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1 Introduction

Empirical macroeconomic modelling is typically a complicated affair, involv-
ing many time series variables. For instance, the UK macroeconomic models
considered in this paper are based on the influential model of Garratt, Lee,
Pesaran and Shin (2003, 2006), hereafter GLPS. This involves nine variables.
Even if one remains in a conventional multivariate time series framework
involving Vector autoregressive (VAR) and Vector error correction models
(VECMs), there can be hundreds or more modelling choices. Some of these
are driven by econometric considerations (e.g. choice of cointegrating rank,
lag length, etc.) while others can be driven by economic theory considera-
tions (e.g. GLPS develop a theoretical model of the UK macroeconomy which
implies certain restrictions on the cointegrating relationships). In macroeco-
nomic modelling exercises involving structural breaks, time variation in pa-
rameters or regime switching such modelling choices proliferate (see, among
many others, Primiceri, 2005 and Sims and Zha, 2006).

The challenge facing the empirical macroeconomist is how to navigate
through this morass of choices. One common strategy, used by GLPS, is
to select a single model. This can be done through sequential hypothesis
testing procedures or by choosing the model with the highest value for an
information criteria or marginal likelihood. Alternatively, economic theory
can be used to guide model choice by giving special consideration to models
consistent with a particular economic theory.

A second strategy is to do model averaging and present empirical results
which are a weighted average over all models. Common choices for weights
are marginal likelihoods or functions of information criteria. Empirical pa-
pers adopting this approach include Sala-i-Martin, Doppelhoffer and Miller
(2004), Fernandez, Ley and Steel (2001) and Koop, Potter and Strachan
(2008). The literature is replete with extensive discussion of the compara-
tive advantages and disadvantages of model averaging and model selection
(e.g. Draper, 1995, Leamer, 1978, Raftery, Madigan and Hoeting, 1997). A
problem with model averaging is that it can be extremely computationally
demanding especially if, as in the current application, Markov Chain Monte
Carlo (MCMC) methods are required to carry out inference in each model
and the number of models is high.

In this paper, using the modelling framework of GLPS, we use a third
strategy which shares similarities with a type of approach which has become
increasingly popular in macroeconomics. This strategy can informally be de-
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scribed as working with a single very flexible model. The problems with such
models are that they risk over-fitting and typically involve a large number
of parameters which can be difficult to estimate with any precision. The
solution to such problems is prior information. This prior information can
be purely subjective or involve some data information (as in the classic Min-
nesota prior for VAR models, see Doan, Litterman and Sims, 1984). Alterna-
tively the prior can be hierarchical (i.e. can be expressed in terms of a set of
unknown parameters which are estimated from the data). Indeed the state
equations from state space models such as those used by Primiceri (2005)
can be interpreted as hierarchical priors. The mixture innovation models
of, e.g., Giordani and Kohn (2008) or Koop, Leon-Gonzalez and Strachan
(2009b) can also be interpreted in this manner. Yet another recent hier-
archical approach is explored and adapted in this paper. This is based on
the Stochastic Search Variable Selection (SSVS) approach to VAR models
developed in George, Ni and Sun (2008). The basic idea of this approach
can be explained quite simply. Let λ be a parameter (e.g. a coefficient in a
VAR). A conventional Bayesian approach would specify a prior for λ such as
λ ∼ N (0, V λ). By setting V λ to a large value, a relatively noninformative
prior is obtained. Smaller values of V λ will shrink the coefficient towards
zero, something which has been found to be useful in many empirical appli-
cations. Instead of such an approach, the SSVS prior is a hierarchical one,
involving a mixture of two normal distributions:

λ ∼ (1 − δ)N (0, V λ0) + δN (0, V λ1) , (1)

where δ is a dummy variable which equals 0 if λ is drawn from the first
normal and equals 1 if it is drawn from the second. The prior is hierarchical
since δ is treated as an unknown parameter and estimated in a data-based
fashion. The SSVS aspect of this prior arises by choosing the first prior
variance, V λ0, to be extremely “small” (so that the parameter is virtually
zero) and the second prior variance, V λ1, to be “large” (implying a relatively
noninformative prior for the parameter). The way in which “small” and
“large” prior variances can be chosen is discussed in George, Ni and Sun
(2008) and below.1

1Formally, the SSVS prior allows for coefficients to be shrunk to “virtually zero” but
not “precisely zero” since V

λ0
is not precisely zero. In the remainder of this paper, we will

sometimes omit such qualifying phrases like “virtually zero” and simply refer to SSVS as
allowing for parameters to be included (if δ = 1) or excluded (if δ = 0) from the model.
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SSVS can be interpreted as working with a single very flexible model
and then (in a data-based fashion) choosing a prior which ensures over-
parameterization problems do not occur. But SSVS can also be used as
a way of implementing the two strategies described above. The researcher
can do model selection by selecting a single restricted model based on some
metric involving δ (e.g. if Pr (δ = 1|Data) > 1

2
then the explanatory variable

corresponding to λ is included in the model, else it is excluded). Bayesian
model averaging (BMA) can be done by using an unrestricted model with
SSVS prior. This will implicitly average over models which include and ex-
clude the explanatory variable associated with λ. The weights in this average
will be Pr (δ = 1|Data) and Pr (δ = 0|Data), respectively.

The SSVS approach is very attractive for VAR modelling since VARs
can have a large number of coefficients and many of them have no explana-
tory power. For instance, the trivariate VAR(4) used in Jochmann, Koop
and Strachan (2009) has 36 VAR coefficients and SSVS picks out only 10
of these as having important explanatory power. In such a situation, the
number of hypothesis tests required in a sequential testing procedure could
lead the researcher to serious worries about pre-test problems. Alternatively,
the researcher who wants to select the single restricted VAR with highest
marginal likelihood or highest value for an information criteria would face
the serious problem of estimating at least 236 models (i.e. if each restricted
model is defined according to whether each of the 36 coefficients is included
or excluded, the result is 236 models). Regardless of whether SSVS is used
for model selection or model averaging, it seems an attractive approach to
VAR modelling which will shrink unimportant coefficients to zero and, thus,
yield a much more parsimonious model. In essence, the SSVS prior can pick
out restrictions automatically so that the researcher can begin with a flexible
unrestricted model and let SSVS pick out the appropriate restrictions.

