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A parallel formulation of a Jacobian-free all Mach numbers solver on unstructured 

hybrid meshes is proposed. The Finite Element formulation is edge-based with flow 

stabilization obtained with either AUSM+-up or Roe scheme. The linear system is solved via 

a Jacobian-Free Newton-Krylov (JFNK) method with Lower-Upper Symmetric Gauss-

Seidel (LU-SGS) used as matrix-free preconditioner. The traditional formulation of LU-SGS 

is enriched by including the contributions from viscous fluxes and boundary conditions. The 

accuracy and efficiency of the proposed approach are demonstrated over cases ranging from 

low to high Mach numbers: subsonic flow over the Trap Wing, transonic flow over the 

ONERA M6 wing, supersonic flow over a sphere, supersonic flow over a waverider and 

finally hypersonic flow over a sphere.  

I. Introduction 

he adoption of a unified approach for the numerical study of aircraft aerodynamics over a wide range of  Mach 

numbers is at the basis of the design of next-generation high-performance civil transport aircraft. In order to meet 

demands in terms of reduced fuel consumptions, sustainability and safety, it is necessary to maintain high aero-
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thermodynamic efficiency over diverse flight and physics regimes, ranging from low Mach numbers during take-off 

and landing, up to supersonic and hypersonic cruise conditions. The accurate prediction of shear stresses, heat fluxes 

and temperature distributions on the surface of the aircraft are crucial to achieve these objectives throughout the 

entire flight envelope. The formulation of a single scheme for subsonic to hypersonic speeds is hampered by the 

increasing dominance of convection and high-temperature effects that characterize these regimes. Strong shock 

waves, chemical reactions, thermal non-equilibrium, and the potential occurrence of magneto-gasdynamics effects 

make the design of an efficient numerical approach rather complex.  Despite the efforts put forward by researchers 

over the years, a high Technology Readiness Level (TRL) consolidated multiphysics approach has yet to be 

achieved [1-3]. 

 A complex system of conservation equations modeling chemical and thermal non-equilibrium demands a 

computational framework able to solve stiff problems characterized by a large number of chemical species. At high 

Damköhler numbers, the timescales of the chemistry are typically much faster than the ones of the flow. On the 

numerical side, this has led researchers to prefer implicit methods to explicit ones to overcome time step restrictions 

due to stability issues [4]. For steady-state problems, the governing equations are often solved implicitly through an 

exact or inexact Newton-Raphson procedure. At every Newton step, the residual function is linearized and the 

update is computed by solving a linear system. Compared to explicit methods, traditional implicit algorithms require 

two additional operations: the analytical differentiation of the residual and the assembly of the Jacobian matrix. For 

high enthalpy flows, practical problems arise that can potentially threaten the efficiency of implicit strategies. The 

first step becomes increasingly difficult as the physics is enriched to include high temperature thermodynamic 

effects. The second step is memory-bound by the number of species. An analytical differentiation of the Jacobian is 

adopted in the FIN-S solver of Kirk et al. [5]. Numerical approximation of the Jacobian can overcome some of the 

aforementioned problems, but at the expense of increasing computational time. Lani et al. [6] have developed a 

solver that numerically computes each column of the Jacobian by forward finite differences and then stores the 

Jacobian. The resulting scheme is slower than the one obtained with analytic differentiation, and still requires 

significant memory. In the numerical solution of high-Mach flows by implicit methods, the memory footprint of the 

Jacobian can be very large and the number of degrees of freedom per node increases with the number of species, 

making it more important to limit memory requirements. One possibility is the line-implicit relaxation method used 

in the solver LeMANS [7]. It adopts a line search method that finds the normal direction of the wall and a 



renumbering algorithm that reorders the elements, and then the off-tridiagonal terms of the linearized system are 

moved to the right-hand-side, whereas the left-hand-side tridiagonal system is solved by a point-iterative method 

without storing the Jacobian. In the Jacobian-Free Newton-Krylov (JFNK) method adopted in this work the 

Jacobian-vector product is approximated by a Fréchet derivative, which circumvents the need to store the full 

Jacobian, and a Krylov subspace method is used to solve the linear system [8]. 

