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Abstract: Determining a desirable strain rate-temperature range for superplasticity and
elongation-to-failure are critical concerns during the prediction of superplastic forming processes in
α + β titanium-based alloys. This paper studies the superplastic deformation behaviour and related
microstructural evolution of conventionally processed sheets of Ti-6Al-4V alloy in a strain rate range
of 10−5–10−2 s−1 and a temperature range of 750–900 ◦C. Thermo-Calc calculation and microstructural
analysis of the as-annealed samples were done in order to determine the α/β ratio and the grain size
of the phases prior to the superplastic deformation. The strain rate ranges, which corresponds to
the superplastic behaviour with strain rate sensitivity index m > 0.3, are identified by step-by-step
decreasing strain rate tests for various temperatures. Results of the uniaxial isothermal tensile tests
at a constant strain rate range of 3 × 10−4–3 × 10−3 s−1 and a temperature range of 800–900 ◦C are
presented and discussed. The experimental stress-strain data are utilized to construct constitutive
models, with the purpose of predicting the flow stress behaviour of this alloy. The cross-validation
approach is used to examine the predictability of the constructed models. The models exhibit excellent
approximation and predictability of the flow behaviour of the studied alloy. Strain-induced changes
in the grain structure are investigated by scanning electron microscopy and electron backscattered
diffraction. Particular attention is paid to the comparison between the deformation behaviour and
the microstructural evolution at 825 ◦C and 875 ◦C. Maximum elongation-to-failure of 635% and low
residual cavitation were observed after a strain of 1.8 at 1 × 10−3 s−1 and 825 ◦C. This temperature
provides 23 ± 4% β phase and a highly stable grain structure of both phases. The optimum
deformation temperature obtained for the studied alloy is 825 ◦C, which is considered a comparatively
low deformation temperature for the studied Ti-6Al-4V alloy.

Keywords: titanium alloys; superplastic deformation; microstructure evolution; constitutive
modelling; cavitation

1. Introduction

Superplasticity is the ability of a material to undergo extremely large deformations (greater than
200-400%) at low stresses without necking due to high strain rate sensitivity of the flow stress [1,2].
Superplastic forming (SPF) is an advanced sheet metal deformation technique which utilises large
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plastic strains to produce complex features in sheet parts [3–5]. This phenomenon has the greatest
technological importance for Ti-based alloys. Due to their excellent physical and mechanical properties,
titanium-based alloys are extensively adopted in a wide range of temperature applications. However,
one of the issues impeding the adoption of titanium and its alloys are their poor formability at room
temperature. Superplastic forming (SPF) technique provides the opportunity to produce complex
shaped Ti-parts [5–7]. SPF is used in the successful production of complex shaped parts of Ti-6Al-4V
for airspace industry [8]. Therefore, understanding the deformation behaviour and microstructural
evolution of this alloy under superplastic deformation conditions becomes an important exercise that
needs to be undertaken. Leyens and Peters et al. [3] noted that the production of very complex parts
under low flow stresses, improved product quality and reduced components weight are the advantages
of the SPF method. Sieniawski and Motyka [4] summarised the characteristics of superplasticity
phenomenon in titanium alloys and their potential applications. Their work also confirmed the
suitability of most Ti-based alloys for the SPF technique.

At elevated temperatures, the flow behaviour of Ti-based alloys is complicated. Knowledge of
the stress-strain behaviour, the initial grain structure, and their evolution at superplastic deformation
are required in order to optimise the material formability. Despite the fact that experimental study
of the deformation behaviour and microstructure analysis provides a better understanding of the
physical phenomenon of material forming, mathematical and computational modelling is in demand
for the description and analysis of material behaviour. The deformation behaviour of materials can be
predicted using these models which could translate into cost savings of materials used for trails to
reach the desired forming shapes. Indeed, deformation behaviour prediction gives information about
the nature of metal forming processes. A considerable amount of literature has been recently published
on the superplasticity of titanium alloys. The most popular Ti-based alloy widely used for SPF is
Ti-6Al-4V [9–22]. Zhou et al. [22] studied the superplastic tensile behaviour of Ti-6Al-4V alloy with an
initial β-grain size of 6µm and α-phase volume fraction of 62%. The authors obtained a maximum
elongation and strain rate sensitivity (m) of 768% and 0.52, respectively at 850 ◦C and 5 × 10−4 s−1.

Alabort et al. [8] identified the superplastic processing regime of conventional Ti-6Al-4V sheets. The
authors constructed processing maps of this alloy [8] and also indicated differences in the superplastic
deformation mechanisms at the various testing conditions [9]. The temperature range of 850–900
◦C and strain rates range of 1 × 10−4 s−1 to 1 × 10−3 s−1 were the optimum ranges for superplastic
deformation of Ti-6Al-4V alloy according to Reference [8]. Akihiko [23] found that, Ti-6Al-4V alloys
with ultra-fine grains (0.4 µm) exhibited superplastic behaviour at 700 ◦C and 10−2 s−1. Zherebtsov et
al. [24] investigated the effect of microstructure evolution on the low-temperature superplasticity of
Ti-6Al-4V alloy subjected to severe plastic deformation and having an α and β grain size of 0.1 and 0.4
µm respectively. According to their work, the samples exhibited an elongation of 1000% with limited
cavitation at optimum deformation conditions (550 ◦C with a strain rate of 2 × 10−4 s−1).