The major theoretical econometric contribution of this paper is to extend
the SSVS approach, which is developed for multivariate normal linear models
such as the VAR, to the nonlinear VECM. As we shall see, some subtle
econometric issues arise in this regard. A related theoretical contribution is
to extend the SSVS approach to restrictions other than ones like (1) where
each coefficient is either included or excluded. In particular, macroeconomists
such as GLPS are often interested in overidentifying restrictions involving
several coefficients. We develop an SSVS approach which can pick out such
restrictions automatically.

The major empirical contribution is to use our methods in an important
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macroeconomic application involving a high dimensional model. The GLPS
model fits the bill perfectly. It involves nine dependent variables, uncertainty
over many modelling choices (e.g. cointegrating rank, lag length and treat-
ment of deterministic terms) and many theoretical restrictions motivated by
macroeconomic theory. We find SSVS to be computationally efficient and
to lead to quite parsimonious modelling. We find support for interest rate
parity and Fisher inflation parity conditions which are imposed by GLPS.
However, we find less support for purchasing power parity and none at all
for a restriction motivated by neoclassical growth models. These latter two
restrictions are imposed by GLPS. Nevertheless, when we turn to impulse
response analysis we find economically-sensible results which are not too dif-
ferent than those of GLPS.

2 Models

A Bayesian model is defined by a likelihood function and a prior. We deal
with each of these in turn in this section.

2.1 Likelihoods

The VECM for an n-dimensional vector, yt, is written as:

∆yt = Πyt−1 +

p−1∑

j=1

Γj∆yt−j + µdt + εt (2)

for t = 1, .., T where the n × n matrix Π is of rank r ≤ n and dt denotes
deterministic terms. εt is i.i.d. N (0,Σ). The framework described in (2)
defines a set of models which differ in the number of cointegrating vectors
(r), lag length (p) and the specification of deterministic terms. In addition,
the researcher may wish to entertain various over-identifying restrictions on
the cointegrating vectors.

The unrestricted VECM used in this paper, written in matrix form is:

Y = Xβα+WΓ + E, (3)

where Y is T×n with tth row given by ∆y′t, X is T×(n+2) with tth row given
by
(
1, t, y′t−1

)
, β is (n+2)×rmax , α is rmax×n, W is T×[n (pmax − 1) + 2] with

tth row given by
(
1, t,∆y′t−1, ..,∆y

′

t−p+1

)
, Γ is [n (pmax − 1) + 2]× n and E is
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T × n with vec (E) ∼ N (0,Σ ⊗ I). rmax and pmax are the maximum number
of cointegrating relationships and lag length, respectively, that the researcher
is willing to entertain. Note that, with regards to deterministic terms, a de-
terministic trend in the cointegrating residuals has very different implications
than a deterministic trend in the levels of the series. Accordingly, following
Johansen (1995, Section 5.7), we potentially allow for deterministic terms in
the cointegrating residual and directly in the conditional mean of ∆yt.

GLPS work with additional restrictions motivated by macroeconomic the-
ory. A detailed explanation of this theory is provided in GLPS. Here we
only sketch the details. The nine variables GLPS work with are the log of
the oil price (pot ), the log of the effective exchange rate (et) , the domes-
tic and foreign nominal interest rates (it and i∗t ), the inflation rate (∆pt),
the logs of domestic and foreign real per capita GDP (qt and q∗t ), the log
of the ratio of domestic to foreign prices (pt − p∗t ) and the log of the ra-
tio of real high powered money to real GDP per capita (ht − q). Thus,
yt = (pot , et, i

∗

t , it,∆pt, qt, pt − p∗t , ht − qt, q
∗

t )
′. Exact definitions and sources

are given in the Data Appendix.
The model GLPS call their core model assumes five cointegrating rela-

tionships of which the following four place restrictions on β. These are:

pt − p∗t − et = b1 + e1t,
it − i∗t = b2 + e2t,
qt − q∗t = b3 + e3t,
it − ∆pt = b4 + e5t,

(4)

where bi are intercepts in the cointegrating relationships and eit denote mean
zero stationary errors.2

GLPS derive and explain these cointegrating relationships in detail. Brief-
ly, the first restriction is motivated by the purchasing power parity relation-

2GLPS use a long run solvency requirement to motivate a fifth cointegrating relation-
ship. However, it implies a cointegrating vector dependent on unknown parameters (i.e. it
only implies the exclusion restriction that a cointegrating relationship must exist between
two specific dependent variables and does not specify the exact cointegrating vector).
When multiple cointegrating relationships exist, imposing such exclusion restrictions does
not restrict the cointegrating space because by linearly combining cointegrating vectors
one can come up with a new cointegrating vector which incorporates the long run solvency
restriction but does not restrict the coefficients on the other dependent variables. Dealing
with such issues is possible using an extended version of our approach, but substantially
complicates the analysis and, accordingly, we do not consider this fifth restriction in this
paper.
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ship. The second from an interest rate parity condition. The third by neo-
classical growth models for the UK and the rest of the world. The fourth
is based on Fisher inflation parity arguments. These equations define over-
identifying restrictions and we consider variants of our models which impose
some or all of them.

In sum, we have so far developed a very general unrestricted model. How-
ever, there are many restricted models of interest which differ in choice of
p ≤ pmax, r ≤ rmax and the number of over-identifying restrictions imposed
(i.e. restrictions on the cointegration space). Furthermore, setting individual
coefficients in α and/or Γ (if empirically warranted) would lead to the desir-
able goal of a more parsimonious model. Note, in particular, that (3) allows
for deterministic terms (both intercept and time trend) to enter both the
cointegrating residual and ∆yt. Such a specification is typically too flexible
in macroeconomic empirical work and, thus, restricted models which zero out
some of these deterministic terms are potentially of interest.

