest in the Wood and Cork and in the Electricity sectors

and the MPE are bigger in the Mining and Quarrying and Electricity, Gas

and Water supply sectors.

Furthermore, we can look at the level of returns to scale of our production

function. From the estimated coefficients we obtain a coefficient of returns

to scale of 0.542, statistically significant at a 5% level. This indicates that

the production function for the UK is characterised by decreasing returns.

As the last step of our estimation results, we have to check whether the

Translog is well-behaved, e.g. if output is monotonically increasing and the

isoquants are convex. The Translog does not satisfy these conditions globally

so we need to test our fitted Translog for monotonicity and convexity at each

observation. Monotonicity is guaranteed by positive fitted marginal prod-

ucts. Although many studies on the estimation of elasticities substitution

with a Translog function assumed well-behaved production functions with-

out testing for it (Ozatalay et al., 1979; Norsworthy and Malmquist, 1983;

Moghimzadeh and Kymn, 1986; Garofalo and Malhotra, 1988; Hisnanick and

Kyer, 1995; Christopoulos, 2000; Khiabani and Hasani, 2010; Kim and Heo,

2013), others have verified if their estimated Translog satisfied the regularity

conditions. Among these, few found they were satisfied on all the domain

(Berndt and Wood, 1975; Griffin and Gregory, 1976; Fuss, 1977; Turnovsky

et al., 1982; Burki and Khan, 2004; Roy et al., 2006) but in numerous other

6To overcome this problem we could have used a Seemingly Unrelated Equations es-
timation using input cost shares. However, in that case, we cannot correct the variance-
covariance matrix for the numerous econometric problems we identified with the diagnostic
tests.
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cases monotonicity or the curvature conditions were rejected for at least some

of the observations in the dataset. The consequent responses have been man-

ifold: exclude all the observations where the monotonicity condition were not

satisfied but keep those where isoquants convexity was rejected (Medina and

Vega-Cervera, 2001), remove the sectors/countries that were more affected by

the rejection (Field and Grebenstein, 1980; Medina and Vega-Cervera, 2001),

proceed with the estimation ignoring the rejection (Dargay, 1983; Hesse and

Tarkka, 1986; Nguyen and Streitwieser, 1999).

When we test for monotonicity, we find that this property is violated

for 107 observations. Then we test for convexity of the isoquants checking

whether the Bordered Hessian matrix is negative definite, i.e. the successive

principal minors alternate in sign, and find that the condition is not satisfied

for the same 107 observations and for other 140. For the remaining of this

paper, we drop the 107 observations violating monotonicity, but we keep the

additional 140 that only violate convexity of isoquants, since results are not

significantly affected by their inclusions.

5.2 Estimated point elasticities

In this section, we calculate the elasticities of substitution between the four

factors of production. When the production function is composed by more

than two inputs, a number of different definitions of elasticity of substitu-

tion have been suggested in the literature. The three most common are

the Hicks (or direct) elasticity of substitution (HES), the Allen elasticity

of substitution (AES) and the Morishima elasticity of substitution (MES).

They differ in economic interpretation and implications. The HES are the

direct generalization of the Hicks elasticities to an n-input function, when

computed between two inputs the remaining input quantities are hold con-

stant. For this reason they are usually seen as short-term elasticities. AES

are the most widely estimated elasticities and are characterized by the fact

that they span from negative to positive values, indicating complementarity

and substitutability respectively. Finally, MES are the most recent defini-

tion of elasticity of substitution and Blackorby and Russell (1989) argued

that they are the only ones which are able to truly represents the nature of

the relationship between inputs. They have the particular feature of being

asymmetric.
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To simplify comparisons with other studies, we separately compute the

three forms of elasticities from the estimated Translog coefficients. Since the

Translog production function is characterized by elasticities of substitution

that vary with input and output, we are going to find a distribution for each

of the six elasticities. In Table 4 we report the median HES, AES, and MES.