Physical [25], phenomenological [26], constitutive equations (CE) [27,28], and artificial neural
network (ANN) [29] models are the model classes used for expressing the deformation behaviour of
metals. Arrhenius-type model is a phenomenological model, which is generally utilized to describe the
relationships between the flow stress, strain rate and temperature [30–32]. Sellars and McTegart [33]
applied an Arrhenius-type model to describe hot deformation with equations similar to those used in
describing creep. The model is considered to be simple and widely utilized. Porntadawit et al. [34]
proposed a constitutive model based on the hyperbolic sine equation to predict the flow behaviour of
Ti-6Al-4V titanium alloy. Yamanaka et al. [35] derived a constitutive model, based on the dynamic
materials model to describe the hot deformation behaviour of Ti–5Al–2Sn–2Zr–4Mo–4Cr titanium
alloy. The authors found that, the apparent activation energy decreased with an increase in the applied
strain. The peak efficiency of 60% corresponded to a strain rate of 10−1 s−1 and a temperature of
900 ◦C. Xiao et al. [36] constructed Arrhenius equation model and processing maps which were used
to analyse the mechanisms and instability of high-temperature deformation of Ti-6Al-2Sn-4Zr-2Mo
titanium alloy. Mosleh et al. [37] constructed Arrhenius-type constitutive and artificial neural network
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models for predicting the flow behaviour of near-α titanium alloy (Ti-2.5Al-1.8Mn) during superplastic
deformation. The authors found that the error in predicting the unmodelled conditions for the
Arrhenius-type constitutive model is lower compared to those realized for the artificial neural-network.

Despite the good phenomenological description of the superplastic Ti-6Al-4V alloy, there are
insufficient data about the strain induced microstructure evolution and predictability of the constitutive
models for this alloy. For microstructural studies and modelling experiments, most works relied on
data gotten from initial strain rate tests where the strain rate values decrease with an increase in the
strain. In fact, the stress-strain behaviour and the related strain-induced microstructural changes are
different for the initial and constant strain rate tests. At the same time, the constant strain rate tests
mirror superplastic forming conditions. In this study, constant strain rate tests are used to understand
the microstructural evolution and the modelling of the stress-strain behaviour of Ti-6Al-4V alloy.
The study focuses (1) on investigating the superplastic deformation behaviour and strain induced
microstructural evolution for constant strain rate tests; (2) on suggesting an appropriate approach for
accurately fitting and predicting the flow behaviour at superplastic deformation and constant strain
rates of conventionally processed sheets of Ti-6Al-4V alloy.

2. Materials and Methods

Conventionally-rolled sheets of Ti-6Al-4V alloy, produced by VSMPO-AVISMA Corporation
(Verkhnaya Salda, Sverdlovsk region, Russia) with a thickness of 1 mm were studied. In order
to suppress the diffusion-controlled phase transformation and evaluate the grain structure at high
temperatures, annealing in a temperature range of 750–900 ◦C for 30 min followed by water quenching
was performed. Uniaxial tensile tests via step-by-step reduction of the strain rate and constant strain
rate were performed using a Walter-Bay LFM100 testing machine (Walter + Bai AG, Löhningen,
Switzerland). Test samples with a gauge size of 14 × 6 × 1 mm were cut along the sheet rolling
direction. The test temperature-strain rate ranges of the uniaxial tensile tests are presented in Table 1.
The annealing process and the uniaxial tensile tests were performed in an Ar atmosphere to avoid
oxidation. The microstructure examinations were performed on a TESCAN Vega 3 scanning electron
microscope (Tescan Brno s.r.o., Kohoutovice, Czech Republic) fitted with EDS (energy dispersive
X-ray spectrometer X-MAX80) (Oxford Instruments plc, Abingdon, UK) and EBSD (HKL NordlysMax
electron backscatter diffraction detector) (Oxford Instruments plc, Abingdon, UK) techniques. The
EBSD analysis was implemented with a step size of 0.15 µm and a scan area of 250 × 250 µm. All
samples were mechanically grinded on SiC papers up to 2400 PP and then polished on a CHEM MD
cloth with a 50 ml colloidal silica + 10 ml H2O2 (30%) + 5 ml Kroll’s agent as lubricant. A theoretical
volume fraction of phases in the studied temperature range was calculated by Thermo-Calc software
(Thermo-Calc Software, Stockholm, Sweden) using TTTi3 database. The constitutive model for fitting
and predicting the flow behaviour was constructed based on the stress-strain results.

