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1 Introduction

The fact that official data for many key macroeconomic variables are released with delay
sparks interest in nowcasting. Our particular interest is nowcasting nominal output growth
for the regions of the UK. This is because regional output data, as measured by Gross Value
Added (GVA), are currently available from the Office for National Statistics (ONS) only on
an annual basis, with the initial release for a particular year currently occurring more than
eleven months after the end of the year. But, for the UK as a whole, GVA data are released
quarterly (in fact, since summer 2018, they have also been made available monthly) with
a first estimate historically released by the ONS roughly two months after the end of the
calendar quarter. We should note that while regional output is measured by GVA rather
than Gross Domestic Product (GDP), the two concepts relate closely given that GVA plus
taxes (less subsidies) on products equals GDP.

The ONS have published, with a lag of at least eleven months, these annual estimates of
nominal output for the regions of the UK since the late 1960s. They only began to publish
real estimates in 2013; policy and media interest has therefore resided with the nominal
regional GVA data, that are our focus in this paper. But their publication lags mean that
the most up-to-date official information on growth in the regions of the UK can be nearly
two years old by the time economists and policymakers make decisions and set policy; they
are very much looking through the “rear-view mirror” (see Bean, 2007) unable to assess in
a timely fashion the regional effects, for example, of the global financial crisis (as stressed
by the Chief Economist at the Bank of England, see Haldane (2016)) or indeed monitor the
effects of Brexit.

There is a large(r) literature concerned with how best to nowcast or forecast an aggre-
gate using disaggregated information (e.g. see Giacomini and Granger (2004) for theoretical
discussion, and for applications nowcasting UK and Euro Area output growth see Bell, Co,
Stone and Wallis (2014), Lui and Mitchell (2013) and Foroni and Marcellino (2014)). In
contrast, our interest is nowcasting the regional disaggregates exploiting available data on
the UK aggregate (and possibly other available indicators). Accordingly, our paper’s contri-
bution is to develop methods to produce, and then evaluate the empirical utility of, quarterly
nowcasts of low frequency (regional) output growth data that are updated within the year as
new information about higher frequency variables, such as quarterly UK output growth, is
released. This means policy and decision makers do not have to wait nearly a year to receive
updated estimates of regional output growth.

To provide these regional nowcasts, accommodating both the frequency mismatches be-
tween the available data and the increasingly large amounts of data that are available, we draw
on and extend the growing literature on mixed frequency Vector Autoregressions (VARs). Al-
ternatives to the VAR, including mixed frequency dynamic factor models (e.g. see Marcellino
and Schumacher (2010), Mariano and Murasawa (2010) and Frale, Marcellino, Mazzi and
Proietti (2011), have been used in other nowcasting applications (with Foroni and Marcellino
(2014) offering a comparison). But we follow studies like Carriero, Clark and Marcellino
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(2015) and use the VAR. This choice is also supported by empirical evidence (from papers
cited below) that VAR models can be effective nowcasting tools in practice.

There are two main VAR modelling approaches and, in turn, timing conventions used
in this literature. The first, often called the stacked VAR approach, can be classified as
an “observation-driven” modelling approach (following Cox, 1981) and writes the VAR at
the low frequency with the high frequency variables appearing multiple times in each period
(i.e. if there are R regions, then the dependent variables in the VAR will include the R
regional variables plus four UK quarterly values). The stacked VAR can also be interpreted
as a multivariate analogue of the univariate unrestricted MIDAS model of Foroni, Marcellino
and Schumacher (2015). Pioneering stacked VAR papers include Ghysels (2016), Carriero,
Clark and Marcellino (2015) and McCracken, Owyang and Sekhposyan (2018). The second,
which can be called the state space VAR approach, is instead a “parameter-driven” modelling
approach (see Cox, 1981). It writes the VAR at the high frequency as a state space model with
filtering used to fill in the missing observations driven by latent processes (see, e.g., Mariano
and Murasawa (2010); Kuzin, Marcellino and Schumacher, 2011; Eraker, Chiu, Foerster, Kim
and Seoane, 2015; Schorfheide and Song, 2015 and Brave, Butters and Justiniano, 2016).

Our paper uses a stacked VAR and therefore does not rely on latent processes; this con-
fers some computational advantages. That is, Bayesian analysis of models involving such
latent processes is typically done using Markov Chain Monte Carlo (MCMC) methods with
data augmentation. The computational burden associated with such methods can be avoided
by working with the stacked VAR. However, our approach also deviates from conventional
stacked VAR approaches in some important ways; and this requires the extension and adap-
tation of existing methods. A conventional stacked VAR approach typically exploits the
information in many high frequency variables to update a single low frequency variable of in-
terest (e.g. using many monthly macroeconomic variables to nowcast quarterly GDP growth).
An exception is Ghysels, Grigoris and Ozkan (2017) which forecasts annual government ex-
penditures and revenues for 48 US states using quarterly and monthly predictors. Another
exception is Mandalinci (2015) which is a regional UK GVA application with a similar fre-
quency mis-match to ours. Both these papers use different econometric methods than those
we employ and have a different empirical focus. In our regional nowcasting application,
the frequency mismatch is reversed. We have many low frequency variables to nowcast (i.e.
GVA growth for R UK regions) and a single high frequency indicator (i.e. quarterly UK GVA
growth) of particular interest. Although, as we discuss below, other indicators can always be
added into the model too, we expect this particular aggregate indicator to be of particular
utility when nowcasting the disaggregates - given that it is the cross-sectional aggregation of
the (regional) data that we are aiming to nowcast. Larger VAR models also raise additional
empirical challenges. For example, if we had used the state space VAR when our data set
had so many low (and possibly many high) frequency variables, the number of missing obser-
vations would be large and estimation burdensome. To-date, mixed-frequency applications
of state-space VAR models, as referenced above, have confined their attention to a relatively
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small number of variables given their increased computational burden relative to the stacked
VAR.

To overcome these challenges and add some empirically useful features, we follow Car-
riero, Clark and Marcellino (2015) and McCracken, Owyang and Sekhposyan (2018) and use
Bayesian methods which allow for prior shrinkage (with the degree of shrinkage estimated
from the data) so as to avoid over-parameterisation problems in our relatively large stacked
VAR. And given strong evidence of volatility changes in many conventional VAR macroeco-
nomic forecasting applications (e.g. Clark, 2011), we follow Carriero, Clark and Marcellino
(2015), in their mixed frequency nowcasting application, and add multivariate stochastic
volatility into our stacked VAR.

We then extend stacked VAR nowcasting methods in two main ways. These extensions
let us handle, using the stacked VAR, both data subject to differential publication lags (often
referred to as the ragged-edge) and the aggregation constraint. First, each quarter, as new
timely releases of UK GVA data (and any other indicators) are received, we entropically
tilt towards these new releases so as to produce updated density nowcasts of regional GVA
which reflect this information. Secondly, we extend entropic tilting methods to exploit the
fact that GVA growth for the UK as a whole should be (approximately, discussed further
below) equal to a weighted average of regional GVA growth rates. Our approach, relative to
alternative ways these two features could be accommodated in state-space VAR models with
latent variables, benefits from being computationally simple and more readily extendable to
large VAR contexts. And entropic tilting has established theoretical benefits, given that it
imposes the constraints in an optimal way.

Another contribution of this paper lies in the construction of a long time series of annual
regional GVA data from 1966 to 2016 for the UK. The current regional nominal GVA dataset
from the ONS only begins in 1997. Details of how we combine these data with earlier
sources are provided in the Data Appendix. Aware of data revisions, our ambition in putting
together the database was to use, as close as possible to (over our out-of-sample window),
first-release estimates of regional GVA and match these with the appropriate, similarly dated,
data release for UK GVA. This means that in producing our nowcasts we are estimating our
models on (as close as possible to, as explained in the Data Appendix) first-release estimates
and evaluating each nowcast relative to the ONS’s first estimate of regional GVA. Clements
and Galvao (2013) have advocated a similar use of ‘lightly revised’ data instead of using data
from the latest-available (real-time) vintage.

Using these data and the stacked VAR, we carry out a real-time nowcasting exercise.
At the beginning of each year, we provide unconditional (with respect to current year in-
formation) density forecasts of regional GVA growth for each region for the current year.
These forecasts do, however, condition on data from previous years; and to acknowledge the
publication lags of the regional data they are in effect two-year ahead forecasts, rather than
just one year ahead, until late in the current year when the previous year’s regional data are
published. Then, as each quarter of the current year passes by, and new UK-wide GVA data
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are released, we produce nowcasts of regional GVA growth which update the unconditional
forecasts using entropic tilting methods. We find that these updated nowcasts are much
more accurate than the initial unconditional forecasts, in terms of anticipating the ONS’s
subsequent first releases for regional GVA growth. This provides evidence that the methods
developed in this paper can be used to produce quarterly ‘flash’ (i.e. pre ONS first release)
estimates of regional GVA growth where currently only annual estimates are available. They
let us allocate national growth among the regions of the UK as soon as the quarterly UK
figures are published, enabling the production of much more timely estimates of regional
GVA growth. For instance, at the end of May 2017 we could already produce a nowcast of
regional GVA growth for 2017, conditioning on 2017Q1 UK GVA data. The actual initial
release of 2017 regional GVA by the ONS will not be until mid December 2018. In the time
between May 2017 and December 2018, our nowcasts might be found useful by a regional
policymaker in giving an early and reliable signal of the state of the economy in their region.

Methodological improvements at national statistical offices are of course an ongoing pro-
cess, and their official estimates are to be preferred over model-based ones. Therefore, while
it is anticipated that 2019 will see the ONS starting to produce ‘Regional Short Term Indi-
cators’ at the quarterly frequency, the methods developed in this paper will remain relevant
- given that these new regional data from the ONS will still be published with a delay of 3 to
4 months. So, in time (as these new data accumulate, and their historical coverage improves
facilitating model estimation), one can imagine the methods developed in this paper being
used again, perhaps at the monthly frequency exploiting the ONS’s new monthly estimates
of UK output growth too. Similar issues are faced in other countries, as Stock (2005) empha-
sises: “an important practical challenge facing regional economists is combining...different
sources of data to provide a timely and accurate measure of regional economic activity”.
Therefore, we also imagine the methods developed in this paper having wider applicability.
For example, currently in the US while the Bureau of Economic Aanalysis produce their
‘advance’ US-wide quarterly GDP estimate about one month after the end of the quarter,
quarterly state domestic product data are published three months later.