In most applications, this will lead to a huge model space. For instance,
even if we ignore restrictions on α and/or Γ, if we set rmax = 5, pmax = 2 and
consider eighteen restrictions on β,3 we would have hundreds of models to
work with. This is the approximate number of models used in the conven-
tional Bayesian cointegration analysis of Koop, Potter and Strachan (2008).
Given that the methodology of Koop, Potter and Strachan (2008) required
the running of an MCMC algorithm in each model, the computational re-
quirements of that paper were quite substantial. In the present application,
α is a 5 × 9 matrix and Γ an 11 × 9 matrix and, thus, in total they contain
144 parameters. If we are to extend our model space by considering models
which allow for each individual element of α and/or Γ to be zero, then the
number of models is further multiplied by 2144. Clearly, doing a conven-
tional Bayesian model selection or model averaging exercise which involves
estimating each of more than 100 × 2144 models is computationally impossi-
ble. This consideration helps motivate our SSVS approach which, as we shall
see, allows the researcher to work with the one model given in (3) and select
appropriate restrictions in an automatic manner.

3These restrictions will be explained below. Basically, they arise from imposing the
restrictions in (4) singly or in all possible combinations and restricting the deterministic
terms in the cointegrating residuals.
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2.2 The SSVS Prior

In this paper, we will extend the SSVS prior for VARs of George, Ni and
Sun (2008) to VECM models. The new econometric issues involve β and
α. However, before describing our treatment of these parameters we will
describe the prior for Γ and Σ. We do this since our treatment of Γ and Σ
is exactly the same as George, Ni and Sun and, thus, we can introduce basic
SSVS ideas in a familiar framework.

2.2.1 Prior for Γ and Σ

Note that, conditional on β and α, the VECM can be written as:

Ỹ = WΓ + E, (5)

where Ỹ = Y −Xβα. This takes the form of a VAR and the SSVS methods
for VARs of George, Ni and Sun (2008) can be applied directly in the context

of an MCMC algorithm (except using Ỹ as the vector of dependent variables
instead of Y ).

SSVS can be interpreted as defining a hierarchical prior for Γ and Σ.
Each element in the hierarchy is a mixture of two normals, one with a small
variance (implying the coefficient is not in the model) and one with a large
variance (implying the coefficient is included in the model). The SSVS prior
for γ = vec (Γ) can be written as:

γ|δ ∼ N (0, D) , (6)

where δ is a vector of unknown parameters with typical element δj ∈ {0, 1},
and D is a diagonal matrix with the jth element given by κ2

j where

κ2
j =

{
κ2

0j if δj = 0,

κ2
1j if δj = 1.

(7)

Note that this prior implies a mixture of two normals:

γj|δj ∼ (1 − δj)N
(
0, κ2

0j

)
+ δjN

(
0, κ2

1j

)
, (8)

where γj is the jth element of γ. δ is treated as a vector of unknown param-
eters and is estimated in a data based fashion. If δi = 0, then the prior for
γj has such a small variance that the posterior for γj is concentrated near
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zero. In this sense, we can say that, if δj = 0, then the jth explanatory
variable is excluded from the model (formally its coefficient is shrunk to be
very near zero). If δj = 1, then the jth explanatory variable is included
and γj is estimated using a relatively noninformative prior. As discussed
in the introduction, priors of this form can be used for model selection by
choosing a single model which includes only those explanatory variables for
which Pr (δi > 1|Data) > c for some threshold c (e.g. c = 1

2
). Alternatively,

Bayesian model averaging can be done by running the MCMC algorithm for
the unrestricted model and simply averaging any feature of interest (e.g. an
impulse response function or a predictive moment) over all MCMC draws.
Since the MCMC algorithm provides draws of δ (as well as all other param-
eters), this strategy amounts to averaging over models (i.e. in the sense that
different drawn values for δ define different models). Crucially, though, doing
model averaging in this way requires only that the researcher run a single
MCMC algorithm for the unrestricted model (as opposed running an MCMC
algorithm in each restricted model).

We use what George, Sun and Ni (2008) call the “default semi-automatic
approach” to selecting the prior hyperparameters κ2

0j and κ2
1j and the reader

is referred to their paper for additional justification for this approach. Basi-
cally, κ2

0j should be selected so that γj is essentially zero and κ2
1j should be

selected so that γj is empirically substantive. The default semi-automatic

approach involves choosing κ2
0j = c0v̂ar

(
γj
)

and κ2
1j = c1v̂ar

(
γj
)

where

v̂ar
(
γj
)

is an estimate of the posterior variance of the coefficient. In our
empirical work, this is based on a preliminary MCMC run using a non-
informative prior, although other estimates (e.g. based on maximum like-
lihood estimation) are possible. The pre-selected constants c0 and c1 must
have c0 << c1 and we set c0 = 1

10
and c1 = 10.4

For δ, the SSVS prior posits that each element has a Bernoulli form
(independent of the other elements of δ) and, hence we have

Pr (δj = 1) = q
j
,

Pr (δj = 0) = 1 − q
j
.

(9)

We set q
j

= 1
2

for all j. This is a natural default choice, implying each

4Note that some related approaches set the first element in the mixture to be a spike
at zero. We do not adopt this approach since, as sample size increases, it leads to the
inclusion of all coefficients. See Section 3.4 of Chipman, George and McCulloch (2001) for
further discussion.
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coefficient is a priori equally likely to be included as excluded.
For the error covariance matrix, we begin by decomposing it as:

Σ−1 = ΨΨ′, (10)

where Ψ is upper-triangular. The SSVS prior involves using a standard
Gamma prior for the square of each of the diagonal elements of Ψ and the
SSVS mixture of normals prior for each element above the diagonal. Note
that this implies that the diagonal elements of Ψ are always included in the
model, ensuring a positive definite error covariance matrix. This form for
the prior also greatly simplifies posterior computation. Precise details are
provided in the next paragraph.