Table 1. Temperature and strain rate ranges of the uniaxial tensile test.

Uniaxial Tensile Test Type Temperature (◦C) Strain Rate (s−1)

Step-by-step decreasing in strain rate 750–900 10–5 - 10–2

Constant strain rate 800–900 3×10−4 - 3×10−3

3. Results

3.1. Microstructure Analysis after Annealing

Figure 1 shows the microstructures after annealing for 30 min in a temperature range of 750–900
◦C with a step of 25 ◦C. The β-phase volume fraction increased from 17% at 750 ◦C to 60% at 900 ◦C
(Figure 1). The temperature of α ≈ β (T50/50) was between 875–900 ◦C (Figure 1h). The measured
(solid lines in Figure 1h) and theoretical equilibrium (dotted lines in Figure 1h) values of phase ratio
were in good agreement within the temperature range of 825–900 ◦C (Figure 1h). The obtained
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lower experimental β-fraction compared to the equilibrium β-fraction was as a result of the lower
diffusivity at temperatures below 825 ◦C and the insufficient annealing time required to finish the
α→β transformation. Thus, α→β transformation needed more than 30 min to provide an equilibrium
state of the alloy in a temperature range of 750 to 800 ◦C.
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Figure 1. Microstructure evolution of the investigated alloy after 30 min annealing at different
temperatures: (a) 750 ◦C, (b) 800 ◦C, (c) 825 ◦C, (d) 850 ◦C, (e) 875OC and (f) 900 ◦C; (g) quantitative
analysis of grain size, (h) quantitative analysis of volume fraction.

Fine β-grains were observed at 750 ◦C (Figure 1a) and the subsequent grain growth was due
to increased annealing temperature (Figure 1f). The mean β-grain size increased from 1.5 ± 0.2 to
2.1 ± 0.2 µm in a temperature range of 750–825 ◦C. A temperature induced grain growth in the β-phase
was significant at temperatures above 825 ◦C. The mean grain size increased in two folds from
2.0 ± 0.2 µm to 4.2 ± 0.2 µm with increasing annealing temperature from 825–900 ◦C (Figure 1h). The
α-grains slightly grew from 3.2 ± 0.2 to 3.9 ± 0.3 µm with increasing annealing temperature from 750
to 900 ◦C. Relatively coarse β-grains (4.2 ± 0.2 µm) were also observed at 900 ◦C, after the annealing
process (Figure 1g).

3.2. Superplastic Characteristics

3.2.1. Step-by-Step Reduction of Strain Rate Test

The superplastic characteristics were determined using a step-by-step reduction of strain rate test
to evaluate the strain rate range of superplasticity in a temperature range of 750–900◦C. The strain rate
sensitivity index (m) is a major indicator of superplasticity. The m is calculated by taking the slope
of the Log stress-Log strain rate lines (m = ∆(Log(σ))/ ∆(Log(έ))). The material is considered to be
under superplastic conditions when m ≥ 0.3. Figure 2a shows the logarithmic plots of flow stress vs.
strain rate curves. The curves exhibited sigmoidal shapes which are typical of superplastic behaviour.
With an increase in deformation temperature, the linear part of the curve which corresponds to the
maximum strain rate sensitivity (m) and superplastic behaviour, shifted towards high strain rates
values and the flow stress values also decreased. The m-value exceeded 0.5 at strain rates above



Materials 2019, 12, 1756 5 of 20

1 × 10−3 s−1 in a temperature range of 825–900 ◦C (Figure 2b). Even though the lower temperatures
(700–800 ◦C) also led to high m-values, they produced a lower strain rate at high flow stress values
which are undesirable for SPF processes.
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3.2.2. Constant Strain Rate Tests