2 The Econometrics of Regional Nowcasting

Our goal is to build an econometric model for nowcasting regional output growth using mixed
frequency data comprising annual observations for the regions and quarterly observations for
the UK as a whole; although, as we discuss below and consider in the empirical application,
other quarterly indicators, that empirically may help explain regional growth, can also be
added into the model in a relatively straightforward manner.

Our nowcasts will be of annual growth rates, but they will be updated quarterly using
entropic tilting methods. In this section, we first describe the stacked VAR we use. Next
we describe the prior used to achieve prior shrinkage and avoid over-parameterisation con-
cerns. Subsequently, we describe predictive and posterior inference in the model. Finally, we
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describe how we implement the entropic tilting.

2.1 The Stacked VAR

First, we define our notation:

• r = 1, .., R is an index for the UK regions.

• t = 1, .., T is an index for time at the annual frequency.

• Y r,A
t is annual GVA for region r.

• yr,At =

(
Y r,A
t −Y r,A

t−1

Y r,A
t−1

)
is annual GVA growth in region r.

• Y UK
t,q is UK GVA in the qth quarter of year t where q = 1, .., 4.

• yUKt,q =
(
Y UK
t,q −Y UK

t−1,q

Y UK
t−1,q

)
is annual GVA growth in the UK relative to the same quarter in

the previous year.

Note that we are not approximating the percentage growth rate using log differences. The
use of log differences would entail slight changes in our entropic tilting formulae and, in
particular, to the weights in (20) below.

The stacked VAR is a VAR (at the annual frequency) using

yt =
(
yUKt,1 , y

UK
t,2 , y

UK
t,3 , y

UK
t,4 , y

A
t

)′
(1)

as the vector of dependent variables where yAt =
(
y1,At , .., yR,At

)
stacks all the annual vari-

ables into vectors. In words, this approach stacks GVA growth for all the regions along with
the four quarterly values for UK GVA growth into a vector which contains the dependent
variables in a VAR. As we consider further below, in section 3.1 of the empirical application,
other variables (e.g. regional labour market data and sectoral GVA growth data) can also be
added to yt - in the hope that these indicators help deliver improved nowcasts for regional
GVA growth, yr,At . These additional indicator variables could be quarterly or annual, and
measured at the regional, sectoral and/or aggregate levels. It is ultimately, assuming data
availability for these indicator variables, an empirical question whether and, if so, what addi-
tional indicator variables help explain and nowcast regional GVA growth. Our methodology
is in principle applicable irrespective of this; and for ease, but without loss of generality, in
setting out our methodology below we focus on the more parsimonious VAR model where
yt =

(
yUKt,1 , y

UK
t,2 , y

UK
t,3 , y

UK
t,4 , y

A
t

)′
. While consideration of a larger VAR increases the com-

putational costs of estimating our model, in principle the Bayesian methods we use, as in
Banbura, Giannone and Reichlin (2010) and the subsequent ‘large Bayesian VAR’ literature,
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mean our modelling approach and use of entropic tilting is both applicable and feasible even
when many additional indicators are considered. In sub-section 3.1.1, we do consider such a
larger VAR with more indicators. However, our main focus is on showing how entropic tilting
methods can be used to exploit the constraint that UK output growth is (approximately)
a weighted average of regional growth to produce more accurate nowcasts. Thus, our main
results are for a VAR involving only GVA data.

The reduced form version of the stacked VAR with P lags is written as:

yt = B0 +
P∑
j=1

Bjyt−j + εt (2)

where B0 is a vector of intercepts. The stacked VAR is often written as a structural VAR
which imposes a sequential ordering on the high frequency variables (see, e.g., McCracken,
Owyang and Sekhposyan, 2018). To do impulse response analysis, such an ordering is re-
quired. But for unconditional forecasting, it is acceptable to use an unrestricted reduced form
(see the discussion in section 2.3 of Ghysels, 2016). In this paper, we use the stacked VAR
to produce unconditional forecasts which are then entropically tilted. Hence, we work with
this reduced form VAR. Given that, as discussed further in section 2.3, the weighted sum of
the four quarterly UK growth rates approximately equals the weighted sum of the regional
growth rates, the covariance matrix of our model is close to singular; but this presents no par-
ticular difficulties in estimation itself, given our Bayesian approach and the prior/shrinkage
or regularisation implied. That is, even if the error covariance matrix were singular (which
it is not), the posterior and predictive densities are proper. Given that we wish to nowcast
all the disaggregates using known information on the aggregate, our approach to imposing
the aggregation constraint is attractive relative to the alternative of avoiding singularities by
eliminating one of the disaggregates from the model.

We consider homoskedastic and heteroskedastic versions of the model, (2). The former
assumes εt to be i.i.d. N (0,Σ). The heteroskedastic version of this model uses the specifi-
cation of Cogley and Sargent (2005) which replaces the Σ of the homoskedastic model by Σt

which is written as:
Σt = ADtA

′ (3)

where A is a lower triangular matrix with ones on the diagonal. Dt is a diagonal matrix with
diagonal elements σ2

it which are assumed to follow univariate stochastic volatility processes.
That is,

σ2
it = exp (hit) (4)

where
hit = γhit−1 + vit (5)

with vit i.i.d. N (0, φi). The homoskedastic specification is obtained if φi = 0 for all i.
Note that we are working with annual data which means the sample will be short. And,

since the dimension of yt is N = R + 4 we are working with a fairly large VAR. With large
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VARs such as this, it is common to use Bayesian methods so as to allow for prior shrinkage
to overcome the problems associated with a shortage of data information.

2.2 Bayesian Analysis with the Stacked VAR

With large VARs, Bayesian methods using the Minnesota prior are commonly used (see,
among many others, Banbura, Giannone and Reichlin, 2010) and we follow this practice
with our mixed frequency VAR. However, following Giannone, Lenza and Primiceri (2015),
we estimate the prior shrinkage parameters from the data. In this sub-section, we provide
details (see also Dieppe, Legrand and van Roye, 2016, section 3.3).

We begin with the homoskedastic version of the model. The Minnesota prior replaces Σ
by Σ̂ which is the OLS estimate from the stacked VAR. Thus, we need only worry about the
prior for the VAR coefficients. Let β be the N × (NP + 1) vector containing all the VAR
coefficients. The Minnesota prior is N

(
β, V

)
with particular choices for β and V . These can

be explained by noting that the VAR coefficients can be divided into three categories: i) own
lags (i.e. lags of dependent variable i in equation i), ii) other lags (i.e. lags of dependent
variable i in equation j for i 6= j) and iii) exogenous variables such as the intercept. The
prior mean vector, β, is set to zero except for first own lag coefficients which are set to b. We
consider a grid of values within the interval b ∈ [0.1, 1.0] with a step size of 0.05 and estimate
b.

The prior covariance matrix, V , is a diagonal matrix with diagonal elements specified as
follows:

• Prior variances for coefficients on own lags at lag l are:(
λ1
lλ3

)2

. (6)

• Prior variances for coefficients on the lth lag of the jth variable in the ith equation are:(
s2i
s2j

)(
λ1λ2
lλ3

)2

. (7)

• The prior variance for the intercept is:

s2i (λ1λ4)
2 . (8)

In these expressions, s2i is the OLS estimate of the error variance from a univariate autore-
gressive model for the ith variable.

We estimate the shrinkage parameters. For λ1, which controls overall shrinkage, we use
the grid of values in the interval [0.05, 0.3] with a step size of 0.01. For λ2 which controls
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other lag shrinkage, we use the grid of values in the interval [0.1, 3] with a step size of 0.05.
For λ3 which controls the rate that shrinkage increases on longer lag lengths, we use a grid of
values in the interval [1, 2] with step size 0.2. For λ4 we use a grid over the interval [100, 1000]
with step size 100 which implies a very non-informative prior. All these intervals contain the
benchmark recommendations of Dieppe, Legrand and van Roye (2016) within them; and
we did not obtain estimates at any of the boundaries of our grids indicating that they are
sufficiently wide.

For the heteroskedastic version of the model we use the prior just described for the VAR
coefficients, but additionally require a prior for the parameters controlling Σt. These are A,
γ and φi and hi0 for i = 1, .., N . We set γ = 0.85 and let each free element of the lower
triangular matrix A have a non-informative prior. For φi we use relatively non-informative
inverse Gamma priors:

IG(0.001, 0.001). (9)

As a general comment about prior specification, we have done extensive experimentation
with various choices from the range of priors available in the BEAR Toolbox of Dieppe,
Legrand and van Roye (2016). We have also experimented with different lag lengths. The
specification and prior choices used in this paper are those which yield the highest marginal
likelihoods. This led us to work with the Minnesota prior and set the lag length, P , to one.

We remind the reader that analytical posterior results are available for the homoskedastic
version of the model. But when we allow for stochastic volatility computationally demand-
ing MCMC methods are required. Our method for the estimation of shrinkage parameters
requires MCMC methods to be repeatedly used at every possible combination of values for
our shrinkage parameters. By having 4 shrinkage parameters, the number of combinations
considered is 24. This is already more flexible that most of what is done in the existing
literature (e.g. Banbura, Giannone and Reichlin (2010) only have one shrinkage parameter).
It would be possible to have additional shrinkage parameters (e.g. to give lags of UK GVA
data a different treatment than regional GVA variables) or to have more refined grids, but
computation would increase commensurately.