 The effectiveness of Krylov subspace linear system solvers depends on good preconditioners. The widely-used 

Incomplete Lower-Upper (ILU) factorization not only requires storing the system matrix but also its factorization, 

thus doubling the memory footprint. To the best of the authors’ knowledge, three alternate options are available. The 

first one is the Jacobi preconditioner, which can be implemented in a Jacobian-free fashion. This method only 

requires the diagonal of the Jacobian. While it seems numerically advantageous, a large number of linear iterations 

might be required for convergence. The second alternative is the multiplicative-additive Schwarz preconditioned 

inexact Newton [9] approach, which is a nonlinear Jacobian-free preconditioning method designed to overcome 

unbalanced nonlinearities coming from different ranges of time and spatial scales, such as shock waves and reaction 

fronts, but only two-dimensional incompressible flow test cases have been presented in the reference. The last 

alternative, adopted in this work, is LU-SGS [4]. It was originally developed as a solver for inviscid flows on 

structured grids, but has recently been extended to viscous flows and unstructured meshes [10] [11]. In LU-SGS, the 

implicit operator is simplified by introducing a Roe-type flux approximation that replaces the Roe matrix with its 

spectral radius, consequently only the diagonal part of the Jacobian is stored and the products of the off-diagonal 

terms and the solution update are approximated by a Fréchet derivative through a forward and a backward sweep. 

However, in the original LU-SGS, the viscous Jacobian is identified as a scalar in the spectral radius and the 

contributions from boundary conditions are omitted. In this work, the viscous Jacobian is taken into account by 

computing it on the fly during the two sweeps. Riemann, supersonic outlet, slip wall and non-slip wall boundary 

conditions are included in the computation of the Jacobian. 

 This article is organized as follows: Section II will illustrate the governing equations, while Section III will 

present the numerical formulation and Section IV will present some numerical results for validation. The test cases 

for the present work are limited to non-reactive flows in thermal equilibrium. This is a necessary step to assess the 

characteristics of the method before introducing the more complex non-equilibrium effects and the corresponding 

numerical formulation. 



II. Governing Equations  

Let us recall for completeness the equations governing unsteady compressible viscous flows in conservative 

form [12, 13] 
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where Q is the vector of conservative variables, i.e. Q=[ρ, ρV, ρet]. ρV is the momentum vector and et is the total 

energy per unit mass and it is defined as the sum of the internal and kinetic energy. FA and FV are the inviscid and 

viscous fluxes, respectively. The inviscid fluxes in Cartesian coordinates are 
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The viscous fluxes in Cartesian coordinates are 
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Newton’s law for the stress tensor and the Stokes hypothesis are adopted and a calorically perfect ideal gas is 

assumed. 

III. Numerical Methods 

A. Edge-based Stable Finite Element Discretization 

 A Finite Element edge-based assembly [14] is adopted to allow the application of either AUSM+up [15] or Roe 

[16] scheme to stabilize the advection terms. The edge-based assembly easily handles hybrid meshes with a unique 

data structure [17] and it is computationally more efficient than the traditional element-based one [18]. For steady-

state flows, the weak-Galerkin formulation of Eq. (II.1)  is adopted: 
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where Wi is the i-th linear Lagrangian test function, Ei and Fi are the set of elements/boundary faces sharing the i-th 

vertex. For ease of notation, the contribution from boundary conditions will be ignored from this point on. The first 

term of the above equation can be assembled in an edge-based fashion as [19]: 
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where Ki is the set of nodes connected to the i-th node via an edge. The edge coefficients are defined as 
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where the coefficient χij is defined only for boundary edges. Another second order edge coefficient tensor dij can be 

defined as  

 

i e

ij ij ij ijs

T T

ij i j
e E

a
ij ij

V

d d d d
d W d d , d

2 2

( ) ( )
W V ,



 
     (III.4) 

To provide stabilization for advection-dominated flows, the vector of inviscid fluxes FA is replaced with a 

numerical counterpart, num evaluated at the edge’s midpoint, i.e. 
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The numerical inviscid fluxes for num can be either AUSM+-up or Roe fluxes, nonlinear functions of the nodal 

variables and of the edge coefficients. The boundary-edge term of Eq. (III.5) can be seen as a “correction” factor, 

since it is proportional to the difference of fluxes along the edge. Following [14], it is left untouched and no 

additional dissipation is introduced for boundary edges. The numerical scheme is made second-order by adopting a 

MUSCL [20] reconstruction of the primitive variables at the edges’ midpoint and standard 1D slope limiters [21, 

22]. The viscous fluxes are discretized with the continuous Galerkin approximation and assembled in an edge-based 

fashion, naturally resulting in a second-order representation [14]. 