Figure 3 illustrates the true stress-strain curves (a–d), elongation-to-failure (e) and strain hardening
coefficient (n) (f) in the studied temperature-strain rate range.
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The steady stage was characterized by strain hardening or softening which were observed to
commence at a strain of nearly 0.1 (Figure 3a–d). The strain hardening coefficient decreased with
increasing strain rate and decreasing temperature (Figure 3f). A strain rate of 3 × 10−3 s−1 in a
temperature range of 800–850 ◦C led to strain softening while strain hardening was observed at
900 ◦C with lower strain rates (3–6 × 10−4 s−1) (Figure 3a–c). In the studied strain rate range of
(0.3–3) × 10−3 s−1, the elongation-to-failure exceeded 400% in a temperature range of 800–900 ◦C. It
should be noted that, the maximum mean elongation-to-failure of 635% was obtained at a temperature
of 825 ◦C and strain rate of 1 × 10−3 s−1 (Figure 3e). This temperature is comparatively low for
conventional Ti-6Al-4V alloy.
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At strain rate of 1 × 10−3 s−1, a limited strain softening with n = 0.06 was observed at 825 ◦C,
while strain hardening with n = 0.25 was observed at 875 ◦C (Figure 3f). To analyse the strain-induced
grain structure changes, the samples after superplastic deformation at 825 and 875 ◦C with a strain rate
of 1 × 10−3 s−1 and strains of 0.4, 0.69 and 1.6 were studied (Figure 4). The α-grains exhibit a stable
size of 3.3 ± 0.3 µm and the β-grains slightly decreased from 2.7 ± 0.3 to 2.4 ± 0.2 µm with increasing
strain from 0.4 to 1.1 at 825 ◦C (Figure 4a–c,e). The increasing strains resulted in an insignificant grain
growth in both phases at higher values. In sharp contrast, monotonic grain growth was observed in
both phases at 875◦C (Figure 4 d–g).
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Figures 5 and 6 present the EBSD grain-subgrain boundaries maps, grain diameter and
misorientation angle distributions for the samples deformed at 1 × 10−3 s−1 with strains of 0.4,
0.69, and 1.6. The analysis was done for the test samples with deformation temperatures of 825 and
875 ◦C. It is known that, the β-phase partially transforms from BCC lattice to HCP lattice when the
sample is cooled from high temperature to room temperature. Therefore, the measured grain diameter
values were matched to the HCP lattice structure (transformed β-phase and α-phase).
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distribution (d–f) and the misorientation angle (g–i) at 1 × 10−3 s−1 and 825 ◦C for the HCP phase.

At 825 ◦C, the grain size was generally stable, with mean value of 3.2–3.3 µm (Figure 5a–c). In the
as-deformed samples, the α-grains are normally distributed with a standard deviation of 1.8, 1.7, and
1.6 for 0.4, 0.69, and 1.6 strains, respectively. This is reflective of the fact that the grain structure was
uniform (Figure 5d–f). During the deformation, the volume fraction of low-angle grain boundaries (<
15◦, LAGBs) decreased moderately, while that of high-angle grain boundaries (≥ 15◦, HAGBs) increased
(Figure 5g–i). The fraction of the LAGBs < 15◦ at 0.4, 0.69, and 1.6 strains were 25.75%, 19.10%, and
14.50%, respectively. After 1.6 strain, the fraction of the LAGBs < 15◦ decreased by 0.65 times relative
to those observed after 0.4 strain. This observation indicates the stability of attained grains during the
deformation process.

At 875 ◦C, the grains were dynamically grown with an increase in strain (Figure 6a–c). The grain
sizes and their distribution at 1 × 10−3 s−1 and 875 ◦C are presented in Figure 6d–f. The α-grains
were still normally distributed but with higher standard deviation than those at 825 ◦C for the same
strains. Thus, the grain structure was less uniform at 875 ◦C. Similarly, at 825 ◦C, the volume fraction of
low-angle grain boundaries (< 15◦, LAGBs) decreased, while that of high-angle grain boundaries (≥ 15◦,
HAGBs) increased with the increasing strain (Figure 6g–i). The fraction of the LAGBs at 0.4 strain was
smaller than those at 825 ◦C which reveals a high level of recrystallization under high temperature.
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Figure 6. Electron backscattered diffraction (EBSD) grain-subgrain boundaries maps (a–c), grain size
distribution (d–f) and the misorientation angle (g–i) at 1 × 10−3 s−1 and 875 ◦C for the HCP phase.

The microstructures of the near-fracture zone of the samples tested at 825 and 875 ◦C with a strain
rate of 1 × 10−3 s−1 are shown in Figure 7b,c. Several small cavities were observed in the gauge part
before failure at 825 ◦C (Figure 7b). At 875 ◦C, the residual cavitation was more intense (Figure 7c). It
is notable that the cavities at 825 ◦C were significantly finer than those observed at 875 ◦C. The sizes of
cavities were 1–5 and 3–10 µm at 825 and 875 ◦C, respectively. Several small residual cavities were also
observed in the gauge part after strain of 525% for 825 ◦C at 1 × 10−3 s−1 (Figure 7a). The cavities were
small, narrowly distributed and not large enough to cause fracture with 525% strain at 825 ◦C.
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3.3. Classical Constitutive Equations (CE)

In this approach, a Zener–Hollomon parameter Z and an exponent equation (Equations (1) and (2))

were used to express the relation of temperature and strain rate (
.
ε) at elevated temperature (T) [33,38].

Z =
.
ε

.
× exp (

Q
RT

) (1)

.
ε =


A1 × σn1 × exp

(
−

Q1
RT

)
− Power law (ασ < 0.8)

A2 × exp(βσ) × exp
(
−

Q2
RT

)
− Exponential law (ασ > 1.2 )

A3 × [sinh(ασ)]n2 × exp
(
−

Q3
RT

)
−Hyperbolic sine law f or all σ

(2)

where, A, β, n1, n2 and α are the material constants, and Q (kJ/mol) is an effective activation energy, R
is 8.314 J/(mol·K).

