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Improved trailing edge noise prediction using a generalized 

Rapid-distortion theory approach 

M. Z. Afsar1   

Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ  

Goldstein, Afsar & Leib (J. Fluid Mech., vol. 736, pp. 532-569, 2013)  and Goldstein-Leib-

Afsar (J Fluid Mech. vol. 824, pp. 477-512) extended the Rapid-distortion theory (RDT) of 

turbulence to consider mean flows that are transversely sheared in the upstream state. The 

key feature of the theory was in relating the upstream boundary condition to physically 

realizable turbulence that can be controlled by an experimentalist.  We summarize the 

theory briefly illustrating how it can be used to model trailing edge noise. We conclude by 

correcting the high frequency formula that GLA derived to include the next order term for 

the amplitude function in the WKBJ approximation for the scattered pressure. This term 

enters the lowest order expansion for the scattered pressure when the hydrodynamic wave 

number limit is taken. The predictions based on this mathematical representation have 

greater flexibility at high frequencies.  

I. Introduction 

Rapid-distortion theory uses linear analysis to study the interaction of turbulence with solid surfaces. For example, 

jet-surface interaction noise in Fig. 1 occur when surfaces play a direct role in the generation of sound and/or its 

propagation.   

  

 

 

  

 

 

 

 

                                                            Fig. 1 Modeling edge noise 

II. Basic Scalings 

RDT applies when the turbulence intensity is taken as a global small parameter everywhere in the flow; i.e. 

    a º | u | U
J
≪ O(1)  where a is the turbulence intensity and  | u | is the magnitude of the local rms turbulence 

velocity and 
 
U

J
is some characteristic reference velocity. It also implies that the length (or time) scale over which 

the interaction takes place is short compared to the length (or time) scale over which the turbulent eddies evolve.   

Hence, when interpreted asymptotically, these assumptions imply, that it is possible to identify a distance that is 

very (infinitely) large on the scale of the interaction, but  still small on the scale over which the turbulent eddies 

evolve. The assumptions imply that the resulting flow is inviscid and non-heat-conducting and is, therefore, 

governed by the linearized Euler equations linearized about an arbitrary base flow. 

RDT can be thought of as a lowest order perturbation of the Navier-Stokes equations in the small turbulence 

intensity,  a , in the vicinity of the trailing edge. The problem is, therefore, linear and inviscid and the mean flow 
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near the trailing edge is nearly transversely sheared. The inviscid pressure perturbation, 
 ¢p = p - p  & mass flux 

  u º r ¢v , (where  ¢v  denotes the velocity perturbation) are governed by the leading-order momentum and energy 

equations: 
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that are linearized about the transversely mean flow, 
   
U ( y

T
) , and mean sound speed squared  

   
c2( y

T
)  and which 

reduces to the compressible Rayleigh equation   L ¢p = 0 . Using the direct Green’s function of Rayleigh equation as 

an adjoint, GAL-13 used Green’s theorem (Morse and Feshbach, 1953, p. 870, Tam and Auriault, 1998) to  

show the Euler equations possess basic solutions 

  (3) 

  (4) 

 

respectively where  T denotes a very large, but finite, time interval. The solid surfaces    S( y)  bound volume    V ( y)              

in these formulas can be finite, semi-infinite or infinite in the streamwise direction but must coincide with any level 

surfaces of the mean velocity profile. gi (y,t | x,t)  is linearly related to    g( y,t | x,t) , which is determined  for 

incoming wave behavior as   | y |­¤ and appropriate boundary conditions on     S( y) . 

A. Local relations for  

Since  satisfies   by definition, for an arbitrary selection of itsarguments, it can be used to 

specify the upstream boundary condition (input)  within a boundary value problem (BVP) that seeks to determine 

acoustic spectrum as its “output”.  The upstream boundary condition must obviously be independent of the local 

scattered flow near the the trailing edge. Hence it must be imposed at large (infinite) distances  (say xbc­¤) 

away from it. Although in a strict  asymptotic sense, xbc
,  lies between the O(1) shear layer growth scale and the 

eddy length scale over which the interaction takes place. The latter can be taken to infinity since these lengths 

become disparate in the RDT limit.  