Posterior and predictive analysis can be done using standard Bayesian MCMC methods
and we use the BEAR toolbox to do so (see Dieppe, Legrand and van Roye, 2016). The main
output will be draws from the one-step (and two-step) ahead predictive densities. For future
reference, we will denote the predictive density of yτ+1 given all the information available at
time τ by p (yτ+1|Dataτ ), where Dataτ denotes all the data available to the forecaster at the
end of period τ . Given the aforementioned publication lags associated with the regional data,
such that in the UK regional GVA data for year τ are not currently available until near the
end of year τ + 1, the predictive density of interest, p (yτ+1|Dataτ ), is in effect produced as a
two-year ahead forecast from the stacked VAR until the regional data for year τ are published
in December of year (τ + 1). That is, until late in year (τ + 1), rather than contain data for
year τ , Dataτ in fact contains regional GVA data dated year (τ − 1) and earlier.
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2.3 Entropic Tilting Using Quarterly Releases of UK Data

The previous sub-section described how to produce unconditional (with respect to current
year information) forecasts using annual data. Given the (as of the time of writing this paper)
nearly one year delay in releasing regional GVA data, these forecasts, p (yτ+1|Dataτ ), can be
used as nowcasts for the year. However, we want to update these nowcasts throughout year
(τ + 1) as new information on UK GVA, and any other indicators, is released each quarter.
We will do so using entropic tilting methods as described in this sub-section.

The standard stacked VAR defined by (2) captures the general property that quarterly
GVA growth data for the UK as a whole (or indeed any additional indicators) might help
nowcast regional GVA growth, since lags of UK GVA growth (or any additional indicators)
appear on the right hand side of the equation for each region and the VAR error covariance
matrix allows for contemporaneous correlations between the equations for regional GVA
growth and that of the UK as a whole. This structure means that if we update UK GVA
figures as they are released after each quarter, the regional GVA growth figures will also be
updated. If, for instance, an unexpectedly favourable outcome for UK GVA growth occurs in
the first quarter of a year, this is a strong signal that growth in most or all UK regions has also
increased. It is desirable to incorporate this information now (i.e. after the first quarter value
of UK GVA has been released) and update the estimates of regional GVA throughout the year
rather than waiting for the release of regional GVA data. The interlinkages built into the VAR
allow us to do this. However, this assumes a balanced dataset. In practice, as the quarterly
UK GVA data, and any additional indicators, arrive sequentially throughout year (τ + 1) we
have a “ragged-edge” with current quarter/year values known for some indicators but not
others. We will show how entropic tilting can be used to update the unconditional density
forecast (produced from the balanced dataset, Dataτ ) as these new data arrive through year
(τ + 1). An alternative, practical way of modifying the stacked VAR model to accommodate
differential publication lags of any additional indicators, is simply to include leads of them in
the VAR. However, as we go onto explain, this is less attractive when handling the UK GVA
data themselves - that we anticipate are an important, and stable, indicator for regional GVA
- given that we also wish to modify the stacked VAR to reflect the reality that these regional
data (spatially) sum, at a given point in time, to the (temporal) sum of the four quarterly
UK-wide estimates.

But there is a second way that the quarterly releases of UK GVA data can be used to shed
light on what is happening in the regions. This is through what we call the cross-sectional
restriction. This restriction, as just discussed, embodies the fact that GVA growth for the UK
as a whole is a weighted average of regional growth rates. In this sub-section, we discuss how
to incorporate these types of information in the context of the stacked VAR using entropic
tilting methods.

Increasingly, macroeconomic forecasters want to move beyond unconditional forecasts to
incorporate extra information or restrictions on their forecasts (see, among many others,
Alessi, Ghysels, Onorante, Peach and Potter, 2014, and Krüger, Clark and Ravazzolo, 2017)
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such as our cross-sectional restriction. Conditional forecasting and entropic tilting are two
ways of doing this. A previous literature in statistics dating back to Deming and Stephan
(1941), with Bryon (1978) and Smith, Weale and Satchell (1998) developing the statistical
theory, imposes constraints using least squares methods and focuses on the mean as opposed
to the entire predictive density as here.

The idea of (“hard”) conditional forecasting (see Waggoner and Zha, 1999) is that you
impose this condition exactly on the forecasts. This is increasingly done by policymakers in,
for example, central banks. For instance, the policymaker may be interested in forecasts of
inflation for different interest rate paths. An unrestricted VAR for inflation, the interest rate
and other variables would provide unrestricted forecasts of inflation. Conditional forecasting
procedures would allow, for instance, for a forecast of inflation conditional on the interest
rate remaining at 0.5%, another forecast conditional on the interest rate being raised to
0.75%, etc. And more relevantly for us, in their nowcasting application using a stacked VAR,
McCracken, Owyang and Sekhposyan (2018) show how nowcasts of quarterly US GDP growth
can be produced and updated within-quarter via conditional forecasting methods as high-
frequency indicator data are released throughout the quarter. “Hard” conditional forecasting
methods impose the restriction exactly. That is, in a predictive simulation algorithm which
provides draws (call them y

(s)
τ+1 for s = 1, .., S) from the predictive density, every single draw

will satisfy the restriction. This contrasts with entropic tilting (that relates to the “soft”
conditioning approach of Waggoner and Zha, 1999) where only the predictive mean (or other
predictive moments specified by the researcher) will satisfy the constraint.

In this paper we use entropic tilting since we expect the cross-sectional restriction to hold
only approximately and, thus, we do not wish to impose it exactly as in (“hard”) condi-
tional forecasting (or least squares methods). In our case, this cross-sectional relationship is
approximate since the GVA data for the regions that we use do not exactly add up to UK
GVA because of measurement error (see the Data Appendix) and because our main results
exclude GVA produced in the UK continental shelf (UKCS). UKCS data are dominated by
the activities of the UK oil and gas sector.

As Table 5 shows, the UKCS data exhibit volatile behaviour that is also inconsistent with
how the other regions relate to UK GVA. As a result, for our main results, we do not include
UKCS in yAt for fear of contaminating the relationship between the other UK regions and
UK GVA with potentially deleterious effects on the accuracy of the nowcasts. However, as it
is ultimately an empirical matter what works best, we also present results which do include
UKCS in yAt . In both cases, UKCS remains part of yUKt,q ; i.e. the UK GVA figures that we
condition the regional nowcasts on include the UKCS. This means that for those VARs that
exclude UKCS in yAt this is an additional reason, to measurement error, why we expect the
cross-sectional relationship to hold only approximately. Note that it is not possible to remove
UKCS activity from the overall estimates of UK quarterly GVA and then entropically tilt
towards that estimate. While some sectoral detail for GVA is available for the UK as a whole
on a more timely basis, not all Oil and Gas related activity in the UK ‘Mining & quarrying
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including oil and gas extraction’ sector is activity which takes place in the UKCS. Some of
this activity relates to onshore activity in support of activity in the UKCS. Similarly, not
all of the activity in this sector relates to oil and gas extraction. It would therefore not
be appropriate to treat the ‘Mining & quarrying including oil and gas extraction’ sector as
synonymous with the UKCS activity series.

The idea of entropic tilting is to produce a new predictive density,
p∗ (yτ+1|Dataτ ), which has a mean which satisfies the restriction but is in all other respects
as close as possible to p (yτ+1|Dataτ ). “As close as possible” is defined according to the
Kullback-Leibler Information Criterion (KLIC) which is a measure of the relative entropy
of p∗ (yτ+1|Dataτ ) to p (yτ+1|Dataτ ). So, in our case, the predictive mean (i.e. the point
forecast) produced by p∗ (yτ+1|Dataτ ) will satisfy the restrictions but otherwise the predictive
density will be as close as possible to the unrestricted predictive density produced by the
stacked VAR.

We use results based on a Normal approximation. Conditional on the parameters of the
model, the predictive density from our model is Normal. The unconditional predictive density
integrates out the parameters and, thus, is no longer Normal but is likely to be nearly so.

Assume that the unrestricted predictive density is Normal:

yτ+1|Dataτ ∼ N (µ, V ) (10)

and break down the parameters into UK and regional blocks as follows:

µ =

[
µUK
µR

]
, V =

[
VUK V ′UK,R
VUK,R VR

]
. (11)

The estimation procedure of the preceding sub-section will provide µ and V .
Now suppose that we want to tilt the multivariate predictive density so that the mean of

some variable (or set of variables) is fixed (e.g. so as to set the predictive mean of yUKτ+1 to
µ∗UK where µ∗UK is chosen to reflect period τ+1 UK-wide information that has come available
before the τ + 1 regional data are released), but otherwise we want to leave the predictive
density to be as close to p (yτ+1|Dataτ ) as possible. It can be shown (see, e.g., Altavilla,
Giacomini and Ragusa, 2017) that the tilted predictive density is:

y∗τ+1|Dataτ ∼ N (µ∗, V ∗) (12)

where V ∗ = V (i.e. tilting does not change the predictive variance) and

µ∗ =

[
µ∗UK
µR − VUK,RV −1UK (µUK − µ∗UK)

]
=

[
µ∗UK
µ∗R

]
. (13)

Note that this type of entropic tilting relates to UK variables since this is what is being
released throughout the year. Thus, it may appear that it does not directly impact on the
regional growth nowcasts. But this appearance is incorrect since µR 6= µ∗R. The intuition is
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that, unless VUK,R = 0 and the UK nowcasts are uncorrelated with the regional nowcasts,
the updating of UK GVA nowcasts will spill over into the regional nowcasts. Note that
cross-region dependencies are captured via VR.

But we also want to tilt toward the cross-sectional constraint which does directly relate
to the regional growth nowcasts. To add the latter restriction, we extend the conventional
result given in (12). To this end, we define a new variable z = Ayt+1. The properties of the
multivariate Normal distribution imply

z ∼ N (Aµ,AV A′) (14)

for any M ×N matrix A. If we set

A =

[
w
IN

]
(15)

where w = (0, 0, 0, 0, w1,t−1, .., wR,t−1) and wr,t−1 for r = 1, .., R are region-specific weights
to be defined below, then z contains the weighted average of the nowcasts of regional GVA
growth as its first element, followed by the four quarterly UK GVA growth nowcasts, followed
by the R regional nowcasts.