Let the non-zero elements of Ψ be labelled as ψij and define

ψ = (ψ11, .., ψnn)
′, ηj =

(
ψ1j, .., ψj−1,j

)′
and η = (η′2, .., η

′

n)
′. For the di-

agonal elements, we assume prior independence with

ψ2
jj ∼ G

(
aj, bj

)
, (11)

where G
(
aj, bj

)
denotes the Gamma distribution with mean

aj

bj
and variance

aj

b2j
. We specify aj = 0.1 and bj = 0.001 which are relatively noninformative

choices, but center the prior at 100.0. The latter is a sensible value given the
scale of the variables and the fact that ψ2

jj is the inverse of the error variance
in equation j.

The hierarchical prior for η takes the same mixture of normals form as γ.
In particular, the SSVS prior has

ηj|ωj ∼ N (0, Fj) , (12)

where ωj = (ω1j, .., ωj−1,j)
′ is a vector of unknown parameters with typical

element ωij ∈ {0, 1}, and Fj = diag
(
ξ2

1j, .., ξ
2
j−1,j

)
where

ξ2
ij =

{
ξ2

0ij
if ωij = 0,

ξ2

1ij
if ωij = 1,

(13)

for j = 2, .., n and i = 1, .., j − 1. Note that this prior implies a mixture of
two Normals for each off-diagonal element of Ψ:

ψij|ωij ∼ (1 − ωij)N
(
0, ξ2

0ij

)
+ ωijN

(
0, ξ2

1ij

)
. (14)
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As we did with κ2
0j and κ2

1j (the hyperparameters in the SSVS prior for

Γ), we use a semi-automatic default approach to selecting ξ2

0ij
and ξ2

1ij
. That

is, we set ξ2

0ij
= c0v̂ar

(
ψij
)

and ξ2

1ij
= c1v̂ar

(
ψij
)
, where v̂ar

(
ψij
)

is based

on an estimate of the variance of the appropriate off-diagonal element of Σ.
As with Γ, this estimate is obtained from a preliminary MCMC run using
a non-informative prior. The pre-selected constants c0 and c1 are set (as
before) to be c0 = 1

10
and c1 = 10.

For ω = (ω′

2, .., ω
′

n)
′, the SSVS prior posits that each element has a

Bernoulli form (independent of the other elements of ω) and, hence, we have

Pr (ωij = 1) = q
ij
,

Pr (ωij = 0) = 1 − q
ij
.

(15)

We make the default choice of q
ij

= 1
2

for all i and j.

The preceding material describes the basic ideas underlying SSVS and
the details of how we implement it for Γ and Σ. SSVS has been found to be
a very useful technique in finding parsimonious restricted versions of VARs.
Posterior simulation methods are described in George, Ni and Sun (2008)
and in Appendix A. Suffice it to note here that we use their algorithm to
provide posterior draws of Γ, Σ , δ and ω (ω is the vector containing all the
ωj) conditional on α and β.

2.2.2 Prior for α and β

SSVS has never been extended to VECMs. The fact that βα enters in product
form and the fact that (without further restrictions) the VECM only identi-
fies the cointegrating space precludes the direct use of SSVS ideas for VARs.
Before describing how SSVS can be implemented in a manner which over-
comes these problems, we must digress and explain some basic issues which
arise in Bayesian analyses of VECMs. An identification problem arises in
the VECM since Π = βα and Π = βCC−1α are identical for any nonsingular
C. In early work, a common practice was to impose a linear normalization

such as β =

(
Ir
β0

)
. However, a literature has recently emerged which ar-

gues that it is only the cointegrating space which is identified (see Strachan,
2003, Strachan and Inder, 2004 and Villani, 2005, 2006) and this should be
the focus of interest (rather than a particular identified parameter such as
β0). For instance, Strachan and Inder (2004) show how the use of linear
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identifying restrictions places a restriction on the estimable region of the
cointegrating space. Furthermore, a flat and apparently “noninformative”
prior on β0 in the linear normalization strongly favors regions of the coin-
tegration space near where the linear normalization is invalid. Hence, the
linear normalization is used under the assumption that it is valid while at
the same time the prior puts weight near the region where the normalization
is likely to be invalid. These considerations suggest that an alternative iden-
tification restriction is required to form the basis for prior elicitation on the
cointegration space. As shown in Strachan and Inder (2004) an identification
restriction which does not suffer from the drawbacks of the linear and similar
normalizations is:

β′β = I (16)

and we will impose this semi-orthogonality restriction on β throughout the
remainder of this paper.

Formally, let sp (β) denote the cointegration space (i.e. the space spanned
by the columns of β) which is an element of the Grassmann manifold. The
semi-orthogonality restriction, (16), restricts the matrix of cointegrating vec-
tors to the Stiefel manifold. These spaces are compact and, hence, a Uniform
distribution over them is proper (the integrating constant is given in Strachan
and Inder, 2004). Strachan and Inder (2004) show how a sensible noninfor-
mative prior for β which does not restrict the cointegrating space is simply
equal to this integrating constant with (16) imposed. This can be used as a
noninformative prior on the cointegrating space.

Computation is complicated by the fact that β is semi-orthogonal and
conventional algorithms such as the Gibbs sampler of Geweke (1996) cannot
be used. The parameter-augmented Gibbs sampler developed in Koop, Leon-
Gonzalez and Strachan (2009a) overcomes this complication by introducing
a non-identified r×r symmetric positive definite matrix U with the property:

Π = βα = βUU−1α ≡ β∗α∗ (17)

where α∗ = U−1α and β∗ = βU . The introduction of the non-identified
U facilitates posterior computation because, under sensible priors (including
the SSVS prior we adopt), the posterior conditional distributions of α∗ and β∗

in the MCMC algorithm are normal. The fact that U is not identified causes
no problem and, in fact, introducing non-identified parameters in particular
ways is a common strategy for improving the efficiency of MCMC algorithms
in many contexts (see, e.g., Liu and Wu, 1999). For proofs of all these
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statements, further discussion and exact details of the MCMC algorithm, see
Koop, Leon-Gonzalez and Strachan (2009a).