B. Jacobian-free Newton-Krylov Solver 

 The JFNK [8] strategy is introduced by making use of a pseudo-transient continuation method where the original 

steady problem is transformed into a pseudo-unsteady one [23], i.e. 
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where L is the lumped mass matrix, R is the left-hand-side of Eq. (III.5). The pseudo-time step Δτn is chosen to 

locally satisfy the CFL stability condition for linear advection problems and is in general increased as the solution 

progresses. At each iteration of the Newton procedure, the solution update is computed as 
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Note that small values of Δτn increase the diagonal dominance of the system matrix, making it easier to invert. 

As Δτn increases, the first term of Eq. (III.7) gradually vanishes and the pseudo-unsteady problem reverts to the 

standard Newton’s method. The above linear system is solved by means of the Flexible Generalized Minimal 

Residual method (FGMRES) [24]. FGMRES is an iterative solver for non-symmetric linear systems where the 

preconditioner can vary at each iteration. The convergence of FGMRES depends on the condition number of the 

matrix; preconditioning techniques can be enforced to cluster the eigenvalues of the matrix and to improve the 

convergence of the linear system. Defining 
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 FGMRES only accesses the matrix through matrix-vector multiplications, therefore it is not necessary to form 

and store the matrix A. In the framework of Jacobian-free methods, the product of the preconditioned system matrix 

with the preconditioned solution is replaced by a Fréchet derivative, i.e. 
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where ε is a suitably-chosen small number [25] defined as 
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with error_rel being the square root of the machine precision.  

 Note that the JFNK methods require one evaluation of the residual function R at each FGMRES iteration, while 

traditional methods that explicitly form the Jacobian require one matrix-vector product per FGMRES iteration. For a 

problem of millions of unknowns, one evaluation of the residual function typically requires more time than one 

matrix-vector multiplication, indicating that overall JFNK might be slower than traditional methods. It is also worth 

mentioning that the JFNK methods only require the evaluation of R, but not its derivatives, which enables the 

computation of the inviscid contribution to the Jacobian matrix through the MUSCL-reconstructed state with slope-

limiter, or a simple piecewise constant reconstruction of the solutions.   

C. Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) Preconditioner 

 In order to obtain a truly Jacobian-free method, the preconditioning step must also be Jacobian-free. LU-SGS is 

an efficient iterative solver specifically designed for advection-dominated flows that does not require storing the 

Jacobian. Following [4], LU-SGS is applied by solving  

 A nQ R(Q )    (III.11) 

through a forward and backward sweep, namely 

 
D L

D U D

*

*

( ) Q R

( ) Q Q

   

   
 (III.12) 

where A is the sum of the pseudo-time contribution and the Jacobian of the approximate residual function 
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and D, U and L are the diagonal, upper and lower parts of matrix A, respectively.  

 To compute A cost-effectively, the approximate residual function R is defined after discarding the second term 

in Eq. (III.5), neglecting the boundary contribution of the viscous fluxes and replacing the inviscid fluxes with a 

simpler approximate one 
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where i is the nodal boundary coefficient, Fij
V is the viscous flux in momentum equation, Gij

V is the viscous flux in 

energy equation and RA, RV and R∂ are the contributions from inviscid and viscous fluxes for the domain edges and 

the natural boundary conditions, respectively. The approximate residual function R adopted in this work is different 

from Luo’s [4]. In his work, R∂ is ignored and RV is replaced by a scalar appearing in RA. 

ij is a simplified version of num, i.e. 
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where the spectral radius 
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is used to approximate the artificial diffusion operator. In Eq. (III.16) the velocity Vij and the sound speed aij are 

evaluated at a Roe-averaged state [16] between the two nodes.  

 Neglecting boundary terms and addressing the Jacobian of the inviscid fluxes RA for the domain edges, Eq. 

(III.14) is differentiated with respect to Qi and Qj, and then the upper matrix UA
ij, the lower matrix LA

ij and the 

diagonal matrix DA
ij are 
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Note that the zero-sum property of the edge coefficients for domain nodes has been used and the pseudo-time 

contribution has been added to the diagonal matrix. As a result, the 5x5 matrix located on the diagonal block is 

replaced by a scalar, thus making its inversion a trivial operation. 

With this strategy UA, LA and DA must be computed and explicitly stored, but this can be avoided by introducing 

a Jacobian-free approximation of the matrix-vector product as 
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where ε is defined in Eq. (III.10).  