We apply the entropic tilting formula of (12) to z. To this end, let µ† = Aµ and V † =
AV A′ where

µ† =

[
µ†1
µ†2

]
, V † =

[
V †11 V †′21
V †21 V †22

]
(16)

and assume that the tilting restrictions are µ†1 = µ∗1. Let z† denote the tilted version of z.
Then the same derivations used to find (12) can be used to show that:

z‡ ∼ N
(
µ‡, V †

)
(17)

where

µ‡ =

[
µ∗1

µ†2 − V
†
21V

†−1
11

(
µ†1 − µ∗1

) ]
. (18)

Note that V † will be a singular matrix, but this causes no problem for our derivations
as they only involve inverting V †11 (which is non-singular) and we are only interested in the
tilted predictive densities for the regional GVA variables which have predictive covariance
matrix V †22 (which is non-singular).

The preceding material described the general motivation and formulae relating to entropic
tilting. To describe the precise way we implement it (i.e. the exact choice for µ∗1), we first
define the temporal and cross-sectional constraints we will use. These results arise from the
fact that annual UK GVA, Y UK

t , can be written in two different ways:

Y UK
t =

4∑
q=1

Y UK
t,q =

R∑
r=1

Y r,A
t . (19)
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In growth rates, this implies

yUKt =
Y UK
t − Y UK

t−1

Y UK
t−1

=
4∑
q=1


Y UK
t−1,q

4∑
q=1

Y UK
t−1,q

 yUKt,q (20)

=
R∑
r=1

 Y r,A
t−1,q

R∑
r=1

Y r,A
t−1,q

 yr,At

=
4∑
q=1

wukq,t−1y
UK
t,q =

R∑
r=1

wr,t−1y
r,A
t

where yUKt,q is UK growth relative to the previous year and the w’s are the weights.
Now imagine we know yUKt+1,1 i.e. UK growth in the first quarter of year (t+ 1). We wish

to impose this information when nowcasting, but yUKt+1,2, y
UK
t+1,3, y

UK
t+1,4 are still unknown. We

therefore assume, when tilting to reflect the cross-sectional constraint, that yUKt+1,2 = yUKt+1,3 =
yUKt+1,4 = yUKt+1,1 i.e. growth continues through year t + 1 at the rate seen in the first quarter.
Given that our data are seasonally adjusted, the assumption of constant growth throughout
the year is the most reasonable one and, as we shall see, it works well empirically. This
implies we tilt to reflect

yUKt+1,1 =
R∑
r=1

wr,ty
r,A
t+1. (21)

Now assume we know yUKt+1,1 and yUKt+1,2 and again assume growth continues at the most
recent quarterly rate through the remainder of the year. This means we now tilt to reflect:

(
wuk1,ty

UK
t+1,1 + 3wuk2,ty

UK
t+1,2

)
=

R∑
r=1

wr,ty
r,A
t+1. (22)

Noting that the first element of µ∗1 will relate to the variable
R∑
r=1

wr,ty
r,A
t+1, the following

summarises how we proceed as we update our nowcasts using entropic tilting as new UK
data (Q1 to Q4, i.e. yUKτ+1,1 to yUKτ+1,4) are released:

1. After the release of Q1 UK GVA growth (in May of each year) set:
µ∗1 =

(
yUKτ+1,1, y

UK
τ+1,1

)′
.
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2. After Q2 release (in August of each year) set:
µ∗1 =

((
wuk1,τy

UK
τ+1,1 + 3wuk2,τy

UK
τ+1,2

)
, yUKτ+1,1, y

UK
τ+1,2

)′
.

3. After Q3 release (in November of each year) set:
µ∗1=

((
wuk1,τy

UK
τ+1,1 + wuk2,τy

UK
τ+1,2 + 2wuk3,τy

UK
τ+1,3

)
, yUKτ+1,1, y

UK
τ+1,2, y

UK
τ+1,3

)′
.

4. After Q4 release (in February of each year) set:
µ∗1 =

(
yUKτ+1, y

UK
τ+1,1, y

UK
τ+1,2, y

UK
τ+1,3, y

UK
τ+1,4

)′
.

In fact, since prior to release of the Q4 data for year τ + 1 the regional GVA data for year τ
are not yet available (since 2005 the regional data have been published in December of each
year), and so as to respect this publication lag and produce genuinely real-time nowcasts, we
condition our Q1 to Q3 nowcasts on 2-year rather than 1-year ahead (unconditional) density
forecasts from the VARs. While this does not affect how we condition the regional nowcasts
on within-year (τ + 1) data for the UK, as detailed in 1. to 4. above, for the Q1 to Q3
nowcasts we consider an augmented A matrix and an augmented µ† vector, see (23) below,
that let us impose the additional cross-sectional constraint that the regional data for year τ ,
while now forecast rather than assumed known as in Q4, are consistent with known UK data
for (the previous) year τ that are available from when the Q1 nowcast is made for year τ + 1.

A =



0 0 0 0 0 0 0 0 w′τ−1 01×R
1 0 0 0 0 0 0 0 01×R 01×R
0 1 0 0 0 0 0 0 01×R 01×R
0 0 1 0 0 0 0 0 01×R 01×R
0 0 0 1 0 0 0 0 01×R 01×R
0 0 0 0 0 0 0 0 01×R w′τ
0 0 0 0 1 0 0 0 01×R 01×R
0 0 0 0 0 1 0 0 01×R 01×R
0 0 0 0 0 0 1 0 01×R 01×R
0 0 0 0 0 0 0 1 01×R 01×R
0 0 0 0 0 0 0 0 IR 0R
0 0 0 0 0 0 0 0 0R IR





yUKτ,1
yUKτ,2
yUKτ,3
yUKτ,4
yUKτ+1,1

yUKτ+1,2

yUKτ+1,3

yUKτ+1,4

yAτ
yAτ+1


; µ†=



yUKτ
yUKτ,1
yUKτ,2
yUKτ,3
yUKτ,4
yUKτ+1

yUKτ+1,1

yUKτ+1,2

yUKτ+1,3

yUKτ+1,4

yAτ
yAτ+1



(23)

3 Empirical Results

In this section, we examine the performance of our nowcasting methods using data from
1967-2016. We continue to use quarterly UK GVA growth data and annual GVA growth
data for either 9 UK regions or 10 if we include UKCS; i.e. we continue to focus in these
baseline empirical results on stacked VAR models in yt, as defined in equation (1), before we
turn to consideration of larger VAR models, with additional indicator variables, in section
3.1 below.
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Figure 1: GVA Growth for the UK Regions (in %: 100× yr,At )
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Definitions of these regions and further details of the data are given in the Data Appendix.
It is worth reiterating that in this empirical exercise we use, as closely as possible, first release
GVA estimates in our model, and compare our nowcasts to these same data (plotted in Figure
1). In this way our empirical exercise is as near as possible real-time. The key question of
interest is whether the entropic tilting using timely, quarterly, UK-wide data will improve
the nowcasts of (ONS first release) regional GVA data. This is the question we will focus on
in this section To evaluate the nowcasts from the VAR models, we use a variety of standard
measures of forecast performance. In particular, we use root mean squared forecast errors
(RMSFE) to evaluate the quality of the point nowcasts. The evaluation of the accuracy
of the entire predictive density uses log predictive scores (LPS) and the continuous ranked
probability score (CRPS). See Appendix A.10 of Dieppe, Legrand, and van Roye (2016) for
definitions of all these nowcast (forecast) evaluation metrics. We report these results for the
VAR models relative to the (2-year ahead density) forecasts from AR(1) models (with Normal
errors). These models simply take the annual regional data for each region individually and
use ordinary least squares (OLS) methods; but given the aforementioned publication lags we
use 2-year ahead forecasts. Comparison against a univariate benchmark enables us to assess
the utility in our VAR models of conditioning the regional nowcasts on within-year UK data
exploiting inter-regional dynamics. While arguably the most common forecasting benchmark
in applied macroeconomics, with some attractive robustness properties in the presence of
structural breaks (e.g. see Clements and Hendry, 1999), we examine the sensivity of our

16

Authors' copy: Accepted for publication at Journal of the Royal Statistical Society: Series A 

This version: March 2019



results to this specific choice for the benchmark model in section 3.1 below by considering a
more sophisticated mixed frequency univariate benchmark.

To aid in interpretation, note that relative values for the CRPS and RMSFE measures less
than unity indicate that there are forecast gains associated with use of our VAR models; these
relative values are calculated as the CRPS or RMSFE from our nowcasting model divided
by the CRPS or RMSFE from the benchmark model. For the LPS we subtract the LPS for
the benchmark model from those for each of our VAR models; positive values now therefore
indicate improved forecast accuracy, relative to the univariate benchmark and are similar to
a Bayes factor (except that the Bayes factor is an evaluation of predictive performance over
the entire sample). With Bayes factors a common rule of thumb (see Kass and Raftery, 1995)
is that there is strong evidence in favour of one model over another if the log Bayes factor is
greater than 3. The reader is advised to keep this value in mind when comparing LPS results
from different approaches.

Our nowcast evaluation period begins in 2006. Our methods are recursive, and involve
repeated re-estimation of our models. That is, we do a real-time out-of-sample nowcasting
exercise using an expanding window of data beginning in 2006.