Both for its own sake and since it will form a crucial part of our SSVS prior
for VECMs, we also require an informative prior for the cointegrating space.
Strachan and Inder (2004) and Koop, Leon-Gonzalez and Strachan (2009a)
develop and motivate such a prior. Here we briefly summarize the elements
of this strategy and refer the reader to these earlier papers for additional
details. Restrictions on the cointegrating space can be always be defined
through a semi-orthogonal (n+ 2) × s matrix5 H with r ≤ s ≤ n + 2 and
H⊥ being its orthogonal complement which is also a semi-orthogonal matrix.
Koop, Leon-Gonzalez and Strachan (2009a) give some examples of H and
in Appendix B we will show how different combinations of the restrictions
in (4) can be written in this manner. Consider a prior for the cointegrating
space defined through:

vec (β∗) ∼ N [0, Ir ⊗ (HH ′ + τ H⊥H
′

⊥
)] . (18)

As shown in Koop, Leon-Gonzalez and Strachan (2009a) this is a sensible
informative prior for the cointegrating space in that the prior for the coin-
tegrating space will be centered over sp (H). Furthermore, the dispersion of
the prior is controlled by the scalar τ ∈ [0, 1] with τ = 0 dogmatically im-
posing the restrictions expressed by H on the cointegrating space and τ = 1
leading to the noninformative prior discussed previously.6

To see how this prior can be used to develop an SSVS prior for the coin-
tegrating space, remember that the conventional implementation of SSVS
implies a prior which is the mixture of two normals, one with a “small” vari-
ance and the other with a “large” variance. Thus, a parametric restriction is
either imposed (approximately) or not imposed. For the cointegrating space,
an SSVS prior could also be a mixture of two distributions. The first dis-
tribution would (approximately) restrict the cointegrating space to lie in the
space spanned by H and the second would be a noninformative prior which
would allow the cointegrating space to be estimated in an unconstrained
manner. A consideration of the prior defined by (18) suggests how this can
be done. That is, if we introduce a discrete random variable with two points

5Remember that, by allowing for an intercept and trend in the cointegrating residual,
each column of β and, hence, H will have n + 2 elements.

6Note that one should not choose τ = 0, since this would imply a singular prior covari-
ance matrix in the typical case where s < n + 2.
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of support, one which sets τ to a small value, the other which sets τ = 1, then
we obtain a prior which can either (approximately) restrict the cointegration
space (if τ is small) or not (if τ = 1).

The previous discussion informally motivates how an SSVS prior for the
cointegrating space can be developed when there is a single restriction (de-
fined by H) involved. Extensions to multiple restrictions on the cointegrat-
ing space (e.g. our empirical work involves four over-identifying restrictions
given in equation 4 which are imposed individually and jointly plus we con-
sider restricting the deterministic terms) can be done by mixing over more
distributions. Formally, in our empirical work, we use an SSVS prior for the
cointegrating space which takes the form of (18) with the additional defini-
tion that H = Hj if φ = j for j = 1, .., 18 and τ = 0.05. Precise definitions of
H1 through H18 are provided in Appendix B. Briefly H1 = I yields the non-
informative prior discussed previously (and setting τ = 0.05 is irrelevant).
H2 restricts the deterministic trend in the cointegrating relationship to be
zero and H3 additionally restricts the intercept to be zero. H4 through H7

individually impose the four restrictions on the cointegrating space given in
(4). H8 through H13 impose all combinations of two of the four restrictions.
H14 through H17 impose all combinations of three of the four restrictions.
H18 imposes all of the restrictions. φ ∈ {1, 2, . . . , 18} is a discrete random
variable which selects which restriction applies. If φ = 1 is chosen, then none
of the restrictions are selected. Since φ is an unknown parameter, it requires
a prior:

Pr(φ = i) = p
φi
,
∑

p
φi

= 1, i = 1, . . . , 18. (19)

In our empirical work, we use the noninformative choice p
φi

= 1
18

for all i.

Finally, we require a prior for α∗. For this we use a standard SSVS prior
of the sort used for VARs. In particular, we use

a∗i ∼ N
(
0, ν2

i

)
, (20)

where a∗i is the ith (for i = 1, .., nrmax) element of vec (α∗). For motivation of
this prior (in terms of the shrinkage it achieves), see Koop, Leon-Gonzalez
and Strachan (2009a). However, for present purposes, the more important
issue is that it can be adapted to do SSVS by setting:

ν2
i =

{
ν2

0i if ρi = 0,

ν2
1i if ρi = 1,

(21)
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where ν2
0i and ν2

1i are set to big and small values (comparable to κ2
0j and

κ2
1j). ρi is a dummy variable (comparable to δi) which selects whether a∗i is

(approximately) zero or not. Its prior is given by:

Pr(ρi = 1) = 1 − Pr(ρi = 0) = p
a
. (22)

In our empirical work, we set p
a

= 1
2
, ν2

0i = c0v̂ar (a∗i ) and ν1i = c1v̂ar (a∗i ),
where v̂ar (a∗i ) is an estimate of the variance of a∗i obtained from a preliminary
MCMC run using a non-informative prior.7 The pre-selected constants c0 and
c1 are set (as before) to be c0 = 1

10
and c1 = 10.