 To address the Jacobian of RV, Fij
V and Gij

V are discretized with the standard continuous Galerkin approximation 

and assembled in an edge-based fashion, as in [14]. The upper matrix Uij
V, the lower matrix Lij

V and the diagonal 

matrix Dij
V

 are 
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where “s” and “a” superscripts indicate the symmetric and anti-symmetric parts of a tensor, i.e. 
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The transformation matrices are 
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The Jacobian of R∂ only contributes to the diagonal matrix, i.e. 
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where the expression of Fi
∂ depends on the type of boundary conditions. In the case of slip wall and symmetry 

planes, Fi
∂∙i =[0, Pi i, 0]. In the case of Riemann invariant boundary conditions, Fi

∂∙i = Fi
A(Qriemann) ∙ i, where Qriemann 

is computed by solving the Riemann problem between the internal node i and the free-stream. In the case of 

supersonic outlet,  Fi
∂ ∙ i = Fi

A ∙ i. [26] D∂ can be combined with DA for further simplification 
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where the zero-sum property of edge coefficients has been applied. An immediate benefit is that the last term of DA+∂ 

is independent of the node j. 

Finally, the LU-SGS sweeps in Eq. (III.12) can be written as 
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The velocity components on the wall are zero for the non-slip wall boundary conditions, however the momentum 

contributions on the walls must be reset to zero after each sweep since the LU-SGS procedure may not automatically 

satisfy the condition. A remarkable feature of LU-SGS is that the storage of the Jacobian is not required. In this 

work, the PETSc implementation of FGMRES is adopted [27], while an in-house version of LU-SGS has been 

implemented within the PETSc framework.  



IV. Numerical Results 

 The proposed numerical method has been validated over a representative range of Mach numbers, for 3D test 

cases. These are the subsonic flow over the Trap Wing, the transonic flow over the ONERA M6 wing, the Mach 

1.93 laminar flow over a sphere, the Mach 4 turbulent flow over a waverider and the hypersonic flow over a sphere.  

 With the present JFNK implementation the inviscid contribution to the Jacobian matrix can be computed either 

using a simple piecewise-constant reconstruction of the solution, or a MUSCL reconstructed state with slope-limiter. 

The first one will be subsequently referred to as 1st order Jacobian (JFNK-1), and the second as 2nd order Jacobian 

(JFNK-2). In order to assess the performance of the JFNK solvers, the traditional method of explicitly forming the 

Jacobian and using block-Jacobi with ILU preconditioning is also tested. This will subsequently be referred to as the 

explicit Jacobian method. The explicit Jacobian method uses a simple piecewise-constant reconstruction of the 

solution to compute the Jacobian. Computing the explicit Jacobian using the MUSCL reconstructed states and the 

slope-limiter is difficult because a larger stencil is required to compute their derivatives. However, JFNK does not 

have such a problem because its Jacobian is numerically approximated and the derivatives are not needed.  

Unless otherwise specified, all the results shown in the following sections are obtained with JFNK-2. FGMRES 

convergence is achieved when the relative drop in the preconditioned residual norm is below the specified tolerance 

of 10-4. The size of the Krylov space is 20. For the first three test cases, FGMRES is stopped when the number of 

FGMRES iterations exceeds 20 and the code proceeds to the next Newton step. No FGMRES restarts have been 

allowed except for the last two test case. Stabilization is provided by the AUSM+-up or Roe scheme with the van 

Albada slope limiter. The ILU preconditioner remains fixed at each FGMRES iteration, in which case the results of 

FGMRES are identical to those of GMRES. 

A. Mach 0.2 Viscous Flow past the Trap Wing 

This example is a Mach 0.2, 13-degree angle of attack, viscous flow around the Trap Wing from the First AIAA 

CFD High-Lift Prediction Workshop [28]. The Reynolds number based on the mean aerodynamic chord (MAC) is 

4.3×106 and the turbulent flow is modeled with the Spalart-Allmaras turbulence model, solved in a loosely coupled 

fashion. The computational grid, shown in Figure 1, consists of 8,188,411 nodes, 8,632,114 tetrahedra and 

13,271,131 prisms. The surface of the wing is discretized with 446,420 triangles. The initial CFL number is 0.1, 

exponentially increased to 10 in 1000 iterations.  



Figure 1 and Figure 2 show the computed pressure coefficient distribution compared to the experimental data 

[28] at the 50% spanwise station. The agreement is good on each of the three elements. Table 1 lists the lift and drag 

coefficients from three numerical results against the reference values. The difference in lift coefficient between the 

results obtained with the JFNK-2 solver and the reference data is less than 0.036 or 1.8%. The difference in drag 

coefficients is less than 10 counts or 0.4%. Figure 1 shows the contours of pressure coefficient, and Figure 3 shows 

shear stress magnitude contours. The shear stress does not reach zero on the main element or flap, meaning that no 

flow separation occurs.  