HES AES MES
EK 1.106 2.519 1.377
EL 0.556 -4.376 -0.4681
KL 0.293 -0.544 -0.149
EM 1.915 -2.998 -1.325
KM 0.083 -0.039 -0.308
LM 0.188 2.297 0.433

Table 4: Median values of the HES, AES, MES

We can observe how all three elasticities support energy and capital sub-

stitutability. Another interesting result is that we find evidence of capital

and labour substitutability. It also emerges that for E-M and L-M we find

contradictory results: in the first case, HES indicate that the two inputs are

substitutes but in terms of AES and MES they are complements; in the sec-

ond case HES indicates that the two inputs are complements and AES and

MES that they are substitutes.

In Table 5, 6, and 7 we present mean estimated values respectively of the

HES, AES, and MES for each industrial sector. We can see that, a part from

the K-M elasticities, the sign of the substitution relationships between inputs

remains the same across sectors and the magnitude does not vary extensively.

6 Test for CES

In this section we check whether the data we analyse support a CES produc-

tion function. As discussed in Lagomarsino (2017), in a first phase we test

jointly for homogeneity and approximate separability of inputs using Wald

tests. If these conditions are not rejected, in a second phase we use a graph-

ical analysis and model selection criteria to confirm whether a nested CES is

appropriate to describe the true underlying input-output relationship.
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EK EL KL EM KL KM

Agric., Hunting, Forestry and Fish. 2.913 -3.942 -0.528 -2.637 0.113 1.474
Mining and Quarrying 1.795 -4.340 -0.572 -2.307 0.183 1.039
Food, Beverages and Tobacco 3.174 -4.110 -0.588 -2.887 0.019 1.672
Textiles, Leather and Footwear 2.620 -4.529 -0.535 -2.988 0.054 1.625
Wood and of Wood and Cork 2.467 -4.762 -0.565 -3.831 -0.180 2.792
Pulp, Paper, Printing and Publ. 2.309 -3.712 -0.595 -2.580 -0.080 2.402
Chemical, Rubber, Plastics and Fuel 2.105 -4.066 -0.473 -2.619 0.145 2.303
Other Non-Metallic Mineral 2.100 -4.502 -0.595 -3.163 -0.046 2.198
Basic Metals and Fabricated Metal 2.227 -4.671 -0.518 -3.248 0.045 2.324
Machinery, Nec 2.685 -4.428 -0.582 -2.631 0.004 1.745
Electrical and Optical Equipment 2.573 -3.702 -0.959 -1.741 0.228 1.419
Transport Equipment 2.118 -3.787 -0.631 -1.856 0.326 1.076
Manufacturing Nec, Recycling 3.424 -4.602 -0.688 -3.397 -0.123 2.217
Electricity, Gas and Water Supply 2.838 -4.401 -0.398 -3.571 -0.147 2.065
Construction 2.584 -4.353 -0.664 -2.928 -0.078 2.391
Wholesale and Retail Trade 2.712 -4.153 -0.641 -2.865 -0.100 1.937
Hotels and Restaurants 1.933 -3.389 -0.439 -2.139 0.096 2.777
Transport and Storage 2.408 -3.683 -0.710 -2.263 -0.050 2.380
Post and Telecommunications 2.558 -3.721 -0.601 -2.077 -0.035 1.905
Public Adm. and Defence 3.123 -3.435 -0.466 -2.481 -0.048 1.334
Education 2.614 -4.607 -0.413 -3.769 -0.541 2.707
Health and Social Work 2.467 -3.253 -0.369 -3.035 -0.073 2.478
Other Community Services 2.411 -3.719 -0.525 -3.637 -0.339 2.771

Table 5: Mean estimated Allen elasticities of substitution by sector

6.1 Formal tests

We begin the first phase with a Wald test on homogeneity and show results

in Table 8. We can see that homogeneity is rejected at 10% level and this is

mostly due to the fact that the homogeneity restriction regarding the capital

input is strongly rejected. This result is thus indicating that the produc-

tion function representing the analysed dataset is not consistent with a CES.