Tables 1 and 2 present these three forecast metrics, relative to the AR model, for the 9
UK regions for the homoskedastic and heteroskedastic stacked VARs. Tables 3 and 4 repeat
the analysis using 10 regions, where UKCS is included in the stacked VAR. The final row of
each panel of each table presents an average (for RMSFE and CRPS) or sum (for LPS) over
all regions. As one moves from left to right in the tables, the forecasting metrics reflect more
and more information. The first column of numbers in each table is based on unconditional
nowcasts (i.e. 2-year density forecasts from the VARs). In all these tables, it can be seen that,
except on one occasion if interested in nowcasting the UKCS, incorporating new information
on UK GVA (as it accumulates each quarter) via our entropic tilting methods, produces more
accurate nowcasts. That is, substantial decreases in RMSFEs and CRPSs and increases in
LPSs, relative to the AR benchmark, are observed as we move through the year. For instance,
in Table 1 we find that the average (across regions) of the RMSFEs is almost half as small
by the end of the year as it was at the beginning (i.e. it drops from 0.97 to 0.49 as we move
through the year). Thus, overall, the point forecasts are improving substantially. The LPS
results show that similar improvements occur for the entire predictive density. For instance,
in Table 1 the sum of the LPSs over all regions increases from 0.79 to 6.54, which is strong
evidence in favour of conditioning on UK GVA values bearing in mind that log Bayes factors
greater than 3 are generally seen as strong. The gains are also strong using the CRPSs with,
in Table 1, the average over all regions dropping from 0.93 to 0.48 and the average CRPS
dropping from 0.85 to 0.55 in Table 2. Interestingly most of the gains in nowcast performance
are found after the first quarter of UK GVA data are released. Thus, nowcasts produced as
early as May by our stacked VAR approach are appreciably better than the unconditional
nowcasts that would have been produced in February. There are nevertheless modest gains
seen, on average in Table 1, as quarterly information accrues through the year with the RMSE
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and CRPS ratios declining and the LPS differences increasing. Interestingly, conditioning on
the Q4 release does not help much; this is despite the fact that it is only with this Q4 release
of UK GVA that the regional data for the previous year become available, so that we can
condition on a 1 rather than a 2-year (unconditional) density forecast from the VAR.

The fact that our four tables are producing similar results offers reassurance that our
results are robust to changes in specification and in data. We note that there is little evidence
that inclusion of stochastic volatility is important in this application, perhaps related to our
use of yearly rather than higher frequency forecasts. It is true that, if we use conventional
model comparison measures using the unconditional forecasts, the inclusion of stochastic
volatility does lead to slight improvements relative to the homoskedatic model. For instance,
the sum of the log predictive scores is 1.04 in Table 2 (which includes stochastic volatility)
and 0.79 in Table 1 (which does not). A similar pattern can be found if we compare Tables 3
and 4. However, when we look at the entropically tilted nowcasts, the homoskedastic version
of the model tends to do better. For instance, the sum of log predictive scores using tilted
nowcasts with 4 quarters of UK GVA growth is 6.54 in Table 1 but only 4.54 in Table 2.

A comparison of Tables 3 and 4 with Tables 1 and 2 indicates that including UKCS
as a region does not tend (with a few exceptions) to lead to any improvements in nowcast
performance for the 9 other UK regions. For instance, the best overall summary of evidence is
probably the sum of the log predictive scores for the 9 UK regions; and for this a comparison of
Table 1 and Table 3 indicates that including UKCS leads to a rise of 0.12 in the unconditional
forecast case, but reductions in the log predictive scores across the other four nowcasts
(relative to the AR benchmark). On this basis, we conclude that omitting UKCS is not
harmful and take the homoskedastic mixed frequency VAR with nine regions as being our
preferred specification to look at in more detail. We are not surprised by this result, given
the distinct (univariate) time series properties of UKCS relative to the other regions of the
UK as summarised in Table 5.

If we look at the individual regions, they uniformly exhibit the same patterns noted above.
As new information about UK GVA is released (on a quarterly basis) it clearly is helping to
improve nowcasts for every region. These (relative) nowcast improvements are particularly
large for London and the South East. This is not surprising, since this region comprises a large
share of UK GVA; and, as Table 5 shows, it is (in-sample) the most correlated English region
with UK GVA growth. Following Pesaran (2006), UK GVA growth - as a cross-sectional
average - can be interpreted as the common “factor” driving regional growth dynamics. But
even for smaller regions (e.g. Scotland), we find nowcast improvements which are similarly
large. This is consistent with these regions’ growth dynamics still being dominated by (com-
mon) UK dynamics, again as illustrated via the high correlations of regional GVA growth
with UK GVA growth shown in Table 5. The weakest relative performance is for Northern
Ireland. As seen in Table 5, GVA growth in Northern Ireland exhibits the lowest correlation
with UK GVA at 0.8 compared with at least 0.9 for the other regions (with the exception
of the UKCS). This suggests that GVA movements in Northern Ireland depend less on the
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common UK “factor” than in the other regions of the UK. But even for Northern Ireland, the
nowcast metrics improve as new information on UK GVA growth is incorporated throughout
the year; and the nowcasts are clearly more accurate than those from the AR benchmark
(with gains of at least 20% across the three evaluation metrics).

It can be seen that while there are often gains from using an unconditional multivariate
forecasting method which allows information from different regions and the UK as a whole to
inform the forecasts of a particular region, our unconditional forecasting metrics (i.e. without
entropic tilting) do not always beat the AR(1) benchmark. London and the South East is
a leading example in Table 1. It is only when entropic tilting is used that we see the more
substantive gains. That is, when we use the additional quarterly UK data as it released
throughout the year large gains are made relative to a simple univariate method.

Tables 1 to 4 reflect average performance over our nowcast evaluation period. Figures
2 to 4 shed light on whether there are particular time periods when incorporating new in-
formation using our tilting methods is particularly important. These figures are based on
the homoskedastic mixed frequency stacked VAR and do not include the UKCS. They plot,
for each region, actual regional GVA growth (i.e. the subsequent realisation using the first
estimate from the ONS) along with our five different nowcasts (conditional means of the now-
cast densities). One clear pattern which emerges, to varying degrees across regions, is that
2009 is a year where updating regional nowcasts, in the light of the more timely UK data, is
particularly important. As the Great Recession hit, the unconditional forecast of 2009 GVA
growth turned out to be much higher than the realisation in every region. However, our
tilting methodology quickly downgraded the 2009 nowcasts. 2013 is another year when the
tilted nowcasts showed big improvements relative to the unconditional forecasts. In this case,
realised GVA growth in all regions was higher than expected and the unconditional forecast
was too low in every region. By tilting towards UK-wide releases as they came available, the
nowcasts were upgraded and ended up being much closer to the actual 2013 realisation.

3.1 Robustness

3.1.1 Larger VAR models

In other nowcasting and forecasting applications, albeit of aggregate output growth, it has
been found that consideration of a larger set of indicators can be beneficial; e.g. see Banbura,
Giannone, Reichlin (2010), Foroni and Marcellino (2014) and Carriero, Clark and Marcellino
(2015). Similarly, in our application, we might hope that additional indicators help explain
and anticipate regional output growth. It is ultimately an empirical matter. But we should
admit that we are (a priori) somewhat cautious about the predictive content of these ad-
ditional indicators, given that they do not share the characteristic of UK GVA growth, the
main indicator considered above, of being the cross-sectional aggregation of the regional GVA
data that we are in fact seeking to nowcast.

Nevertheless, to explore the scope to improve further the accuracy of our regional growth
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nowcasts when additional quarterly and/or annual indicators, at the regional, sectoral and
aggregate levels, are included in our VAR models, in this section we provide some evidence
that evaluates how nowcast accuracy is affected empirically when we do consider some stacked
VAR models augmented with additional indicators. We should emphasise that our stacked
VAR models are already pretty ‘large’, given our consideration of regional data, and of a
comparable size to the ‘large’ VAR models considered, for example, in Carriero, Clark and
Marcellino (2015)’s nowcasting application. So consideration of appreciably larger VAR mod-
els raises computational challenges, given our model specification and strategy to estimate the
shrinkage parameters preclude use of analytical methods. We therefore restrict our attention
to VAR models with a dozen or so additional indicators.

Our experiments involved adding to yt candidate indicator variables that might credibly
be believed to offer some additional (to quarterly UK GVA growth and lagged regional
GVA growth) explanatory power for regional GVA growth. In searching for these indicator
variables, inevitably we face some data constraints and limitations. In applications which
nowcast country-wide output growth, timely data on industrial production are often found to
improve accuracy (e.g. see Mazzi, Mitchell and Montana, 2014). However, the ONS do not
publish higher-frequency and/or more timely breakdowns of regional industrial production.
Drawing on Bell, Co, Stone and Wallis (2014) in their application which nowcasts (aggregate)
output growth in the UK, we might also hope to use qualitative business survey data, as they
find these survey data are useful and timely indicators of UK output growth. While regional
breakdowns of these business survey data, for example PMI data, are available, in fact at
the monthly frequency, their historical coverage is limited; regional PMI data date back to
1997 only. But the historical coverage of regional labour market data is better. So we do
augment our stacked VAR model with regional data on jobseeker’s allowance (JSA), an ONS
measure of unemployment. JSA data are in fact available monthly, but we choose to work
with them aggregated to the quarterly frequency. But in aggregating we accommodate the
fact that these JSA data are currently released just two weeks after the end of the month of
interest. So, for example, in defining yt we match the JSA annual growth rate ending in April
(published in May) with the Q1 UK GVA growth estimates, yUKt,1 , that also become available
in May. Similarly, the Q2 data, yUKt,2 , are matched to JSA annual growth rates ending in
July, and so on for the other quarters. These regional JSA data, which are not typically
revised so we use latest vintage data, date back to 1975; we backcast earlier estimates using
the UK aggregate. We also add to our VAR model sectoral GVA growth data: for the
service sector, manufacturing, construction and agriculture. These data are released at the
same time as the quarterly UK GVA data; with historical data available from the Bank
of England’s real-time database. As the sectoral composition of the UK regions varies, we
might find that regional output growth is better explained by sectoral rather than total output
growth. Consideration of these extra indicators at the quarterly frequency would increase
the dimension of our stacked VAR model by (9 + 4)× 4. To facilitate computation, but after
experimentation that suggested results were robust to this, we elected to estimate this larger
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VAR by including only the Q4 values of these additional indicators; these are always, in any
case, the latest estimates known when the unconditional predictive densities are recursively
computed. However, when tilting we do so conditioning on the latest quarterly estimate of
annual growth available for that indicator at each of the four points within the year at which
we update the nowcasts.