 

 

 

 

 

 

                                                            Fig. 2 Upstream boundary  
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That is, since the shear layer grows over infinitely long distances,  x  , when the interaction length scale,  x  , of the 

eddy is fixed at O(1), xbc
  lies within bound:  x ≪ xbc ≪ x . But since the ratio of these length scales  becomes 

asymptotically disparate in the RDT limit as: 
x

x
=

t turnover

t int

:=
1

e
­¤  as e­ 0  when the (non-dimensional) the 

shear layer growth scale, x =Uc t turnover = O(1) the (non-dimensional) eddy length scale over which the 

interaction takes  place can still be taken at infinity  x =Uc t int­¤   ≪ ex = O(1) . Goldstein-Leib-Afsar 

(2017, JFM) showed that when is determined under this far upstream limit, the particle displacement term and 

pressure term in its general evolution equation (derived in Goldstein-Afsar-Leib 2013b) drops out (i.e. become 

asymptotically small). 

 

 

 

 

 

 

The far-field asymptotes above show, among other things, that there is a direct algebraic relation between         

and the physically measurable turbulence properties  which can be expressed in terms of the transverse velocity 

whose correlation has been extensively measured and whose functional form is well known (Afsar-Leib-Bozak JSV 

2017).  

shows that the model for    and the evolution equation above Allowing                                                            

satisfies causality.    

B. Correspondence relation to far upstream hydrodynamics 

The correspondence relation derived in GLA17 shows that the Fourier transform: 
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is related to the commensurate double Fourier transform 
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 of the vorticity derivative 
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are source functions and we have used (2.3) to obtain the last member of (3.4).
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is the velocity component generated by the second convected quantity #, and
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is the transverse particle displacement.
Equations (2.7) and (2.15) show that ? is related to u? by

u? =
1

|r U|

D0

D
? , (3.8)

whichjustiýesreferring to it as the transverse particle displacement.
Equations (3.1) and (3.4)ï(3.6) relate the arbitrary convected quantities ĕ! c( y1/

U(yT), yT) and #( y1/U(yT), yT) to thepressurep0, density-weighted velocity u and
the transverseparticledisplacement ? , while (3.2) and (3.4)ï(3.6) relate thearbitrary
convected quantity #( y1/U(yT), yT) to thepressurep0, density-weighted velocity u
and the transverse particle displacement ? .

The tensor (@Nk/@yi @Ni/@yk) is equal to zero and u
(c)
k drops out of theýrstterm

on the right-hand side of (3.4) for planar baseþows, where c2 and U depend on a
single Cartesian coordinate (say y2) and (3.1) then becomes
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which is independent of u
(c)
i and, therefore, of the second convected quantity #. But

thedivergence@Ni/@yi isequal to zero for theconstant shear-constant c2 parallel mean
þow (1.1), sinceNi isaconstant in that case, and it followsfrom(2.18) that (3.9) then
reduces toMºhringôs (1976) result
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and toOrrôs equation (1.3) when theþow is incompressible and two-dimensional.
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limit as " ! 0 of the resulting formula. It is not possible to do this directly in the
present case, but (4.13) can represented as the limit of a sequence and this procedure
can be used to impose causality on each term of that sequence. (Details are given
in appendix C.) It could, however, be argued that ? need not be causal because it
is not actually a physical variable, but the conservation laws (3.1)ï(3.2) and, more
importantly, the upstream boundary conditions would then also be non-causal. Our
primary interest is in the upstream behaviour of ? , which will be used to derive
the upstream boundary conditions referred to in the introduction. The analysis in
appendix C shows that

@ľ? (x, ! )

@x1

! 0, as x1 ! ī1 (4.14)

when causality is imposed, which implies that

@? (x, t)

@x1

! 0, as x1 ! ī1 (4.15)

in this case. Different results would be possible if causality were not imposed.

5. Upstream boundary conditions and relation of ĕ! c, # to the physical variables

It is useful, although not essential, to ýrstsplit the dependent variables into a
hydrodynamic component, which does not directly produce any sound at subsonic
Mach numbers, and a non-hydrodynamic component, which accounts for the
remainingïincluding the acoustic ïcomponents of the motion, before attempting to
derive the relevant boundary conditions. We can then think of the former component
as being an upstreamóinputôthat generates adownstreamóresponseôwhen it interacts
with streamwise changes in the boundary conditions.