Nevertheless, we could argue that a CES might be the appropriate model to

describe input-output relationship but that the bias resulting from the esti-

mation of a Translog is large and it is affecting test results. Furthermore, the

CGE literature would still want to find the constant elasticity/ies that best

describes the degree of substitution between inputs for the chosen dataset.

In the following, we illustrate further steps that one can take to find those

elasticities.
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EK EL KL EM KL KM

Agric., Hunting, Forestry and Fish. 1.175 1.001 0.328 3.152 0.918 0.335
Mining and Quarrying 0.677 0.445 -0.037 0.998 0.819 0.182
Food, Beverages and Tobacco 1.127 1.194 0.367 2.725 0.925 0.360
Textiles, Leather and Footwear 1.129 0.836 0.348 1.758 0.901 0.328
Wood and of Wood and Cork 1.088 0.835 0.372 1.824 0.771 0.376
Pulp, Paper, Printing and Publ. 1.092 0.251 0.183 1.831 0.889 0.235
Chemical, Rubber, Plastics and Fuel 1.092 0.288 0.024 1.927 0.860 0.345
Other Non-Metallic Mineral 1.095 0.358 0.226 1.996 0.913 0.316
Basic Metals and Fabricated Metal 1.100 0.324 0.187 1.955 0.865 0.256
Machinery, Nec 1.112 0.520 0.230 1.907 0.929 0.302
Electrical and Optical Equipment 1.134 0.217 0.063 2.431 1.014 0.367
Transport Equipment 1.136 0.520 -0.104 2.142 1.162 0.351
Manufacturing Nec, Recycling 1.120 0.962 0.495 2.283 0.791 0.329
Electricity, Gas and Water Supply 1.095 1.481 0.650 1.327 0.776 0.396
Construction 1.092 0.451 0.241 1.876 0.870 0.294
Wholesale and Retail Trade 1.096 0.522 0.282 2.092 0.761 0.306
Hotels and Restaurants 1.141 0.105 0.091 1.612 0.782 0.170
Transport and Storage 1.103 0.089 0.106 1.787 1.003 0.118
Post and Telecommunications 1.108 0.132 0.084 1.899 0.793 0.170
Public Adm. and Defence 1.155 0.828 0.478 2.108 0.934 0.390
Education 1.098 0.822 0.393 1.740 0.730 0.301
Health and Social Work 1.134 0.821 0.388 1.478 0.748 0.358
Other Community Services 1.107 0.911 0.393 1.489 0.722 0.212

Table 6: Mean estimated Hicks elasticities of substitution by sector

As separability restrictions are different for alternative nested structures,

a Wald test on approximate separability allows to discriminate between them.

With four inputs, the number of possible nested structures is very large.

Especially if we consider nested CES functions composed by three levels of

production, e.g. (((K,L), E),M). In the following of this section we only

present results for the structures that we consider sensible from an economic

point of view, i.e. those structures that make economic sense.7

Table 9 presents the Wald test results for the joint homogeneity and ap-

proximate separability assumptions (which we expect to reject) and a test on

approximate separability alone. Results indicate that among the structures

7For example, we do not include the ((E,L), (K,M)) structure as it would suggest that
at a lower level of production energy and labour and capital and materials are combined
to form intermediate goods which is highly unrealistic.
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EK EL KL EM KL KM