3.3.1. Model Parameters Determination

The flow stress-strain curves which were obtained from tensile tests at constant strain rates
(Figure 3) were utilized to compute the equation constants. The computing procedure of the model
Factors at a strain of 0.4 is presented below as a guide. By taking the natural logarithm of both sides of
Equation 2, the following equations (Equations (3)–(5)) were obtained:

ln
.
ε = ln A1 + n1 ln σ−

Q1

RT
⇒ n1 =

[
∂ ln

.
ε

∂ ln σ

]
T

(3)

ln
.
ε = ln A2 + βσ−

Q2

RT
⇒ β =

[
∂ ln

.
ε

∂σ

]
T

(4)

ln
.
ε = ln A3 + n2 ln sinh (ασ) −

Q3

RT
⇒ n2 =

[
∂ ln

.
ε

∂ ln[sin h (ασ)]

]
T

(5)

Q1,2,3 (Equations (6)–(8)) was obtained by taking the partial differentiation of Equations (3)–(5).

Q1 = R ×
[
∂ln

.
ε

∂lnσ

]
T
×

 ∂lnσ

∂
(

1
T

) 
.
ε

(6)

Q2 = R ×
[
∂ln

.
ε

∂σ

]
T
×

 ∂σ∂( 1
T

) 
.
ε

(7)

Q3 = R ×
[

∂ ln
.
ε

∂ ln[sin h (ασ)]

]
T
×

∂ ln[sin h (ασ)]

∂
(

1
T

) 
.
ε

(8)

Figure 8 shows the linear plots of ln
.
ε − ln σ (Figure 8a), ln

.
ε − σ (Figure 8b), ln

.
ε − ln sinh(ασ)

(Figure 8c), and ln sin h (ασ)− 1000
RT (Figure 8d). The average values of the inclined lines from ln

.
ε− ln σ

and ln
.
ε− σ curves (Figure 8a,b) are used to compute the n1, β, and Q1,2. By the same way, the average

values of the inclined lines from ln
.
ε − ln sinh(ασ) and ln sin h (ασ) − 1000

RT curves (Figure 8c,d) are
used to determine the values of n2 and Q3. The computed parameters are listed in Table 2.
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Table 2. The computed values of the constants of both simple power law and hyperbolic sine equations.

ln(A1) n1/m * Q1
[KJ/mol] ln(A2) β

[MPa−1]
Q2

[KJ/mol] α ln(A3) n2
Q3

[KJ/mol]

10.22 2.5/0.4 250.6 13.6 0.05 220.4 0.019 19 1.97 242

* The strain rate sensitivity m-index values were calculated as m = 1
n1

.

According to the power law function, the values of the strain rate and flow stress can be expressed
as following (Equation (9)–(11)).

.
ε = A1σ

n1 × exp
(
−

Q1

RT

)
(9)

.
ε = 2.77× 104[σ2.58

× exp
(
−

250.6 × 1000
RT

)
] (10)

σ =

(
z

A1

) 1
n1

=


.
ε× exp

(
250.6 × 1000

RT

)
2.77 × 104


1

2.58

(11)

Based on the hyperbolic sine function, which is used for various values of the strain rate, the flow
stress can be expressed as following (Equations (12)–(15)).

.
ε = A3[sinh(ασ)]n2 × exp(−

Q3

RT
) (12)

.
ε = 1.9 × 108[sin h(0.019σ)]1.97

× exp
(
−

242 × 1000
RT

)
(13)
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σ =
1
α

ln


(

z
A3

) 1
n2

+

( z
A3

) 2
n2

+ 1


1
2

 (14)

σ =
1

0.019
ln




.
ε× exp

(
242 × 1000

RT

)
1.9 × 108


1

1.97

+




.
ε× exp

(
242 × 1000

RT

)
1.9 × 108


2

1.97

+ 1


1
2
 (15)

3.3.2. The Strain Dependence of Material Constants

At a strain range of 0.1–1, the material constants n1,2, α, Q1,3, and A1,3 were calculated to determine
the effect of strain on the constant values. The procedure to determine the solution of these constants
was similar to those observed at a strain of 0.5. Figure 9 shows the dependence of material constants
vs. strain ε. The influence of strain on the material constants was regressed by a 3rd order polynomial
fitting method, which was the suitable order for the polynomial fitting Figure 9a. The material constants
were significantly affected by the strains at all tested conditions. The fitting equations were expressed
by Equation 16. The regressing coefficients of each equation are listed in Table 3.Materials 2019, 12, x FOR PEER REVIEW 12 of 20 
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Figure 9. (a) Root mean square vs. the polynomial order, (b) variation of n1,2 vs. true strain (c) variation
of α vs. true strain, (d) variation of Q1,3, vs. true strain, and (e) variation of ln(A1,3) vs. true strain (ε).

Table 3. The coefficients of the polynomial fitting for α, n2, A3, and Q3 and the R2 for this fitting.