2.3 Posterior Simulation

The previous sub-sections outlined the likelihood and prior we use in this pa-
per. Complete details of the MCMC algorithm used for posterior simulation
are provided in Appendix A. Here we note that the algorithm combines blocks
from the MCMC algorithm for VECMs described in Koop, Leon-Gonzalez
and Strachan (2009a) and the MCMC algorithm for SSVS in VARs of George,
Ni and Sun (2008). That is, conditional on the SSVS vectors of dummy vari-
ables δ, ω, φ, ρ (where ρ is a vector containing all the ρi defined previously)
we have a VECM with a particular prior and the algorithm of Koop, Leon-
Gonzalez and Strachan (2009a) can be used. But δ, ω, φ, ρ can be drawn
using the methods of George, Ni and Sun (2008), with minor alterations in
the case of φ. Exact formulae are given in Appendix A.

3 Empirical Work

Our data set is an updated version of the one constructed by GLPS and runs
from 1965Q1 through 2008Q1. Remember that yt = (pot , et, i

∗

t , it,∆pt, qt,
pt − p∗t , ht − qt, q

∗

t )
′ and these variables have been described in Section 2

(with precise definitions and data sources given in Appendix C). Motivated
by GLPS and preliminary experimentation with the data we select rmax = 5
and pmax = 2 as being reasonable values for the maximum possible number
of cointegrating relationships and maximum lag length. All other modelling
details, including prior hyperparameter values are described in the previous
section.

7To be precise, v̂ar (a∗
i
) is the average of the variances from all elements of α∗ that

belong to the same equation as a∗
i
.
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We divide our empirical work into two parts. First, using our SSVS ap-
proach, we present evidence on which models are supported by the data.
Second, we present impulse responses using our SSVS approach (which we
label “SSVS for Everything”) and two important special cases (which we
label “Best Model” and “GLPS Model”, respectively). The Best Model ap-
proach uses an initial SSVS run to select the single best model and then we
estimate that model. We choose this best model as follows: For Γ and η
we include all coefficients with posterior inclusion probabilities greater than
1
2

(all other coefficients are set to zero). By “posterior inclusion probabil-
ity” we mean Pr (δi|Data) (when referring to the ith element of Γ). For the
cointegrating space, we choose the value of φ which has highest posterior
inclusion probability. For α∗ we retain the SSVS prior.8 The second special
case involves using our SSVS approach, but imposing the economic theory
derived in GLPS on the model. We do this by using a dogmatic prior which
attaches all prior weight to H18 [which imposes all four of the restrictions in
(4)]. Formally, this amounts to setting Pr(φ = 18) = 1.

3.1 Which Models are Supported by the Data?

Using SSVS for Everything we can calculate the probability associated with
the various restrictions on the cointegration space (i.e. φ = 1, .., 18), the
probability associated with each cointegrating rank and the posterior inclu-
sion probability of any coefficient.

Table 1 presents the posterior distribution of φ. It can be seen that there is
no one restriction that is predominant, but rather the posterior probability is
spread over many different values for φ. Imposing some restrictions clearly is
preferred by the data since Pr (φ = 1|Data) = 0 which indicates no support
for the noninformative prior. However, there is also little support for all
of the restrictions holding since Pr (φ = 18|Data) is also near zero. The
most support is for φ = 12, which imposes interest rate parity and Fisher
inflation parity. However, there is also substantial support for φ = 7 which
imposes only Fisher inflation parity. The next most popular choice is φ = 15

8We do this since our initial run of SSVS averages over different values of φ, not just
a single best choice for φ. Given the fact that α∗ and β∗ enter in product form and φ

determines β∗, SSVS treatment of α∗ for fixed φ and SSVS treatment of α∗ for random φ

are conceptually and empirically very different. Hence, it would be questionable to choose
restrictions on α∗ using an initial SSVS run treating φ as random and then use these
restrictions in a model where φ is fixed.
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which adds to φ = 12 the additional restriction that purchasing power parity
holds. There is never support for any value of φ which involves imposing the
restriction inspired by neoclassical growth models for the UK and the rest of
the world.

Much of the support for the various restrictions occurs jointly, e.g., the
joint probability of purchasing power parity and uncovered interest rate par-
ity is 0.062. To obtain the marginal probability of an individual restriction,
therefore, we need to sum over all joint spaces. Doing this we obtain: a
marginal probability of purchasing power parity of 33.5%; a marginal proba-
bility of uncovered interest rate parity of 59.6%; a marginal probability of the
neoclassical growth restriction of 4.4%; and a marginal probability of Fisher
inflation parity of 86.4%.

When using these models for economic policy (e.g. to do impulse response
analysis or forecasting), SSVS for Everything will average over these different
choices for φ with weights given in Table 1.

Table 1: Posterior probabilities of φ

φ Probability φ Probability
1 0.000 10 0.114
2 0.000 11 0.003
3 0.000 12 0.320
4 0.001 13 0.005
5 0.061 14 0.008
6 0.000 15 0.126
7 0.271 16 0.012
8 0.062 17 0.004
9 0.000 18 0.012

In terms of the cointegrating rank, note that Π = β∗α∗ and our posterior
simulation algorithm provides draws of β∗ and α∗. The cointegrating rank
is the rank of Π. Accordingly, we can shed light on the posterior of the
cointegrating rank using these draws of Π. Formally, our posterior for the
cointegrating rank is the posterior of the number of singular values of Π
which are greater than 0.05. This is presented in Table 2.

Table 2 shows that there is strong support for a cointegrating rank of
either four or five. This is consistent with the non-Bayesian analysis of GLPS
who (with a shorter data set) find a cointegrating rank of five.

17



Table 2: Posterior of cointegration rank

Rank Probability
1 0.000
2 0.000
3 0.001
4 0.368
5 0.631

Next, we present evidence that SSVS is automatically leading to a very
parsimonious model. First we present evidence relating to the 5×9 matrix α.
Let ρ be the vector of dummy variables with typical element ρi (see equation
21). As one measure of parsimony we can calculate the posterior of ρ or the
posterior of all the elements of ρ corresponding to a single equation. The
posterior mean and variance of such features is what we include in Table
3 and label the “Number of included α”. Each row of α could potentially
have up to 5 non-zero coefficients. Table 3 shows that, in every equation,
SSVS sets most of these to zero. The posterior mean number of included
α in every equation is less than one (although the standard deviations are
moderately large). The final row of Table 3 shows how, of the 45 possible
non-zero coefficients in α, SSVS sets approximately 40 to zero.