As is well known, it is impossible to unambiguously decompose the unsteady
motion on a transversely sheared mean þow into acoustic and hydrodynamic
components. We can, however, require that the hydrodynamic component not radiate
any sound at subsonic Mach numbers, with all the acoustic radiation being accounted
for by the remaining non-hydrodynamic component. Then, in order to identify the
input disturbance with the hydrodynamic component of the motion, we divide the
Rayleigh equation Greenôs function g(y, |x, t) that appears in the time-dependent
solution (2.13)ï(2.16) into two components, say

g(y, |x, t) = g(H)(y, |x, t) + g(s)(y, |x, t), (5.1)

where g(H)(y, |x, t) denotes a particular solution of (2.12) which is deýnedon all
space when the bounding surfaces S are all at inýnityor, more generally, satisýes
appropriate boundary conditions (given in Goldstein et al. 2013a,b) on a constant
mean velocity surface that extends from minus to plus inýnityin the streamwise
direction. The corresponding solution, which is given by (2.14) and (2.16) with
g(y, |x, t) replaced by g(H)(y, |x, t), does not produce any acoustic radiation and
can, therefore, beidentiýedwith thehydrodynamic component of theunsteady motion.
The corresponding óscattered solutionô,g(s)(y, |x, t), satisýesthe homogeneous
Rayleighôs equation along with appropriate inhomogeneous boundary and jump
conditions on the streamwise discontinuous surfaces Sand, therefore, accounts for all
of the acoustic components of the motion.
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This provides a rationally based relation between the acoustic 

field and a near field measurement that can actually be made.  

 

C. Physical Realizability We model the two point space-time correlation of the vorticity derivative   
  
G

2,0
( y,t )               

by a functional form of the following type (Afsar+Leib+Bozak JSV 2017) shown below in Fig. 3. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Anti-correlations 

 

For the rectangular jet that GLA and GAL considered, the auto-covariance  of the Fourier 

transform 
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for the two-dimensional planar mean flow 
  
U ( y

2
)  where 
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2
 is the scaled unit-vector defined via 

,  is the Favre-averaged mean square speed of sound and ( )2 3
ˆ : , ,c y k TW w   is 

defined above. 

GLA showed that can be easily determined when the model for the vorticity derivative 
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The final result they arrive at is:  
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where w is the temporal frequency, 
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2 2
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and where 
  
f h

2
/l

2( )  is a tranverse decay function. 

III.  GLA17 predictions and extension to CFD data 

Splitting the Green’s function into a particular (hydrodynamic part) defined on all space (doubly infinite 

streamwise plane) and a homogeneous scattered part that satisfies appropriate conditions on a half-plane & can be 

determined by the Wiener-Hopf technique allows the far field acoustic spectrum to be determined (see GAL13). 

GAL analyzed  the model problem shown in figure 5 of a jet emanating from a large-aspect ratio rectangular nozzle 

interacting with the trailing edge of a flat plate. The sound generated by this interaction was compared to recent 

experiments on this configuration that were performed at NASA Glenn Research Center (Zaman, Brown and 

Bridges 2013; Brown, 2015). The predictions shown in Fig. 4 taken from GLA paper show remain within reasonable 

agreement with data. 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 

Fig. 4 GLA17 predictions. Power Spectral Density (PSD) of the far-field pressure fluctuations at 100 

equivalent diameters from nozzle exit (lossless in dB scale referenced to 20 mPa  ) as a function of Strouhal 

number, for
  
M

a
= 0.9.  Predicted (solid line): Measured data below the plate at

 y = - 900
. (Total noise: 

Red; difference between the total noise and noise measured in the free jet: Green.) Plate trailing edge at 

  
x

d
, y

d( ) / D = 5.7,0.98( ) (a). q = 900
 ; (b)  q = 750

 (c)  q = 600
 (d)  q = 450

 

 (See caption of Fig. 8 in GLA). 