Parameter Y0 B1 B2 B3

α 0.024 −0.017 0.017 −0.004
n1 1.516 3.243 −2.784 3.064
n2 1.167 2.480 −2.153 2.355

ln(A1) 10.607 3.451 −12.319 3.372
ln(A3) 15.16 15.99 −21.95 15.06

Q1 212.00 159.94 −218.74 143.11
Q3 204.71 154.28 −217.34 154.6

The value of n1 and n2 had the same characteristics; they increased with the increasing strain
(Figure 9b). Thus, the (m) value decreased with increasing strain. The effective activation energy
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Q1 and 3 increased with increasing strain from 225 to 300 kJ/mol (Figure 9d). The Q1 and 3 vs. strain
dependence exhibited sigmoidal shape with a slight increase of Q1 and 3 in a strain range of 0.3–0.7 and
a significant increase of the Q1 and 3 in a strain range of 0.7–1. Constant ln(A3) demonstrated a similar
behaviour (Figure 9d,e). However, ln(A1) exhibited an opposite characteristic, with trends decreasing
with an increase in strain (Figure 9e).

The relationship between the material constant α and the strain was dependent on the upward
parabola with values varying from 18.5–22 × 10−3. The strain of 0.7 provided the minimum value of α
constant (Figure 9c). 

α = Y0 + B1ε1 + B2ε2 + B3ε3

n1,2 = Y0 + B1ε1 + B2ε2 + B3ε3

A1,3 = Y0 + B1ε1 + B2ε2 + B3ε3

Q1,3 = Y0 + B1ε1 + B2ε2 + B3ε3

(16)

Once the material constants at different strains were determined, the fitted flow stress can be
calculated using Equations (11)–(15) for both models. For evaluation of the performance and accuracy
of the models, the following comparative statistical terms were computed (Equations (17)–(20)); where
Ei and Pi, are the experimental and the approximated flow stress values, E and P, are the mean values
of the experimental and approximated flow stress, and N is the total data number.

correlation coefficient (R) =

∑N
i=1

(
Ei − E

)(
Pi − P

)
√∑N

i=1

(
Ei − E

)2 ∑N
i=1

(
Pi − P

)2
(17)

average absolute relative error (AARE) =
1
N

N∑
i=1

∣∣∣∣∣Ei − Pi
Ei

∣∣∣∣∣ (18)

root mean square error (RMSE) =

√√√
1
N

N∑
i=1

(Ei − Pi)
2 (19)

Error =
1

εmax

εmax∫
0

∣∣∣Ei.(ε) − Pi(ε)
∣∣∣ dε (20)

Figure 10 a–d and Figure 11a–d show the data of the experiment (lines) and the approximation
(scatters) made by both models’ flow stresses. Figures 10e–f and 11e–f show the performance and the
error of the constructed model. Figure 10 shows that the flow stress can be best fitted and approximated
by the power law constitutive model, because the approximated flow stresses are in agreement with the
tested stresses. The R, AARE, and RMSE values were 98.77%, 3.7%, and 2.16 (Figure 10e) respectively.
The overall error (Error) is shown in (Figure 10f).
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Figure 11. Comparative plots for the experimental results (lines) and fitted values by hyperbolic sine
law model (symbols) at (a) 4 × 10−4 s−1, (b) 6 × 10−4 s−1, (c) 1 × 10−3 s−1 , and (d) 3× 10−3 s−1 ; (e) the
correlation between experimental and fitted flow stress; (f) the error between experimental and tested
flow stress.

The hyperbolic sine law model also revealed a good fitting of the model and experimental values.
The R, AARE, and RMSE values were 98.84%, 4.4%, and 2.05 (Figure 11e), respectively. The overall
error (Error) is shown in (Figure 11f).

3.3.3. Cross-Approval of the Suggested Models

In this approach, a cross-validation procedure was employed in order to determine which
constructed model; power law or hyperbolic sine law, can accurately predict the deformation behaviour
of the studied alloy. The constructed models were proved by separating the tested flow stress-strain
plots from each other. A twenty-trial dataset with various deformation temperatures and strain rates
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were performed (Table 4). The constructed models were rebuilt afterwards for each trial dataset and
the predictions done for conditions of excluded stress-strain plot. In addition, the predicted values
were compared with the tested data.

Table 4. The excluded conditions in trial datasets.