Table 3: Number of included α

Equation Mean St..dev.
po 0.524 0.689
e 0.473 0.658
i∗ 0.493 0.666
i 0.622 0.744

∆pt 0.887 0.879
q 0.476 0.653

p− p∗ 0.458 0.641
h− q 0.472 0.658
q∗ 0.457 0.640

All equations 4.862 2.097
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Table 4 presents posterior inclusion probabilities for each coefficient in
the 11×9 matrix Γ. Of these 99 coefficients, only 13 have posterior inclusion
probabilities of greater than 1

2
.9 Often it is the case that the own lag of the

dependent variable is the only explanatory variable selected, but there are
a few exceptions to this pattern. This reinforces our story that SSVS is an
effective method of achieving parsimony in multivariate time series models
such as the VECM.

Table 4: Posterior inclusion probabilities for Γ

po e i∗ i ∆pt q p− p∗ h− q q∗

const 0.125 0.096 0.102 0.223 0.263 0.097 0.099 0.105 0.097
time 0.114 0.100 0.098 0.127 0.182 0.092 0.093 0.090 0.095
po 0.958 0.255 0.273 0.335 0.608 0.223 0.273 0.218 0.225
e 0.263 0.945 0.298 0.248 0.340 0.282 0.602 0.260 0.227
i∗ 0.348 0.285 1.000 0.847 0.229 0.266 0.246 0.228 0.334
i 0.427 0.400 0.381 0.731 0.266 0.278 0.223 0.223 0.396
∆pt 0.268 0.243 0.425 0.239 0.355 0.540 0.246 0.375 0.247
q 0.337 0.291 0.323 0.559 0.324 0.330 0.231 0.226 0.228
p− p∗ 0.450 0.339 0.596 0.224 0.967 0.394 0.971 0.321 0.227
h− q 0.241 0.499 0.234 0.354 0.334 0.264 0.412 0.951 0.288
q∗ 0.442 0.225 0.871 0.284 0.250 0.216 0.443 0.301 0.744

9The reason that the inclusion probabilities for the intercept are so low is that we are
also including an intercept in the cointegrating residual.

19



Table 5 also reveals a similar pattern of parsimony. It presents posterior
inclusion probabilities for Ψ (which contains the off-diagonal elements of the
error covariance matrix). For most of these error covariances the posterior
inclusion probability is much less than 1

2
.

Table 5: Posterior inclusion probabilities for Ψ

po e i∗ i ∆pt q p− p∗ h− q q∗

po 0.268 0.738 0.454 0.236 0.483 0.998 0.428 0.250
e 0.250 0.997 0.250 0.263 0.295 0.333 0.334
i∗ 0.967 0.342 0.284 0.567 0.244 0.505
i 0.315 0.295 0.261 0.223 0.307
∆pt 0.476 0.998 0.688 0.242
q 0.738 1.000 0.994
p− p∗ 0.629 0.296
h− q 0.262
q∗

3.2 Impulse Response Analysis

We have seen how SSVS does successfully allow us to work with a very flexi-
ble unrestricted model and allow for a more parsimonious restricted model to
be picked out automatically. We stress that the alternative strategy of eval-
uating every restricted model with a goal to either selecting a single one or
doing model averaging is computationally infeasible when facing the number
of models that we are dealing with here. Now we present evidence that SSVS
is picking out economically-sensible empirical models through a consideration
of impulse responses.

GLPS use a particular set of restrictions which allows them to identify
a monetary policy shock and an oil shock. We adopt the same identifying
scheme and refer the reader to GLPS for precise details. Point estimates
(posterior means) of the impulse responses to a monetary shock and oil price
shock for our three cases (SSVS for Everything, Best Model and GLPS model)
and plotted in Figures 1 and 2, respectively. It can be seen that the three
approaches are giving very similar impulse responses. Furthermore, these
impulse responses are all of reasonable shape and magnitude. Qualitatively,
they are similar to those given in Figures 2 and 4 of Garratt et al (2003)
despite the fact that we are using a substantially longer data span. The un-
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restricted VECM produced quite different impulse responses. We find this
reassuring in the sense that it is providing evidence that SSVS is successfully
choosing a parsimonious and economically-sensible model, but in an auto-
matic and computationally efficient manner. We are not carrying out a long
series of sequential hypothesis tests nor are we doing Bayesian model aver-
aging in the conventional and computationally demanding manner of Koop,
Potter and Strachan (2008).
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Figure 1: Responses to a Monetary Shock. Solid line = SSVS for
Everything, Dots = Best Model, Dashes = GLPS model
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Figure 2: Responses to an Oil Price Shock. Solid line = SSVS for
Everything, Dots = Best Model, Dashes = GLPS model
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A more detailed set of impulse response functions, including 95% credible
intervals, is provided in Appendix D. These credible intervals (similar to the
95% bootstrapped confidence intervals using in Garratt et al, 2003) tend to
be fairly wide. Nevertheless, the same pattern of similarity across approaches
(and to Garratt et al, 2003) is retained.

4 Conclusions

SSVS methods typically involve, for each parameter, choosing between a tight
prior and a loose prior in a data-based fashion. The tight prior is constructed
so as to shrink the parameter so that it is effectively zero. In this paper, we
have extended these ideas to VECMs and to the case where the researcher
is interested in restrictions involving several parameters. These extensions
required us to define carefully what a “tight prior” and a “loose prior” was
in the case of the cointegration space. An MCMC algorithm was developed
for carrying out empirical inference in the resulting model.