 

 

 

 

 

 

 

 

 

Fig. 5 NASA GRC jet-surface interaction 

Experiment (Zaman et al. 2013; Brown 2015) 

 

 

 

 

 

 

IV. Correction to the GLA result 

GLA showed that the acoustic spectrum for the scattered pressure is given by 

                                          (11) 

where  denotes the time average, is given by  
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for  where is defined by (9).  

 The stationary points in wavenumber are given by 
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denote homogeneous solutions to two dimensional Rayleigh equation that has outgoing wave 

behavior as
   y2
­ ≪¤ ,q denotes the polar angle measured from the downstream 1x  axis and y denotes the 

azimuthal angle measured from the plane of the plate.  GLA showed that the high frequency spectrum can be 

described by using the WKBJ method to obtain the high frequency outgoing wave homogeneous solution  
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and therefore acoustic spectrum formula: 
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 b º (1- sin2qcos2y )1/2 , 
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¥
denotes the local acoustic Mach number at the position 2y  

and 0c is a positive constant and we have inserted the exponential damping factor 0k
e ¤-c

 into (19), which leaves  

the asymptotic expansion unchanged to the order of approximation considered here.  is given by 

(9). 

 However, the next order term for amplitude expansion in the WKBJ approximation (17) enters the lowest order 

solution when the hydrodynamic wavenumber limit is taken inasmuch as 
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The result that we obtain (discused in the presentation at the conference) is then given by (18) but where now: 
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where 
 
c

1
 is another constant that continues to render (20) asymptotically equivalent to the straight forward low 

frequency result given by (6.33) of GAL in which 
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q,j ) =1 because 
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0k¤­  . The additional factors in (20) are defined as: 
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where 
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2
) º q(y 1 M(y

2
),sinqcosy )                                                (22) 

and  is the Favre-averaged mean square speed of sound ratio. 

Predictions based on (20) (after inserting this into (18) and using (9)  for  give greater flexibilty 

at high frequencies since the 
  
c

1
= O(1) parameter governs the rate at high frequency decay of the acoustic 

spectrum. In Fig. 6 we show the compare the 90o prediction obtained by GLA to that via (18) & (19) for SP07 (Ma = 

0.9) jet at the same trailing edge location as in Fig. 4 (see caption of Fig. 8 in GLA). Further comparisons will be 

made for the presentation at the conference. 
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Fig. 6 Comparison of GLA17 predictions to that obtained using (18) & (19). Caption as in Fig. 4 (or Fig. 8 in 

GLA). Purple curve shows faster high frequency decay possible using (18) & (20). 

 

 

V. Conclusions 

The GAL/GLA rapid-distortion theory shows that the upstream turbulence does not convect with the flow in the 

RDT-limit when the upstream base flow is non-uniform (transversely sheared); i.e.  

 

 

But the convected quantity    is:   And it is related to the upstream physics in the manner 

described. The high frequency correction given by (20) will be further discussed during the conference 

presentation with more comparisions made to the GLA results. 
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satisýesthe reduced inhomogeneousRayleighôs equation
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ŭ(xT yT), (4.7)

with LR being the reduced Rayleigh operator
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written in terms of the Laplacian r T with respect to the transverse coordinate yT.

Appendix A shows that ľG0(yT |xT : ! , ! /U(yT)) remainsýniteand is continuous at
yT = xT for two-dimensional meanþows, and a similar analysis would show that this
is true in general, but the notation becomes very tedious in that case. Appendix A
also shows that

ľGi(yT |xT : ! , k1)
1

[ik1U(xT) i! ]

@

@xi

ľG0(yT |xT : ! , k1), i = 1, 2, 3 (4.9)

remainsýniteand continuous at yT = xT for two-dimensional meanþows. It therefore
follows from (4.3), theýrstline of (B4), (B6) and inversion of the Fourier transform
(4.1) that

ľu? (x : ! ) !
ei! x1/U(x2)

x2
1

ľU? (xT, ! ), as x1 ! 1 (4.10)

and

u? (x, t) !
1

x2
1

U? (t x1/U(x2), xT), as x1 ! 1 , (4.11)

wherethepurely convected quantity U? (t x1/U(x2), xT) isafunction of theindicated

arguments and ľU? (xT, ! ) is the Fourier transform of that quantity. The comment
below (4.8) suggests that these results, which generalize the behaviour discussed in
the introduction, are expected to apply to much more general transversely sheared
mean þows (such as those described below) even though they were derived for
two-dimensional baseþows.