Accordingly, we repeated the real-time out-of-sample nowcasting exercise above using
this larger VAR model (as discussed, having also experimented with alternatives, dropping
or including subsets of these additional indicators, and finding results to be similar). Table 6
reports results, continuing to focus on the homoskedastic stacked VAR that does not include
the UKCS - given this was found to be the preferred model above. Comparing Tables 1 and
6 we are therefore able to evaluate the empirical utility of using the larger set of indicators.
Looking first at the accuracy of the unconditional forecasts, we see little evidence to suggest
that the larger set of indicator delivers improved accuracy; this is so irrespective of which
of the three measures of forecast performance we consult. In fact, it is striking how similar
accuracy is across Tables 1 and 6 when confining attention to the unconditional forecasts; if
anything the slight edge goes to the smaller VAR in Table 1. But when we turn to look at the
conditional nowcasts, we find the larger VAR model to be outperformed by the smaller VAR
model. This is especially so when measures of density accuracy are consulted. The CRPS
and LPS statistics are clearly worse than for the smaller model - even when we condition on
the Q4 release. Inspection of the underlying density nowcasts from the larger VAR models
(not reported) indicates this may be explained by the extra uncertainty apparently associated
when nowcasting with this larger set of indicators; the variances of the predictive nowcasts
are often double those from the smaller VAR model, with the extra parameter estimation
error associated with the larger VAR model no doubt contributing to this. An explanation
for these results is that, in contrast to other relationships in the larger VAR model, there is
a more stable relationship between UK output growth and regional output growth. These
other indicators offer little or no, given their noise, value-added relative to conditioning the
regional nowcasts on UK-wide output growth (and lagged values).

3.1.2 A mixed frequency (MIDAS) benchmark

To assess the incremental gains of entropic tilting and imposing the cross-sectional constraint
on our cross-region stacked VAR model, we also compare our results with those from a
mixed frequency univariate benchmark model that allows the regional nowcasts to be updated
through the year as the quarterly UK GVA data are released. To accommodate the fact that
this benchmark model now conditions on available quarterly UK GVA data, and is therefore
mixed frequency, we follow Foroni, Marcellino and Schumacher (2015) and, in effect, use
“Unrestricted” U-MIDAS models. These involve recursively forecasting using regressions
of annual regional GVA growth on lagged (again by two years) growth, as with the AR
benchmark, but then adding Q1-Q4 quarterly UK GDP as (an) additional indicator(s). So
while the first (Q1) nowcast, produced before the first release of Q1 UK GVA growth, is the
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same as the nowcast produced from the AR, the second nowcast also conditions on current
year Q1 UK GVA growth, the third nowcast on both Q1 and Q2 UK GVA growth, and so
on.

We construct the density nowcasts from these U-MIDAS models analytically, assuming
normality for the errors, with the variance of the density nowcast computed to account
for parameter estimation uncertainty as suggested by Clements and Galvao (2017); for a
more general discussion see Aastveit, Foroni and Ravazzolo (2017). We should note that
accommodating parameter estimation error does little to affect the AR results considered
in Tables 1 to 4 above; but for these less parsimonious U-MIDAS models it does make a
difference.

Table 7 reports the RMSE, CRPS and LPS statistics from these U-MIDAS models relative
to those from the AR; with numbers less than unity, for RMSE and CRPS, again indicating
that the U-MIDAS model is more accurate; and numbers for LPS greater than zero indicating
that the U-MIDAS model is more accurate. Looking at RMSE first, for several regions, but
a decreasing number as we move right in the tables, U-MIDAS is better. But looking at the
measures of density accuracy, we see overwhelming evidence that the U-MIDAS models are
less accurate than the arguably more naive AR benchmark. This result is less surprising when
we note that the U-MIDAS models, as they condition on accumulating within-year (Q1-Q4)
UK GVA growth data fit the regional GVA growth data increasingly well in-sample - as
within-year data accumulates. The in-sample fit of these regressions is considerably higher
than those of the AR benchmark. This in-sample accuracy then translates into narrower pre-
dictive nowcasts for regional GVA growth, notwithstanding some extra parameter estimation
error as the U-MIDAS models are less parsimonious. And given the out-of-sample ‘shocks’
evident over our out-of-sample period, these narrow density nowcasts from the U-MIDAS
models often appear to miss or attach a very low probability to the subsequent regional GVA
growth outturn.

4 Conclusions

In this paper we have highlighted the need for more timely macroeconomic data for the UK
regions. Our desire is to produce regional GVA estimates which are more frequent (quarterly
instead of annual) and also more timely. We have developed an econometric procedure which
combines a mixed frequency stacked VAR with entropic tilting. Our key contributions lie in
the incorporation of the new, more timely, information provided by the quarterly releases of
UK wide data acknowledging the fact that UK growth is a weighted average of growth for the
individual regions. Exploiting this cross-sectional constraint, and noting that we do not expect
it to hold exactly, we are able to produce updated regional nowcasts to the same timescale as
the ONS currently produce their quarterly UK estimates. That is, the latest UK data help
allocate national growth among the regions of the UK. In a real-time nowcasting exercise we
find our methods to work well. As new, quarterly UK wide information is released throughout
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the year our nowcasts of regional GVA growth improve. Thus, using the methods we propose,
regional policymakers can have at their disposal more accurate nowcasts of current growth
rates. They do not have to rely on out-of-date figures or indeed have to wait many months
for new regional data releases from ONS.

We hope that entropic tilting, with mixed frequency stacked VARs, as developed in this
paper will find other applications when interested in nowcasting and forecasting with data
subject to aggregation constraints and differential publication lags.
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Table 1: Nowcasting Performance Using Homoskedastic Mixed Frequency VAR (Results
Relative to AR Benchmark) Note: the RMSFE and CRPS values from our VAR nowcasting
model are presented relative to (divided by) those from the benchmark AR model; in the same
way the LPS are presented relative to (by subtraction of) the LPS from the AR model.

Tilting Using New Information: None Q1 Q2 Q3 Q4

RMSFE
North 0.96 0.61 0.58 0.56 0.59
York. & Humber 0.92 0.48 0.51 0.49 0.48
East Mids 0.90 0.56 0.44 0.42 0.45
West Mids 0.88 0.47 0.37 0.35 0.37
Lon & SE 1.09 0.37 0.35 0.39 0.38
South West 0.97 0.48 0.45 0.42 0.35
Wales 1.06 0.62 0.55 0.53 0.58
Scotland 0.92 0.45 0.41 0.41 0.44
N. Ireland 1.05 0.71 0.77 0.77 0.76
Average RMSE 0.97 0.53 0.49 0.48 0.49

LPS
North 0.23 0.57 0.60 0.61 0.71
York. & Humber 0.28 0.62 0.60 0.61 0.76
East Mids 0.08 0.54 0.63 0.65 0.76
West Mids 0.17 0.63 0.70 0.70 0.82
Lon & SE -0.21 0.71 0.73 0.70 0.80
South West 0.16 0.59 0.61 0.63 0.76
Wales 0.08 0.57 0.63 0.64 0.73
Scotland 0.14 0.65 0.68 0.68 0.86
N. Ireland -0.14 0.43 0.35 0.35 0.35
Sum LPS 0.79 5.32 5.53 5.58 6.54

CRPS
North 0.89 0.58 0.56 0.55 0.55
York. & Humber 0.85 0.52 0.53 0.52 0.47
East Mids 0.86 0.53 0.45 0.44 0.43
West Mids 0.80 0.48 0.41 0.41 0.39
Lon & SE 1.15 0.44 0.43 0.45 0.42
South West 0.90 0.51 0.49 0.47 0.40
Wales 1.01 0.60 0.54 0.53 0.55
Scotland 0.88 0.47 0.44 0.44 0.43
N. Ireland 1.06 0.69 0.74 0.73 0.69
Average CRPS 0.93 0.53 0.51 0.50 0.48
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Table 2: Nowcasting Performance Using Mixed Frequency VAR with Stochastic Volatility
(Results Relative to AR Benchmark) Note: the RMSFE and CRPS values from our VAR
nowcasting model are presented relative to (divided by) those from the benchmark AR model;
in the same way the LPS are presented relative to (by subtraction of) the LPS from the AR
model.

Tilting Using New Information: None Q1 Q2 Q3 Q4

RMSFE
North 0.78 0.63 0.61 0.59 0.63
York. & Humber 0.71 0.45 0.40 0.38 0.37
East Mids 0.75 0.55 0.44 0.43 0.43
West Mids 0.82 0.51 0.40 0.39 0.39
Lon & SE 0.92 0.36 0.34 0.39 0.36
South West 0.79 0.47 0.44 0.41 0.37
Wales 0.86 0.58 0.52 0.50 0.56
Scotland 0.76 0.46 0.41 0.41 0.43
N. Ireland 0.88 0.69 0.75 0.74 0.75
Average RMSE 0.81 0.52 0.48 0.47 0.48

LPS
North 0.06 0.16 0.22 0.23 0.40
York. & Humber 0.20 0.32 0.36 0.37 0.60
East Mids 0.17 0.33 0.40 0.41 0.59
West Mids 0.02 0.31 0.38 0.38 0.51
Lon & SE -0.04 0.33 0.34 0.33 0.49
South West 0.12 0.32 0.34 0.35 0.50
Wales 0.18 0.35 0.39 0.39 0.51
Scotland 0.23 0.42 0.42 0.42 0.59
N. Ireland 0.09 0.22 0.20 0.20 0.35
Sum LPS 1.04 2.76 3.04 3.09 4.54

CRPS
North 0.87 0.74 0.73 0.73 0.67
York. & Humber 0.81 0.66 0.63 0.62 0.51
East Mids 0.74 0.61 0.54 0.53 0.46
West Mids 0.87 0.64 0.57 0.57 0.51
Lon & SE 1.00 0.62 0.61 0.63 0.54
South West 0.83 0.63 0.61 0.60 0.51
Wales 0.86 0.68 0.63 0.63 0.59
Scotland 0.77 0.57 0.55 0.55 0.50
N. Ireland 0.89 0.73 0.77 0.76 0.70
Average CRPS 0.85 0.65 0.63 0.62 0.55

25

Authors' copy: Accepted for publication at Journal of the Royal Statistical Society: Series A 

This version: March 2019



Table 3: Nowcasting Performance Using Homoskedastic Mixed Frequency VAR including
UKCS (Results Relative to AR Benchmark) Note: the RMSFE and CRPS values from our
VAR nowcasting model are presented relative to (divided by) those from the benchmark AR
model; in the same way the LPS are presented relative to (by subtraction of) the LPS from
the AR model.