Trial Number
Excluded Conditions

Trial Number
Excluded Conditions

T (◦C) ε̇ (s−1) T (◦C) ε̇ (s−1)

Trial 1 800 3 × 10−4 Trial 11 850 1 × 10−3

Trial 2 800 6 × 10−4 Trial 12 850 3 × 10−3

Trial 3 800 1 × 10−3 Trial 13 875 3 × 10−4

Trial 4 800 3 × 10−3 Trial 14 875 6 × 10−4

Trial 5 825 3 × 10−4 Trial 15 875 1 × 10−3

Trial 6 825 6 × 10−4 Trial 16 875 3 × 10−3

Trial 7 825 1 × 10−3 Trial 17 900 3 × 10−4

Trial 8 825 3 × 10−3 Trial 18 900 6 × 10−4

Trial 9 850 3 × 10−4 Trial 19 900 1 × 10−3

Trial 10 850 6 × 10−4 Trial 20 900 3 × 10−3

Figure 12 demonstrates the dependence of n1, n2, Q1, and Q3 versus strain for all trials. The
material property factors nearly show similar characteristics with an increase in strain for all trials
(Figure 12a–d).Materials 2019, 12, x FOR PEER REVIEW 15 of 20 
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The cross-validation technique revealed that both models exhibited a low level of errors. Thus,
both models can be used to correctly predict the flow behaviour of this alloy (Figure 13). The power law
model exhibited only one critical region (lowest temperature-highest strain rate) with an error of 7%
(Figure 13a). In the case of hyperbolic sine law, the extreme points (lowest tested temperature-highest
strain rate and highest temperature-lowest strain rate) exhibited higher error compared with the other
points (Figure 13b). Therefore, the proposed power law model had better predictability of the stress
values under superplastic deformation.
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4. Discussion

The material constants in the CE model indicate the deformation-controlling mechanisms in the
studied temperature-strain rate range. The mechanisms can be evaluated by using the stress exponent
values n1,2 and an effective activation energy (Q1,3) [39]. Grain boundary sliding (GBS) mechanism is
considered to be dominant at n1,2 values close to 2. For dislocation viscous glide (DVG), it is assumed
at n2 values close to 3 whereas that of dislocation climb (DC) mechanism is linked to n1,2 values
from 4–6 [40,41]. For the studied alloy, the stress exponent values n2 was increased from 1.5 to 4
(Figure 7a) which suggests that the controlling deformation mechanism was changed with increasing
strain. At strains below 0.7, both GBS and DVG are supposed to be the deformation-controlling
mechanisms according to the values of n1,2. The nature of the deformation mechanisms can change
with increasing strain. With increasing strain to 0.8, the value of n1,2 increased to 3 and dislocation
viscous glide is considered as the main mechanism governing the deformation. At strains up to 1,
the n2 increased to 4, which projects dislocation climb as the deformation-controlling mechanism.
The Q-value increased from 225–300 kJ/mol with increasing strain to 1.1. These values are typically
associated with the increasing role of thermally activated dislocation slip/creep mechanisms [32]. The
increase in dislocation activity with decreasing temperature was in-situ observed in Ti-6Al-4V by
Alabort [9].

The most important result in this study is the observation of higher elongation-to-failure at 825
compared to 875 ◦C. Considering both temperatures at a constant strain rate of 1 × 10−3 s−1, the samples
exhibited high strain rate sensitivity m = 0.65 with a difference in strain hardening behaviour. Results
from the constant strain rate tests and the stable necking free flow observed allows us to suggest that
microstructure evolution was the main reason for the difference in strain hardening behaviour. The
strain hardening was observed as a result of dynamic grain growth, which is in agreement with [42–46].
The main suggested reason for the softening is as a result of continuous dynamic recrystallization [47].
This phenomenon was also observed for the superplastic deformation of other titanium alloys [48,49].
As it was shown by EBSD study, in the tested conditions, the LAGBs volume fraction decreased while
the HAGBs volume fraction increased with increasing strain at both temperatures. These observations
suggested uncompleted recrystallization before the start of the superplastic deformation and dynamic
recrystallization process at both (825 and 875 ◦C) temperatures. The increase of the HAGBs with
increasing the strain at both 825 ◦C and 875 ◦C may indicate that grain boundary sliding (GBS) is the
dominant deformation mechanism during the deformation process [45,50]. The grains of both phases
at 825 ◦C exhibited higher stability due to dynamic growth compared to those observed at 875 ◦C.
Furthermore, β-grain refinement was observed at 825 ◦C (Figures 4 and 5) which suggests that dynamic
recrystallization process occurred in the β-phase. Dynamic recrystallization and limited dynamic
grain growth of both phases led to the formation of a finer grain structure at 825 ◦C. Thus, the slight



Materials 2019, 12, 1756 16 of 20

softening at 825 ◦C was as a result of dynamic recrystallization, slight grain refinement of β-phase
and high stability of α-grains. The superplastic deformation behaviour at 875 ◦C was controlled by
a competition between dynamic recrystallization and dynamic grain growth. The strain hardening
was as a result of the higher impact of dynamic grain growth on both phases rather than the grain
refinement due to dynamic recrystallization.

Typically, at higher temperatures, cavity ‘initiation’ occurs at larger strains due to the increasing
proportions of ductile β-phase hence the increased diffusional accommodation of the GBS phenomenon
according to Reference [51]. In our case, the finer grain structure was the main reason for lower
cavitation and the finer cavities size at 825 ◦C provided 23 ± 4% of ductile β-phase as compared to
875 ◦C which provided 40 ± 6% of β-phase.