Agric., Hunting, Forestry and Fish. 1.447 -0.444 -0.098 -1.191 -0.092 0.456
Mining and Quarrying 1.247 -0.036 -0.232 -1.319 -0.302 0.420
Food, Beverages and Tobacco 1.450 -0.482 -0.137 -1.268 -0.222 0.446
Textiles, Leather and Footwear 1.400 -0.578 -0.139 -1.333 -0.113 0.444
Wood and of Wood and Cork 1.391 -0.740 -0.261 -1.461 -0.425 0.422
Pulp, Paper, Printing and Publ. 1.324 -0.316 -0.139 -1.364 -0.404 0.465
Chemical, Rubber, Plastics and Fuel 1.288 -0.047 -0.019 -1.334 -0.310 0.542
Other Non-Metallic Mineral 1.269 -0.468 -0.184 -1.415 -0.343 0.468
Basic Metals and Fabricated Metal 1.302 -0.367 -0.125 -1.418 -0.287 0.497
Machinery, Nec 1.407 -0.312 -0.105 -1.411 -0.240 0.436
Electrical and Optical Equipment 1.485 0.252 -0.032 -1.309 -0.115 0.515
Transport Equipment 1.265 0.129 -0.100 -1.189 0.106 0.456
Manufacturing Nec, Recycling 1.497 -0.599 -0.212 -1.370 -0.244 0.422
Electricity, Gas and Water Supply 1.476 -0.832 -0.226 -1.199 -0.247 0.370
Construction 1.376 -0.444 -0.171 -1.427 -0.408 0.496
Wholesale and Retail Trade 1.367 -0.429 -0.166 -1.312 -0.343 0.418
Hotels and Restaurants 1.293 -0.174 -0.071 -1.346 -0.375 0.448
Transport and Storage 1.338 -0.110 -0.043 -1.423 -0.372 0.535
Post and Telecommunications 1.356 -0.124 -0.040 -1.203 -0.318 0.401
Public Adm. and Defence 1.431 -0.578 -0.139 -1.030 -0.098 0.402
Education 1.397 -0.776 -0.200 -1.279 -0.313 0.396
Health and Social Work 1.384 -0.726 -0.212 -1.121 -0.307 0.390
Other Community Services 1.361 -0.681 -0.240 -1.393 -0.375 0.339

Table 7: Mean estimated Morishima elasticities of substitution by sector

Null hypothesis Test Statistic p-value
(a11 + a12 + a13 + a14 = 0) F(1,35) 2.86 0.10
(a22 + a12 + a23 + a24 = 0) F(1,35) 13.18 0.00
(a33 + a13 + a23 + a34 = 0) F(1,35) 0.10 0.76
(a44 + a14 + a24 + a34 = 0) F(1,35) 6.00 0.02
(All the above) F(4,35) 16.01 0.00

Table 8: Wald tests on homogeneity for different nested structures

for which we fail to reject the null of separability, the two-level ((E,K), L,M)

nested CES should be preferred given its smaller χ2 statistic and considerably

larger p-value.
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Nested str. Test (H&S) Stat. p-value Test (S) Stat. p-value

(K,L,E,M) F(8,35) 371.76 0.00 F(4,35) 7.59 0.11
((K,L,M),M) F(8,35) 841.08 0.00 F(4,35) 9.90 0.04
(K,L),(E,M) F(7,35) 408.41 0.00 F(3,35) 3.54 0.31
((K,L),E,M) F(8,35) 198.44 0.00 F(4,35) 8.30 0.08
((E,K),L,M) F(8,35) 197.67 0.00 F(4,35) 2.71 0.61
(((K,L),E),M) F(7,35) 204.03 0.00 F(3,35) 6.69 0.08
(((K,L),M),E) F(7,35) 282.58 0.00 F(3,35) 8.61 0.03
(((E,K),L),M) F(7,35) 237.40 0.00 F(3,35) 6.48 0.09

Table 9: Wald tests on homogeneity and separability (H&S) and separability
alone (S) for different nested structures

6.2 Graphical analysis

Graphical analysis of Translog point elasticities could also provide an indica-

tion on how far elasticities are from being constant. This analysis is based on

the distribution of the Translog estimated substitution elasticities and on the

prediction intervals constructed around each of them. They show the range

inside which an estimated elasticities obtained from new values of inputs and

output quantities for a certain sector will fall 95% of times.