Tilting Using New Information: None Q1 Q2 Q3 Q4

RMSFE
North 0.96 0.54 0.52 0.52 0.67
York. & Humber 0.91 0.49 0.39 0.40 0.55
East Mids 0.92 0.68 0.54 0.50 0.42
West Mids 0.89 0.51 0.34 0.33 0.37
Lon & SE 1.09 0.55 0.42 0.43 0.45
South West 0.97 0.56 0.46 0.43 0.42
Wales 1.03 0.67 0.56 0.54 0.52
Scotland 0.91 0.46 0.37 0.39 0.46
N. Ireland 1.05 0.76 0.71 0.72 0.76
UKCS 3.69 1.37 0.99 0.95 1.16

Average RMSE (Inc. UKCS) 1.24 0.66 0.53 0.52 0.58
Average RMSE (Exc. UKCS) 0.97 0.58 0.48 0.47 0.51

LPS
North 0.24 0.62 0.63 0.63 0.59
York. & Humber 0.29 0.60 0.64 0.64 0.69
East Mids 0.06 0.40 0.54 0.57 0.79
West Mids 0.16 0.59 0.71 0.72 0.82
Lon & SE -0.19 0.56 0.66 0.66 0.73
South West 0.16 0.53 0.59 0.61 0.72
Wales 0.13 0.50 0.59 0.60 0.82
Scotland 0.16 0.62 0.68 0.67 0.83
N. Ireland -0.12 0.36 0.43 0.41 0.35
UKCS 0.50 0.65 0.67 0.67 0.77

Sum LPS (Inc. UKCS) 1.41 5.44 6.14 6.17 7.10
Sum LPS (Exc. UKCS) 0.91 4.78 5.47 5.50 6.34

CRPS
North 0.89 0.53 0.52 0.53 0.61
York. & Humber 0.84 0.52 0.47 0.48 0.52
East Mids 0.88 0.63 0.52 0.49 0.40
West Mids 0.81 0.51 0.40 0.40 0.39
Lon & SE 1.14 0.58 0.48 0.49 0.48
South West 0.90 0.56 0.49 0.47 0.44
Wales 0.97 0.65 0.55 0.54 0.49
Scotland 0.87 0.48 0.43 0.44 0.44
N. Ireland 1.06 0.74 0.68 0.68 0.69
UKCS 1.06 0.73 0.70 0.70 0.65

Average RMSE (Inc. UKCS) 0.94 0.59 0.52 0.52 0.51
Average RMSE (Exc. UKCS) 0.93 0.58 0.50 0.50 0.50
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Table 4: Nowcasting Performance Using Mixed Frequency VAR with Stochastic Volatility
and including UKCS (Results Relative to AR Benchmark) Note: the RMSFE and CRPS
values from our VAR nowcasting model are presented relative to (divided by) those from the
benchmark AR model; in the same way the LPS are presented relative to (by subtraction of)
the LPS from the AR model.

Tilting Using New Information: None Q1 Q2 Q3 Q4

RMSFE
North 0.79 0.59 0.59 0.58 0.65
York. & Humber 0.72 0.42 0.36 0.35 0.42
East Mids 0.76 0.60 0.50 0.49 0.44
West Mids 0.83 0.52 0.42 0.41 0.41
Lon & SE 0.92 0.42 0.34 0.35 0.36
South West 0.79 0.46 0.42 0.37 0.37
Wales 0.85 0.62 0.56 0.54 0.55
Scotland 0.76 0.46 0.37 0.38 0.48
N. Ireland 0.89 0.72 0.71 0.71 0.77
UKCS 1.82 0.53 0.90 0.98 0.90

Average RMSE (Inc. UKCS) 0.91 0.53 0.52 0.51 0.54
Average RMSE (Exc. UKCS) 0.81 0.53 0.47 0.46 0.49

LPS
North 0.11 0.19 0.22 0.23 0.41
York. & Humber 0.23 0.31 0.35 0.35 0.61
East Mids 0.19 0.27 0.33 0.34 0.62
West Mids 0.09 0.27 0.34 0.33 0.52
Lon & SE 0.04 0.28 0.30 0.31 0.52
South West 0.15 0.29 0.31 0.33 0.54
Wales 0.18 0.30 0.34 0.35 0.56
Scotland 0.22 0.39 0.42 0.42 0.57
N. Ireland 0.08 0.20 0.21 0.21 0.35
UKCS 0.44 0.46 0.46 0.46 0.63

Sum LPS (Inc. UKCS) 1.74 2.96 3.27 3.33 5.33
Sum LPS (Exc. UKCS) 1.30 2.50 2.81 2.88 4.70

CRPS
North 0.86 0.72 0.72 0.72 0.68
York. & Humber 0.79 0.65 0.62 0.62 0.52
East Mids 0.75 0.65 0.59 0.58 0.46
West Mids 0.86 0.67 0.60 0.59 0.51
Lon & SE 0.99 0.66 0.64 0.63 0.52
South West 0.82 0.63 0.61 0.59 0.49
Wales 0.86 0.71 0.67 0.66 0.57
Scotland 0.78 0.57 0.54 0.54 0.52
N. Ireland 0.90 0.76 0.74 0.73 0.70
UKCS 0.91 0.85 0.86 0.87 0.73

Average RMSE (Inc. UKCS) 0.85 0.69 0.66 0.65 0.57
Average RMSE (Exc. UKCS) 0.85 0.67 0.64 0.63 0.55
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Table 5: Descriptive statistics for annual regional nominal GVA growth rates (1967-2016)
Mean Standard

Deviation
Correlation
with UK
GVA

North 0.077 0.053 0.922
York. & Humber 0.078 0.056 0.910
East Midlands 0.082 0.061 0.906
London & South East 0.086 0.047 0.928
South West 0.088 0.062 0.880
West Midlands 0.077 0.050 0.918
Wales 0.079 0.059 0.919
Scotland 0.082 0.054 0.940
N. Ireland 0.089 0.064 0.791
UKCS -0.260 2.813 -0.187
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Table 6: Nowcasting Performance Using Larger Homoskedastic Mixed Frequency VAR (Re-
sults Relative to AR Benchmark) Note: the RMSFE and CRPS values from our VAR now-
casting model are presented relative to (divided by) those from the benchmark AR model; in
the same way the LPS are presented relative to (by subtraction of) the LPS from the AR
model.

Tilting Using New Information: None Q1 Q2 Q3 Q4

RMSFE
North 0.90 0.62 0.55 0.52 0.62
York. & Humber 0.96 0.59 0.51 0.47 0.70
East Mids 0.96 0.75 0.69 0.65 0.81
West Mids 0.96 0.69 0.64 0.60 0.67
Lon & SE 1.12 0.46 0.65 0.69 0.83
South West 0.85 0.64 0.60 0.57 0.70
Wales 1.16 0.84 0.79 0.77 0.95
Scotland 0.94 0.59 0.53 0.50 0.66
N. Ireland 1.02 0.85 0.84 0.82 0.81
Average RMSE 0.98 0.67 0.64 0.62 0.75

LPS
North 0.13 0.24 0.25 0.26 0.41
York. & Humber 0.10 0.25 0.27 0.28 0.38
East Mids 0.05 0.26 0.31 0.33 0.28
West Mids 0.06 0.25 0.28 0.30 0.41
Lon & SE 0.12 0.14 0.09 0.08 0.17
South West 0.26 0.45 0.49 0.51 0.47
Wales 0.01 0.17 0.18 0.19 0.22
Scotland 0.10 0.30 0.32 0.34 0.41
N. Ireland 0.04 0.15 0.16 0.17 0.26
Sum LPS 0.86 0.24 0.26 0.27 0.33

CRPS
North 0.90 0.72 0.69 0.67 0.65
York. & Humber 0.94 0.71 0.67 0.66 0.70
East Mids 0.91 0.72 0.67 0.64 0.75
West Mids 0.89 0.70 0.67 0.64 0.65
Lon & SE 1.17 0.70 0.80 0.83 0.87
South West 0.79 0.62 0.59 0.57 0.64
Wales 1.09 0.85 0.82 0.80 0.89
Scotland 0.91 0.65 0.61 0.60 0.65
N. Ireland 0.99 0.84 0.83 0.81 0.79
Average CRPS 0.95 0.72 0.71 0.69 0.73
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Figure 2: Plots of GVA Growth, yr,At , and Nowcasts for the UK Regions
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Figure 3: Plots of GVA Growth, yr,At , and Nowcasts for the UK Regions (cont.)
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Figure 4: Plots of GVA Growth, yr,At , and Nowcasts for the UK Regions (cont.)
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Regional Data Appendix (to be published Online)

This appendix summaries the data sources and construction of the regional GVA (income
approach) database for the UK used in this paper. It describes the process of arriving at an
annual dataset for nominal GVA for 9 ‘regions’ of the UK (plus the UK Continental Shelf)
from 1966 to 2016 that is as consistent as possible, given changes to accounting standards
over the time period. These changes mean that our regional estimates are measured at factor
cost prior to 1996 and at basic prices from 1997.

A1 Data sources and matching against UK data

Our ambition in putting together the database was to use, as near as possible (certainly
over our out-of-sample window), first-release estimates of regional GVA, at basic prices, and
match these with the appropriate, similarly dated, data release for UK GVA. This strategy is
in part motivated by our interest in nowcasting first release regional GVA estimates. But it
also reflects the reality that final vintage data, e.g. the ONS’s latest regional estimates, are
not available over the whole sample period (i.e. the latest ONS data, published in December
2017, cover the period 1997-2016 only). So to get earlier data we inevitably have to look to
earlier data vintages. In matching the regional data to the UK data we sought to minimise
the cross-sectional aggregation error, as ideally the sum of the regional GVA data equals the
annual sum of the quarterly UK data. But, we should emphasise (as is detailed below) that it
was not possible to eradicate this measurement error for all years. This motivates our use of
tilting methods to approximately impose the cross-sectional aggregation constraint reflecting
this measurement error.