Figure 4 shows the convergence curves for explicit Jacobian, JFNK-1 and JFNK-2 solvers. In the graphs, time is 

defined as the average time per FGMRES iteration for JFNK-2, which is 6.15 seconds for this test case. In terms of 

Newton iterations, the first two methods take about 1500 iterations to reduce the residual by about 3 orders of 

magnitude but overall convergence eventually stalls at 2.5×10-7. The JFNK-2 solver, on the other hand, has no such 

problems. The improvement in the convergence rate is due to the fact that JFNK-2 intrinsically accounts for the 

MUSCL reconstructed states and the slope limiter in the numerically-approximated Jacobian. In terms of wall time, 

both JFNK-1 and JFNK-2 are much slower than the explicit Jacobian. This is because at each FGMRES iteration, 

JFNK performs a residual function evaluation, while the explicit Jacobian method performs a matrix vector 

multiplication, which is much faster. Figure 5 shows the convergence histories of the lift and drag coefficients. It 

should be noted that although the convergence of JFNK-1 and explicit Jacobian stall, the physical quantities actually 

converge. 

The advantage of JFNK solver lies in the memory consumption: JFNK-2 (42.22 GB) achieves a 60% reduction 

over the explicit Jacobian method (106.62 GB). All simulations were carried out in parallel on 48 processors. 

Table 1.  Trap wing: comparison of the lift and drag coefficients 

Methods CL CD 
Experiments 2.0468 0.3330 

Explicit Jacobian 2.0102 0.3318 

JFNK-1 2.0107 0.3319 

JFNK-2 2.0113 0.3320 

 



 

Figure 1. Trap Wing: surface pressure coefficient contours (left) 

and pressure coefficient distribution on the slat at the 50% spanwise station (right) 

 

Figure 2. Trap Wing: pressure coefficient distribution over the main element (left) and flap (right) 

at the 50% spanwise station 

 

Figure 3. Trap Wing: surface shear stress magnitude contours (left); surface shear stress magnitude at 50% 

span (right) 



 

Figure 4. Trap Wing: convergence as a function of the number of iterations (left) and elapsed time (right) 

 

Figure 5. Trap wing: convergence history of the lift (left) and drag coefficients (right) 

 

Figure 6. ONERA M6 wing: final adapted mesh (left), Mach contours (right) 



B. Mach 0.84 inviscid Flow past the ONERA M6 Wing 

This example presents the Mach 0.84 inviscid transonic flow over the ONERA M6 wing at an angle of attack of 

3.04 degrees. The initial mesh consists of 87,795 nodes and 396,412 tetrahedra. Three mesh adaptation cycles have 

been performed [29] using the Mach number to build the error estimator. The target number of nodes is 136,051, the 

same number of nodes adopted by Luo [4]. The final adapted mesh, shown in Figure 6, consists of 127,077 nodes 

and 674,500 tetrahedra. The initial CFL numbers is 1 and is exponentially increased to 1,000 in 120 iterations. 

Figure 6 presents the pressure coefficient on the final adapted mesh. The solution over the adapted mesh displays 

sharp shocks and captures the complex lambda-type shape. The validation with experimental results from [30] is 

shown in Figure 7, which also illustrates the positive effect of mesh adaptation on the solution. The comparison 

between the computational results on the final adapted mesh and the experimental results is satisfactory. The strong 

shock wave observed in the numerical results at mid-chord near the root of the wing is absent in the experimental 

results. This discrepancy is due to the lack of viscous effects in the numerical solution.  

Figure 8 shows the convergence history for the explicit Jacobian with ILU (top), JFNK-1 (middle) and JFNK-2 

(bottom). The time unit is defined as the average time per FGMRES iteration for JFNK-2 and it is 0.5 seconds for 

this test case. The cycles are labeled 0th (original grid), 1st, 2nd and 3rd adaptation cycle. At the end of each adaptation 

cycle, the solution on the previous mesh is interpolated onto the new adapted mesh to provide a faster restart. This is 

reflected in the convergence plot as a jump in the residual. JFNK-1 stalls on all meshes. When it reaches the 

maximum number of Newton iterations, 250, it stops and moves on to the next interpolated mesh. The explicit 