An important evidence in favour of the CES functional form can be ob-

tained looking at the distribution of the estimated elasticities. If the dis-

tribution peaks around few values and is not uniformly distributed, i.e. the

elasticity values remain quite stable across the sample, a constant elasticity

is supported by the data and, hence, a CES specification. Also, the size of

the prediction intervals helps to gauge how much the elasticities vary: if the

interval is narrow, a new point elasticity is predicted to fall in that particular

precise range.

In the following of this section, we show three graphs for each elasticity:

the first graph represents the lower and upper bounds of the interval for each

point elasticity, the second shows the elasticities distributions and the third

combines the two previous graphs in a surface graph. In this analysis we

consider only the HES as they are the ones that are constant in a nested

CES function. We control for outliers excluding the highest and lowest 10%

of the estimated elasticities.

What emerges from the graphs is that the range of estimated point elas-

ticities is the smallest that is indeed the capital-energy one: estimated elas-
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ticities vary from approximately 1.08 and 1.5 but from Figure 1 we can see

that most of the values lie between 1.08 and 1.3. Moreover, the prediction

intervals around those values are quite narrow (the value of the lower and

upper bounds of the interval in the interval 1.08 and 1.15 are approximately

0 and 2 respectively) indicating that the point elasticity variation is limited.

The surface graph confirms this intuition showing a narrow peak around

1.1. The remaining elasticities show larger variation in the point elasticities

distribution. Prediction intervals are in general quite narrow though, indi-

cating that each point elasticities is well predicted. We can conclude that

the graphical analysis is in line with the recommendation obtained from the

formal nesting tests, i.e. the E-K elasticity is the “most constant”.

Figure 1: Translog estimated E-K Hicks elasticities graphical analysis

Figure 2: Translog estimated E-L Hicks elasticities graphical analysis

7 CES estimation

In this section we follow the recommendation obtained from the Wald test

and the graphical analysis and estimate a nested CES. Indeed, in Lago-

marsino (2017) it was shown how direct non-linear estimation of the CES

should be preferred in order to obtained the less bias results.
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Figure 3: Translog estimated K-L Hicks elasticities graphical analysis

Figure 4: Translog estimated E-M Hicks elasticity graphical analysis

Figure 5: Translog estimated K-M Hicks elasticity graphical analysis

Figure 6: Translog estimated L-M Hicks elasticity graphical analysis

With a nested CES function three estimation methods have been used

so far: the first is based on a non-linear estimation method (Kemfert, 1998;

Koesler and Schymura, 2015), the second on the linearisation of the nested
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CES (Hoff, 2014) and the third on the estimation of the FOCs derived from

a stepwise optimization procedure where a cost function based on the first

the inner CES and then the one based complete nested CES are minimised

(Chang, 1994; Prywes, 1986; van der Werf, 2008; Baccianti, 2013).

We use a direct estimation method and estimate the nested CES with

a Maximum Likelihood estimator. We are aware that this is not the most

efficient estimator given the econometric issues underlined by the diagnostic

tests; however the obtained coefficients will be unbiased and consistent. The

nested CES can be expressed with the following notation:8

lnQit = lnλ+ γt+
σ

σ − 1
ln

(
δX

σ−1
σ

it + δzL
σ−1
σ

it + (1− δ − δz)M
σ−1
σ

it

)
(3)

with

Xit = ln

(
δxE

σx−1
σx

it + (1− δx)K
σx−1
σx

it

) σx
σx−1

(4)

where λ ∈ [0,+∞) is the efficiency parameters, γ is a measure of techno-

logical progress, δ ∈ (0, 1), δx ∈ (0, 1) and δz ∈ (0, 1) are share parameters

and σ and σx are substitution elasticities. We assume that the nested CES

is characterised by constant returns to scale.