The regional GVA data all come from the ONS (CSO) but via three sources:

1. The historical regional GDP database, recently published by the ONS, provides esti-
mates, at factor cost, from 1966-1996, compiled from historical editions of the ‘Regional
Trends’ and ‘Economic Trends’ journals: https://www.ons.gov.uk/economy/regiona
laccounts/grossdisposablehouseholdincome/adhocs/006226historiceconomicda

taforregionsoftheuk1966to1996. The ONS Blue Book definition of factor cost states
that “in the System of National Accounts 1968 this was the basis of valuation which ex-
cluded the effects of taxes on expenditure and subsidies”. By contrast, the latest ONS
regional GVA estimates, considered in 2. and 3. below, are published in basic prices
which exclude taxes (less subsidies) on products but do include taxes on the production
process (such as business rates and any vehicle excise duty paid by businesses).

• The historical regional database “can be used as a proxy for the current regional
GVA estimates”, as explained by the ONS in their supporting documentation.
They also note that these data were “produced under the various statistical stan-
dards, regional and industry breakdowns which were current at the time they were
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first published”. The historical database does not always pick up estimates from
successive yearly publications of Regional Trends. Our understanding, following
email communication with ONS, is that this is because ONS chose to publish, in
this historical database, the latest iteration for a given year rather than the first.
As our interest is in extracting a database of first estimates, we deviate from the
historical database as follows. From the (first) 1973 Regional Trends publication
we extract regional data from 1966 to 1971. Thereafter, we consult successive an-
nual Regional Trends publications so that the 1972 regional data come from the
1974 publication, the 1973 data come from the 1975 publication, and so on.

2. Successive annual issues of Economic Trends/Regional Trends (published in 1998 to
2005) were consulted to obtain regional GVA estimates, at basic prices, from 1997 to
2004.

• This means the regional data are first release data.

3. The GVA NUTS1 regional GVA revisions dataset is consulted to provide first release re-
gional GVA estimates, at basic prices, from 2005-2016: https://www.ons.gov.uk/eco
nomy/grossvalueaddedgva/datasets/revisionstrianglesregionalgrossvalueadd

edincomeapproachincurrentbasicprices. These regional estimates are published
with an eleven month lag, so that the 2005 data come from the December 2006 publi-
cation, and so on.

From 1966 to 1996 these regional data are matched against quarterly UK GVA data (at
factor cost, seasonally adjusted) extracted from successive, similarly dated, national account
data releases (obtained from the Bank of England’s real-time database for nominal income;
code CGCB) with the secondary aim of minimising the cross-sectional aggregation measure-
ment error of the sum of the regional data against the quarterly UK data when aggregated
to the annual frequency. From 1997 the regional data are matched against successive, sim-
ilarly dated (so that again the data vintages of the regional data match that of the UK
data), releases of quarterly UK GVA estimates, at basic prices, from the ONS’s “Second
estimate of GDP” previously known as the “UK Output, Income and Expenditure” press
release/bulletins. Figure A1 shows that since 1997 (and our use of first release data) the
cross-sectional aggregation measurement error is time-varying and not zero. The average
statistical discrepancy between 1966 and 1996 is -0.47%, between 1997 and 2016 it is -0.39%.
It is worth noting that in the historical data that were released (data source 1 above) there
was an explicit entry for ‘Statistical discrepancy’ and this accounts for the gap in Figure A.1
before 1997. In the later data no similar statistical discrepancy is formally reported, although
as explained here, while small, a statistical discrepancy does emerge from a comparison of
the first release of regional GVA data and the similarly dated (vintage) value of UK GVA
data.

37

Authors' copy: Accepted for publication at Journal of the Royal Statistical Society: Series A 

This version: March 2019



Figure A1: Discrepancy, by year, between the UK Quarterly series and Regional Annual
series, as % UK GVA in each year
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A2 Geographic reconciliation

The next step was to reconcile the different geographic breakdowns implied by the three
data sources above. While the original Regional Trends publications (the historical data, 1.
above) use “Standard Statistical Regions”, the later data sources for 1997 onwards (2. and
3. above) use NUTS1 regions.

This means that the historical data provide estimates for the following geographies:
United Kingdom; North; Yorkshire and Humberside; East Midlands; East Anglia; South
East; Greater London (1978 onwards); Rest of South East (1978 onwards); South West;
West Midlands (2); North West; England; Wales; Scotland; Northern Ireland; United King-
dom Continental Shelf (UKCS). Prior to 1978 London was not separately identified in the
regional data, instead it was part of the South East Standard Statistical Region. Between
1978 and the introduction of the NUTS classification system the old South East region was
split into Greater London and Rest of South East. With the introduction of the NUTS clas-
sification, the Rest of South East region was split and one part merged with the old East
Anglia Standard Statistical Region (which existed in the data from 1966-1994) to create a
new ‘East of England’ NUTS1 region, and the other part maintained as the NUTS1 region
‘South East England’.

NUTS1 data are therefore presented for the following areas: United Kingdom; North
East; North West & Merseyside; Yorkshire and the Humber; East Midlands; West Midlands;
Eastern; London; South East; South West; England; Wales; Scotland; Northern Ireland;
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United Kingdom less Continental Shelf.
To arrive at a consistent series - for what we call our final dataset - we aggregated both

geographical classifications to produce 9 (10 including the UKCS) “regional” GVA series
which, we believe, are consistent in terms of geographic coverage across the two regional
definitions. Table A1 details how the GVA series were aggregated across standard statistical
and NUTS1 regions to arrive at our final “regions”.

Table A1: Regional definitions

Historical data NUTS1 KMM
Region
ID

Final dataset name

North North East 1 North
North West & Merseyside 1 North

North West 1 North
Yorkshire and Humberside Yorkshire and the Humber 2 Yorkshire and Humber
East Midlands East Midlands 3 East Midlands
West Midlands West Midlands 4 West Midlands
South East 5 London & South East

Greater London (>1978 ) 5 London & South East
London 5 London & South East

Rest of South East (>1978) 5 London & South East
South East (GOR) 5 London & South East

East Anglia 5 London & South East
Eastern 5 London & South East

South West South West 6 South West
Wales Wales 7 Wales
Scotland Scotland 8 Scotland
Northern Ireland Northern Ireland 9 Northern Ireland
United Kingdom CS United Kingdom CS 10 United Kingdom CS

Looking at Table A1, we see the London and South East England was the most prob-
lematic region. This reflects the fact that, at the beginning of the sample, data are reported
only for the South East of England (encompassing London and the rest of the South East,
although not reported separately) and East Anglia (which was about 8% the size of the South
East region in GVA terms). The difficulty is that we cannot disaggregate the South East,
in the early part of these data, into London and the rest of the South East. In addition,
were we able to do so, in practice the values for the South East Standard Statistical Region
(pre-1995) do not align well with those for the NUTS1 region ‘South East’ in 1995.

Figure A2 illustrates the correspondence between the statistical regions and the Govern-
ment Office (or NUTS1) regions. This map illustrates this difficulty that we encountered
in the South East of England. The East Anglia region, as reported from 1966-1994 (in the
historical data, 1. above) is not coterminous with the subsequent East of England NUTS1
region. Similarly, the old Standard Statistical Region ‘South East of England’ (1966-1994,
although split out into ‘Greater London’ and ‘Rest of South East’ from 1978) includes parts
of what is now ‘East of England’, as well as ‘London’ and the ‘South East of England’.
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In addition, we can see that from Figure A2 that in the North of England, the ‘North’
Standard Statistical Region comprised parts of what, under the NUTS1 classification, is now
‘North East’ and ‘North West’ regions of England.

Our strategy to derive a consistent database was therefore to aggregate both geographies
to the most disaggregated common boundary. This results in the 9 “regions”, plus the UKCS,
that we work with in the main paper.

Figure A2: Government Office Region boundaries and Standard Statistical Region boundaries
(http://www.celsius.lshtm.ac.uk/modules/geog/ge030301.html)

A3 Data adjustments

Figure A3 plots annual nominal GVA growth rates (in %), for each of our 9 regions and
for the UK as a whole, using these data. Inspection of this figure reveals a spike in growth
between 1996 and 1997. To give an example, there is an 11% increase in UK GVA between
1996 and 1997, whereas separate ONS figures for the UK lead us to expect growth half this
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Figure A3: Original regional nominal GVA growth rates (in %: 100× yr,At )

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

-5

0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

North
Yorkshire & Humber
East Midlands
London & SE
South West
West Midlands
Wales
Scotland
Northern Ireland
UK

rate. Since we know this spike is, therefore, a feature of how we have merged the data from
1. (above) with that from 2. and 3. (above), and reflects in particular the move from
estimates at factor cost to basic prices, we treat it as an outlier ; recall that 1996 to 1997
was also when the aforementioned change in how regions were measured took place, with an
apparent (upward) level shift in the series. We therefore elected to smooth out this spike
in the 1996-1997 annual growth rate. As our regional econometric models are estimated in
annual growth rates, rather than (log) levels, our practical solution is simply to proxy the
1997 growth rate with the average of the growth rates in 1996 and 1998. This, in fact, brings
the UK growth rate for 1996-1997 into line with that for ONS figures for UK GVA as a
whole. Figure A4 presents the annual growth rates (in %) for each region having made this
adjustment. We note that this adjustment falls outside the out-of-sample window we use to
assess the nowcasting performance of our models.

41

Authors' copy: Accepted for publication at Journal of the Royal Statistical Society: Series A 

This version: March 2019



Figure A4: Smoothed regional nominal GVA growth rates (in %: 100× yr,At )
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