Jacobian method stalls on the first and fourth meshes while JFNK-2 converges at each adaptation cycle. This 

improvement in the convergence rate is again attributed to the fact that JFNK automatically accounts for the 

MUSCL reconstructed states and the slope-limiter. Overall JFNK-2 takes half as many iterations as explicit 

Jacobian, but is about two times slower in terms of wall time. This is in contrast to Luo’s observations [4], who 

reported that GMRES+LU-SGS (similar to JFNK-2 in this work) is about three times faster than the GMRES+ILU 

(similar to explicit Jacobian in this work). Several possible reasons could explain the differences. In Luo’s work, the 

Jacobian-free condition in the GMRES solver is attained by the same methodology used in LU-SGS, which has been 

illustrated in Section III.C, but in this work it is realized by JFNK. Moreover, the implementation of LU-SGS is 

different and the performance is certainly case-dependent. It must also be noted that in [4] GMRES is used as 

opposed to FGMRES, which is a more suitable choice since the preconditioner is variable. However, the current 



performance result is similar to that of Qin [31] who showed that the matrix-free solver takes more CPU time than 

explicit Jacobian.  

 

 

 

Figure 7. ONERA M6 wing: comparison of the computed surface pressure coefficients on the initial and final 

adapted mesh with the experimental results at the 20%, 44%, 65%, 80%, 90% and 95% spanwise stations 

 



  

 

 

Figure 8. ONERA M6 wing: comparison of convergence history between the explicit Jacobian (top), JFNK-1 

(middle) and JFNK-2 (bottom), as a function of number of iterations (left), and time (right) 

C.  Mach 1.93 Viscous Flow past a Sphere 

 This example presents the Mach 1.93 viscous flow around a sphere. The sphere radius R is 7.5 mm, the 

freestream temperature and pressure are 294 K and 540 Pa, respectively. The Reynolds number based on the sphere 

radius is 1750, which is small enough to assume laminar flow. The computational grid, shown in Figure 9, consists 

of 300,993 nodes, 281,484 tetrahedra and 487,680 prisms. The surface of the sphere is represented by 8,128 



triangles. The near-wall region is represented by 60 layers of prisms and is approximately 3.9R thick. The initial 

CFL value of 10-1 is exponentially increased to 100 in 500 iterations. 

 

  Figure 9. Mach 1.93 viscous flow over a sphere: hybrid grid (left) and Mach number contours (right) 

 

Figure 10. Mach 1.93 viscous flow over a sphere: non-dimensional density along the line normal to the axis in 

front of the sphere (left) and along the line normal to the sphere (right) 

The Mach contours are shown in Figure 9. A bow shock appears in front of the sphere. The non-dimensional 

density is plotted in Figure 10 along the crosswind direction at two different locations: at the nose, x = R, and at the 

mid-section, x = 0. The crosswind coordinate is scaled with respect to the distance between the shock location, ys, 

and the boundary location, yb. Since neither of the references provides a value for it, ys is measured from the 

solution: ys (x = 0) = 2.743R and ys (x = R) = 1.32R. The agreement between the solution obtained with the proposed 

method and the results of Gnoffo [32] is fairly good, and so is the agreement with the experiments [32]. Both the 

present computation and the result by Gnoffo under predict the value of the density at the stagnation point. 



 

Figure 11. Mach 1.93 viscous flow over a sphere: convergence history as a function of the number of 

iterations (left) and time (right)  

 

Figure 12. Mach 1.93 viscous flow over a sphere: convergence history 

of the LU-SGS and Jacobi preconditioners 

 

Figure 13. Mach 1.93 viscous flow over a sphere: convergence history of the LU-SGS and Luo’s LU-SGS 

preconditioners as a function of the number of iterations (left) and time (right)  



 Figure 11 shows the convergence history for the explicit Jacobian, JFNK-1 and JFNK-2. Time is defined as the 

average time per FGMRES iteration for JFNK-2, which is 0.48s for this test case. All the residuals converge to 10-10. 

The advantage of JFNK-2 is in the number of Newton iterations, only 626. This is expected because JFNK-2 

includes the MUSCL reconstructed states and the slope-limiter in the approximate Jacobian. In terms of wall time, 

JFNK-1 and JFNK-2 take about the same time. Both of them are about 6 times slower than the explicit Jacobian 

method. In terms of the maximum memory storage, JFNK-2 (1.48 GB) achieves a 54% reduction over explicit 

Jacobian (3.18 GB). All simulations were run in parallel on 4 processors. 

