Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Using mathematical modelling to inform on the ability of stormwater ponds to improve the water quality of urban runoff

Wallis, S. and Morgan, C. and Lunn, R.J. and Heal, K. (2006) Using mathematical modelling to inform on the ability of stormwater ponds to improve the water quality of urban runoff. Water Science and Technology, 53 (10). pp. 229-236. ISSN 0273-1223

Full text not available in this repository.Request a copy from the Strathclyde author


This paper concerns the mathematical modelling of flow and solute transport through stormwater ponds. The model is based on appropriate lumped system conservation equations that are solved using standard numerical techniques. The model was used to route a first flush pollution scenario through a cylindrical pond for 16 combinations of elevation and diameter of a submerged pipe outlet, in conjunction with a high level weir. Higher pipe elevations and smaller pipe diameters created larger pond volumes and hence led to greater dilution of the pollutant. In contrast, lower pipe elevations created larger storage volumes, leading to better flow attenuation. Interestingly, larger pipe diameters improved peak flow attenuation, even though the storage used decreased.