The Fourier transform

ľ? (x, ! ) lim
T! 1

1

2p

Z T

T

ei! t
? (x, t)dt (4.12)

of the transverse particle displacement (3.7), which formally satisýes

@ľ? (x, ! )

@x1

= (2p)2@U

@xi

Z

AT

ei! x1/U(yT)
ľGi(yT |xT : ! , ! /U(yT))

U(xT) U(yT)
ľ

c(yT : ! )dyT, (4.13)

will become unbounded at y = x since, as shown in appendix A for the two-
dimensional case, ľGi(yT |x : ! , ! /U(yT)) will usually not vanish when yT = xT.
It can be made ýnitein a number of ways. But there is only one possibility if
causality is also imposed. This amounts to assuming that the time-stationary solutions
will exist even when ? (x, t) is assumed to be identically zero in the distant past.
This can be implemented by using the Briggs (1964)ïBers(1975) procedure, which
amounts to letting ! have a small positive imaginary part, say ", and taking the
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486 M. E. Goldstein, S. J. Leib and M. Z. Afsar

Ni

ṉ

"ijkũk,j + "ij1

@?

@yj

= 0, (3.2)

where ĕ! c is related to the rescaled vortical-like quantity ! c by (2.18),

Ni

c2

|r U|2
@U

@yi

, (3.3)

ũk,0(y, ) r 2(uk u
(c)
k )

@

@yk

r Ŀ(u u(c)) = r 2(uk u
(c)
k ) +

@

@yk

ṉ

c 2D0p
0

D

@

@yk

(u u(c))Ŀc2r

ṉ
1

c2
(3.4)

and

ũk,i

@

@yi

(uk u
(c)
k ), for i = 1, 2, 3 (3.5)

are source functions and we have used (2.3) to obtain the last member of (3.4).

u
(c)
k "knm

1

c2

@U

@yn

@#

@ym

(3.6)

is the velocity component generated by the second convected quantity #, and

? (x, t) (@U/@xi)ɚi =
@U

@yj

ṉ
@

@yj

D0ű

D
+ 2

@U

@yj

@ű

@y1

, (3.7)

is the transverse particle displacement.
Equations (2.7) and (2.15) show that ? is related to u? by

u? =
1

|r U|

D0

D
? , (3.8)

whichjustiýesreferring to it as the transverse particle displacement.
Equations (3.1) and (3.4)ï(3.6) relate the arbitrary convected quantities ĕ! c( y1/

U(yT), yT) and #( y1/U(yT), yT) to thepressurep0, density-weighted velocity u and
the transverseparticledisplacement ? , while (3.2) and (3.4)ï(3.6) relate thearbitrary
convected quantity #( y1/U(yT), yT) to thepressurep0, density-weighted velocity u
and the transverse particle displacement ? .

The tensor (@Nk/@yi @Ni/@yk) is equal to zero and u
(c)
k drops out of theýrstterm

on the right-hand side of (3.4) for planar baseþows, where c2 and U depend on a
single Cartesian coordinate (say y2) and (3.1) then becomes

@

@y1

ṉ

ĕ! c p0 dN2

dy2
? = N2 r Ŀ[c 2r (c2u2)] +

@

@y2

ṉ

c 2D0p
0

D
, (3.9)

which is independent of u
(c)
i and, therefore, of the second convected quantity #. But

thedivergence@Ni/@yi isequal to zero for theconstant shear-constant c2 parallel mean
þow (1.1), sinceNi isaconstant in that case, and it followsfrom(2.18) that (3.9) then
reduces toMºhringôs (1976) result

@

@y1

ṉ

ᶌ! c

ɔp0

c2
= r Ŀ[c 2r (c2u2)] +

@

@y2

ṉ

c 2D0p
0

D
(3.10)

and toOrrôs equation (1.3) when theþow is incompressible and two-dimensional.
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But"the"convected"quanOty"""""""is:""

"

And"it"is"related"to"the"upstream"physics"in"the"manner"described."

  
!w

c    D0
!w

c
D t º 0
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