 Figure 12 shows the comparison between JFNK-1 with LU-SGS and JFNK-1 with the Jacobi preconditioner. 

 In conjunction with the LU-SGS preconditioner, FGMRES convergence is achieved when the relative drop in 

the preconditioned residual norm is below the specified tolerance of 10-2 or a maximum number of FGMRES 

iterations 20, whereas for the Jacobi preconditioner the tolerance was set at 10-6 and the maximum number of 

FGMRES iterations was set to 200. In general, Jacobi is a less effective preconditioner than LU-SGS and requires 

more linear iterations to converge. The size of the Krylov space is 20 for both methods. Stabilization is provided by 

the AUSM+-up scheme with the van Albada slope limiter. Although more FGMRES iterations are allowed in the 

case of the Jacobi preconditioner, it still fails at around 500 Newton iteration. This suggests that the Jacobi 

preconditioner is, for this case, less robust than LU-SGS. Note that the chosen maximum number of linear iterations 

is 10 times greater for Jacobi, but is not sufficient to prevent numerical instabilities. Figure 13 shows the comparison 

between JFNK-2 with LU-SGS and Luo’s LU-SGS preconditioner [4]. The maximum CFL is 100 for LU-SGS and 

1 for Luo’s LU-SGS. The cases of maximum CFL 100 and 10 have been tested for Luo’s LU-SGS, but both fail due 

to negative temperature, which suggests that robustness increases when the contributions from the boundaries are 

included and more accurate viscous fluxes are adopted.  

An analysis of the effects of the relative tolerance level and maximum number of FGMRES iterations 

(ksp_max_it) was carried out. Two relative tolerance levels were considered, 10-2 and 10-6. The maximum number of 

FGMRES iterations was set to 5, 10, 40, 80, 120, 160 and 200. Figure 14 displays the results obtained with a relative 

tolerance of 10-2 and different values of maximum number of FGMRES iterations for the explicit Jacobian method 

(top), JFNK-1 (middle) and JFNK-2 (bottom). The left column shows the convergence history in terms of Newton 

iterations. The middle column shows the convergence history in terms of time units. The right column shows the 

number of FGMRES iterations in terms of Newton iterations. The parameters in Figure 15 are the same as those in 



Figure 14, except that the relative tolerance level is set to 10-6. A clear trend can be seen where the wall time 

typically increases with the maximum number of FGMRES iterations. However, there are exceptions with 

maximum number of FGMRES iterations of 5 and 10.  

 

 

Figure 14.Mach 1.93 viscous flow over a sphere: behavior of FGMRES for the explicit Jacobian method (top), 

1st order JFNK (middle) and 2nd order JFNK (bottom) with FGMRES relative tolerance of 10-2  



 

 

 

Figure 15.Mach 1.93 viscous flow over a sphere: behavior of FGMRES for the explicit Jacobian method (top), 

1st order JFNK (middle) and 2nd order JFNK (bottom) with FGMRES relative tolerance of 10-6  

 

The second graph in the first row of Figure 14 shows that the explicit Jacobian takes the longest time with these 

settings. The second graph in the third row of Figure 14 shows that JFNK-2 is slower with a maximum number of 



FGMRES iterations of 5 compared to 10. The second graph in the first row of Figure 15 shows that with lower 

relative tolerance levels the explicit Jacobian is faster with maximum number of FGMRES iterations of 5 and 10, 

however 10 is faster than 5. The above exceptions suggest that a maximum number of FGMRES iterations of 5 is 

too small to ensure an appropriate convergence of the linear system. 

It is also interesting to see that in the first columns of Figure 14 and Figure 15 that values of maximum number 

of FGMRES iterations greater than 40 do not diminish the number of Newton iterations required for convergence, 

but instead increase the number of FGMRES iterations (third column) and consequently dramatically increase the 

wall time (second column). This analysis shows that in order to achieve an optimal computational time, it is 

desirable to put a limit on the maximum number of FGMRES iterations and the relative tolerance in the convergence 

of the non-preconditioned residual norm. 