In Table 10 we report the results of the Maximum Likelihood estimation

regression. We can see that all regressors are significant at a 5% level and

that they lie in the ranges predicted by the economic theory. The elasticity

of substitution between energy and capital is equal to 0.883. This is in line

with our previous findings as it falls in the estimated prediction interval. The

elasticity of substitution between the energy and capital composite input and

the remaining inputs is equal to 0.468.

8 Conclusions

In this paper, we contribute to the applied econometric literature on the sub-

stitution relationships between inputs of production by estimating the elas-

ticities of substitution between energy and other inputs. Our data are drawn

from the EU-KLEMS database and include 23 UK industrial sectors for the

period 19702005. In line with the cited literature, we employ a Translog

8In these equations we suppress the it subscript on each variable to slim down notation.
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Parameters Coef. Std. Err. P 95% Conf. Interval
δ 0.476 0.025 0.000 0.427 0.526
δx 0.253 0.029 0.000 0.196 0.310
δz 0.156 0.018 0.000 0.121 0.191
σ 0.468 0.051 0.000 0.368 0.568
σx 0.883 0.440 0.045 0.021 1.745
λ 0.093 0.015 0.00 0.063 0.123
γ 0.003 0.001 0.00 0.004 0.002

Table 10: Maximum Likelihood estimation of the nested CES production
function

functional form to describe our production function. Furthermore, we com-

pute three different types of elasticities: the Hicks, Allen and Morishima

elasticities. Our results suggest that energy and capital are substitutes in

production.

We also contribute to the CGE literature by providing both an indication

of the appropriate nested structure and the relative constant elasticities for

UK production. In the paper, we check whether data support a nested CES

representation of the production function. We use both empirical and graph-

ical tests and we conclude that a nested structure of the form ((E,K),L,M)

is the most appropriate to describe a CES production technology for the

dataset under analysis. From the estimation of this nested CES, we obtain

the constant elasticities of substitution which are equal to 0.88 and 0.47 for

the inner and the outer nest respectively.

We conclude by briefly noting that thanks to the availability of long

inputs and output time-series for a decent number of European countries,

an interesting development of this research would concern testing separately

for each industrial sector which ones is (are) the best nested structure(s)

to describe the production function with a CES technology and for each

of them estimate the relative constant elasticities. Indeed, the idea that

the production technology is the same across all sectors is not realistic: the

econometric literature shows how the distributions of Translog elasticities

vary from industry to industry. The indication of the appropriate nested

CES for each sector could be of particular interest for the CGE literature to

better represent the production side of their economic models.
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Appendices

Code Sectors
AtB AGRICULTURE, HUNTING, FORESTRY AND FISHING
C MINING AND QUARRYING
15t16 FOOD , BEVERAGES AND TOBACCO
17t19 TEXTILES, TEXTILE , LEATHER AND FOOTWEAR
20 WOOD AND OF WOOD AND CORK
21t22 PULP, PAPER, PAPER , PRINTING AND PUBLISHING
23t25 CHEMICAL, RUBBER, PLASTICS AND FUEL
26 OTHER NON-METALLIC MINERAL
27t28 BASIC METALS AND FABRICATED METAL
29 MACHINERY, NEC
30t33 ELECTRICAL AND OPTICAL EQUIPMENT
34t35 TRANSPORT EQUIPMENT
36t37 MANUFACTURING NEC; RECYCLING
E ELECTRICITY, GAS AND WATER SUPPLY
F CONSTRUCTION
G WHOLESALE AND RETAIL TRADE
H HOTELS AND RESTAURANTS
60t63 TRANSPORT AND STORAGE
64 POST AND TELECOMMUNICATIONS
L PUBLIC ADM. AND DEFENCE; COMPULSORY SOCIAL SECURITY
M EDUCATION
N HEALTH AND SOCIAL WORK
O OTHER COMMUNITY, SOCIAL AND PERSONAL SERVICES

Table 11: Industrial sectors
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