Superplastic deformation mechanisms are controlled by atomic diffusion. The diffusion rate
in two-phased titanium alloys depends on the deformation temperature, grain size and the volume
fraction of diffusive β phase. The results of this study suggested that stable and finer grain size are
more important to improving superplasticity of the studied alloy than increasing diffusivity. The
increased diffusivity comes about by virtue of the increasing volume fraction of the high diffusive and
ductile β-phase due to increasing deformation temperature. Due to fine and stable grain structure, the
lower temperature of 825 ◦C provided a necking free deformation, a higher elongation-to-failure, a
lower cavitation, and an acceptable flow stress value. The same trend was observed by Guo et al. [49]
for Ti-6Al-4V. The dynamic grain growth with increased cavitation resulted in a strain hardening and
a lower elongation at 875 ◦C. This observation can change by relieving the grain boundary sliding
and its accommodation with finer grains at 825 ◦C. The 20% of fine-grained ductile and diffusive
β-phase at 825 ◦C provided the effective accommodation for grain boundary sliding by diffusion and
dislocation slip/creep mechanisms. It is important to note that only 20% of β-phase was optimum for a
good superplasticity of the studied samples. A similarly low optimal β-phase volume fraction was
reported for Ti-6Al-2Sn-4Zr-2Mo-0.1Si [45] and Ti-6Al-4V alloy [10,13]. Softening accompanying the
deformation process also suggests the presence of dynamic recrystallization and, as a result, increased
the role of the dislocation mechanisms at 825 ◦C [8]. We suggest that the dynamic grain growth at
875 ◦C had a significant effect on the accommodation of grain boundary sliding, while the dislocation
accommodation was more important at 825 ◦C.

5. Conclusions

The microstructure and superplastic deformation behaviour of conventionally processed sheets
of Ti-6Al-4V alloy were analysed in a temperature range of 750–900 ◦C and a strain rate range of
10–5–10–2 s−1. The experimental stress-strain data of the constant strain rate tests were used to construct
constitutive models for fitting and predicting the superplastic flow behaviour. Based on the results of
this study we concluded that:

• For the studied alloy composition, the experimental and Thermo-Calc calculated β-phase fraction
vs. temperature was in agreement, and the α/β fraction changed from ≈ 80/20 at 750 to ≈ 40/60 at
900 ◦C. The α-grain size slightly increased from 3.2 ± 0.20 to 3.9 ± 0.25 µm while the β-grains
grew significantly from 1.8 ± 0.20 to 4.2 ± 0.20 µm with an increase in annealing temperature from
750 to 900 ◦C. For the β-grains, a significant temperature-induced grain growth by 2 folds was
observed in a temperature range of 850–900 ◦C.

• The alloy demonstrated superplasticity in a strain rate range of 6 × 10−4–3 × 10−3 s−1 and in
a temperature range of 800–900 ◦C. An elongation-to-failure > 400% and m-value > 0.45 were
observed. The considerably low optimal deformation temperature of 825 ◦C, which provided
the maximum superplastic elongation, was established. Due to the fine-structure and its stability
during superplastic deformation, a maximum elongation–to-failure of 635% and stable flow with
strain hardening coefficient close to zero were achieved at a constant strain rate of 1 × 10−3 s−1

and a temperature of 825 ◦C. Increasing temperature with decreasing strain rate led to dynamic
grain growth and decreased superplastic elongations.
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• The recrystallization process was not finished before the superplastic deformation process
commenced. Continuous dynamic recrystallization accompanied by decreasing volume fraction
of low angle grain boundaries occurred at superplastic deformation, as shown by the EBSD study.

• A comparison of the experimental and approximated flow stresses indicated that, the constitutive
models based on both power law and hyperbolic sine equations exhibited high accuracy and good
efficiency in fitting and approximating the superplastic deformation behaviour of the studied alloy.
The predictability of both developed models was compared using the cross-validation approach.
The constitutive model based on the power law equation exhibited excellent predictability of the
stress-strain superplastic behaviour of the alloy.
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Nomenclature

Symbol/Acronym Full name Symbol/Acronym Full name

SPF Superplastic forming ε True strain
CE Constitutive equations

.
ε Deformation strain rate (s-1)

R correlation coefficient T
Deformation temperature

(◦C)
AARE mean absolute relative error m Strain rate sensitivity index
RMSE root mean square error GBS Grain boundary sliding
ANN artificial neural network A, β, n1, n2 and α Material constants

α Titanium alpha-phase (HCP) Q
Effective activation energy

(kJ/mol)
β Titanium beta phase (BCC) R gas constant 8.314 J/(mol·K).

SEM
Scanning electron

microscope
α′ Returned beta phase

LAGB low-angle grain boundary EBSD
Electron backscatter

diffraction
σ Flow stress (MPa) HAGB high-angle grain boundary
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