 

Figure 16. Mach 4.0 Viscous Flow past a Waverider: hybrid grid 

D. Mach 4.0 Viscous Flow past a Waverider 

This example presents a Mach 4 viscous flow around the waverider geometry shown in Figure 16. The 

waverider’s length is 3 m, the nose radius 0.5 mm, and the free-stream temperature and pressure 279.75 K and 

8.42×104 Pa, respectively. The Reynolds number based on waverider length is 2.41×108, with an angle of attack of 1 

degree. The Spalart-Allmaras turbulence model is adopted and an adiabatic wall condition specified. The 

computational grid consists of 4,392,286 nodes, 1,441,235 tetrahedra and 8,193,459 prisms, while the surface of the 



waverider is discretized with 151,766 triangles. The initial CFL of 0.01 is exponentially increased to 10 in 1000 

iterations. All runs take 40 FGMRES iterations at every Newton step. 

 The Mach and density contours are shown in Figure 17. A detached bow shock is in front of the waverider and a 

separation zone forms behind it. The speed-up diagram for 16, 32, 64 and 128 processors shown in Figure 18 

highlights an 88% parallel performance on 128 processors. The performance reflects the increase of communication 

cost as the number of processors increase.  

 

Figure 17. Mach 4 viscous flow past a Waverider: Mach number contours (left) and density contours (right) 

 

 

 

Figure 18. Mach 4 viscous flow past a Waverider: speed-up diagram  



 

Figure 19. Mach 10.01 viscous flow past a sphere: hybrid grid (left) and Mach number (right) 

E. Mach 10.01 Viscous Flow past a Sphere. 

 This example is the Mach 10.01 viscous flow of Nitrogen around a sphere of radius 0.1524 m. The free 

stream temperature and pressure are 200 K and 0.0468 Pa, respectively. The Reynolds number based on the radius 

of the sphere is 26.99, which is small enough to assume a laminar flow. The computational grid, shown in Figure 19 

(left), consists of 2,995,100 nodes, 16,477,103 tetrahedra and 380,800 prisms and the surface of the sphere is 

discretized with 234,952 triangles. The near wall region contains 40 layers of prisms and it is approximately 0.683 

radii thick. The initial CFL is 10-5, exponentially increasing to 10 in 3,000 iterations. The stabilization scheme is 

Roe’s with the van Albada slope limiter. The contours of the Mach number are shown in Figure 19 (right). As 

expected, at such low Reynolds number the detached bow shock in front of the sphere is significantly smeared by 

the viscous terms. 

Figure 20 shows the convergence curves for explicit Jacobian, JFNK-1 and JFNK-2. The time unit is defined as 

the average time per FGMRES iteration for JFNK-2 and it is 2.7 s for this test case. In terms of number of Newton 

iterations, all solvers converge in approximately 3,200 Newton iterations. In terms of wall time, JFNK-1 is about 6 

times slower than explicit Jacobian and JFNK-2 is about 4 times slower than explicit Jacobian. 

In terms of maximum memory, JFNK-2 (17.18Gb) achieves a 45% reduction over the explicit Jacobian method 

(31.64Gb). The maximum memory consumptions of JFNK-1 (17.20Gb) and JFNK-2 (17.18Gb) are nearly the same. 

All simulations were carried out in parallel on 48 processors. 



 

Figure 20. Mach 10.01 viscous flow past a sphere: convergence history as a function of the number of 

iterations (left) or time (right)  

V. Conclusion 

An accurate edge-based Jacobian-free FE solver has been developed to address low- to high-Mach viscous flows 

within a unified approach. This has been realized by formulating and implementing an edge-based discretization 

with AUSM+-up or Roe stabilization scheme, JFNK and LU-SGS preconditioner. Three-dimensional test cases are 

presented, with good agreement with the references.  

The performance of the Jacobian-free solver is assessed. Improved LU-SGS is found to be more robust and 

efficient than the Jacobi preconditioner and the original LU-SGS.Comparisons between Jacobian-free and explicit 

Jacobian methods are carried out and the results show that the present method, despite being less performing than 

the explicit Jacobian, offers relevant advantages. First, with the proposed Jacobian-free approach, the MUSCL 

reconstructed and slope-limited states are automatically considered. This benefit will be crucial for solving chemical 

and thermal non-equilibrium flows, where the transport coefficients and reaction rate coefficients are functions of 

the primitive variables. Second, the Jacobian-free method introduces a general framework that will allow the 

introduction of an arbitrary number of reactions/chemical species and non-equilibrium effects in an efficient manner, 

since the method only needs the evaluation of the residual and does not require an analytical expression of its 

derivative. Third, Jacobian-free solvers are more memory-efficient, with savings of 50% observed for chemically 

non-reacting and thermal equilibrium flow. When more complex physical phenomena are introduced and the 

number of chemical species and governing equations is substantially increased, much higher savings will be 

anticipated.  
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