In an empirical exercise involving a nine-variate macroeconomic model of
the UK economy, we find our SSVS methods for VECMs to work well and
stress that conventional BMA methods would simply be computationally
infeasible in this case. Despite beginning with an over-parameterized unre-
stricted model and facing a huge model space, SSVS quickly moved towards
much more parsimonious models. Regardless of whether MCMC output was
used for model averaging or model selection, the resulting impulse responses
were sensible and similar to those found using the model of GLPS.

24



References

Chipman, H., George, E. and McCulloch, R. (2001). “The practical im-
plementation of Bayesian model selection,” pages 65-134 in Institute of Math-
ematical Statistics Lecture Notes - Monograph Series, Volume 38, edited by
P. Lahiri.

Doan, T., Litterman, R. and Sims, C. (1984). “Forecasting and condi-
tional projection using realistic prior distributions,” Econometric Reviews, 3,
1-100.

Draper, D. (1995). “Assessment and propagation of model uncertainty
(with discussion),” Journal of the Royal Statistical Society Series B, 56, 45-
98.

Fernández, C., Ley, E. and Steel, M. (2001). ”Model uncertainty in cross-
country growth regressions,” Journal of Applied Econometrics, 16, 563-576.

Garratt, A., Lee, K., Pesaran, M.H. and Shin, Y. (2003). “A Long-run
structural macroeconometric model of the UK economy,” Economic Journal,
113, 412-455

Garratt, A., Lee, K., Pesaran, M.H. and Shin, Y. (2006). Global and Na-

tional Macroeconometric Modelling: A Long-Run Structural Approach, Ox-
ford: Oxford University Press.

George, E., Sun, D. and Ni, S. (2008). “Bayesian stochastic search for
VAR model restrictions,” Journal of Econometrics, 142, 553-580.

Giordani, P. and Kohn, R. (2008). “Efficient Bayesian inference for mul-
tiple change-point and mixture innovation models,” Journal of Business and

Economic Statistics, 26, 66-77.
Geweke, J. (1996). “Bayesian reduced rank regression in econometrics,”

Journal of Econometrics, 75, 121-146.
Jochmann, M., Koop, G. and Strachan, R. (2009). “Bayesian forecast-

ing using stochastic search variable selection in a VAR subject to breaks,”
forthcoming in International Journal of Forecasting.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector

Autoregressive Models. Oxford: Oxford University Press.
Koop, Leon-Gonzalez, R. and Strachan, R. (2009a). “Efficient posterior

simulation for cointegrated models with priors on the cointegration space,”
Econometric Reviews, forthcoming.

Koop, Leon-Gonzalez, R. and Strachan, R. (2009b). “On the evolution
of the monetary policy transmission mechanism,” Journal of Economic Dy-

namics and Control, 33, 997–1017.

25



Koop, G., Leon-Gonzalez, R. and Strachan, R. (2009c). “Bayesian in-
ference in a cointegrating panel data model,” forthcoming in Advances in

Econometrics, volume 23
Koop, G., Potter, S. and Strachan, R. (2008). “Re-examining the con-

sumption-wealth relationship: The role of model uncertainty,” Journal of

Money, Credit and Banking, 40, 341-367.
Leamer, E. (1978). Specification Searches. New York: Wiley.
Liu, J. and Wu, Y. (1999). “Parameter expansion for data augmenta-

tion,” Journal of the American Statistical Association, 94, 1264-1274.
Primiceri. G. (2005). “Time varying structural vector autoregressions

and monetary policy,” Review of Economic Studies, 72, 821-852.
Raftery, A., Madigan, D. and Hoeting, J. (1997). ”Bayesian model av-

eraging for linear regression models,” Journal of the American Statistical

Association, 92, 179-191.
Sala-i-Martin, X., Doppelhoffer, G. and Miller, R. (2004). “Determinants

of long-term growth: A Bayesian averaging of classical estimates (BACE)
approach,” American Economic Review, 94, 813-835.

Sims, C. and Zha, T. (2006). “Were there regime switches in macroeco-
nomic policy?” American Economic Review, 96, 54-81.

Strachan, R. (2003). “Valid Bayesian estimation of the cointegrating error
correction model,” Journal of Business and Economic Statistics, 21, 185-195.

Strachan, R. and Inder, B. (2004). “Bayesian analysis of the error cor-
rection model,” Journal of Econometrics, 123, 307-325.

Villani, M. (2005). “Bayesian reference analysis of cointegration,” Econo-

metric Theory, 21, 326-357.
Villani, M. (2006). “Bayesian point estimation of the cointegration space,”

Journal of Econometrics, 134, 645-664.

26



Appendix A: Markov Chain Monte Carlo Al-

gorithm

In order to derive the Gibbs sampling algorithm we note that the model can
be written as:

Y = Xβ∗α∗ +WΓ + E = Zθ + E, E ∼ MN(0,Σ, IT ), (A1)

where Z ≡ (Xβ∗,W ) and θ ≡ (α∗′,Γ′)′. Vectorizing (A1), we obtain:

y = (α∗′ ⊗X)b∗ + (In⊗W )γ + e = (In⊗Z)d+ e, e ∼ N(0,Σ⊗ IT ), (A2)

where y = vec(Y ), a∗ ≡ vec(α∗), b∗ ≡ vec(β∗), γ ≡ vec(Γ), d ≡ vec(θ),
e ≡ vec(E) and Σ = ΨΨ′. We label the nonzero elements of Ψ as ψij and
define ψ ≡ (ψ11, . . . , ψnn)

′, ηj = (ψ1j, . . . , ψj−1,j)
′ and η = (η′2, . . . , η

′

n)
′.

Recall the prior distributions:

a∗|ρ ∼ N(0, A) with A = diag(ν2
1, . . . , ν

2
nrmax

), ν2
j = (1−ρj)ν

2
0j +ρjν

2
1j, (A3)

b∗|φ ∼ N(0, Irmax
⊗ P ), (A4)

where P = (HH ′ + τ H⊥H
′

⊥
) and φ ∈ {1, 2, .., 18} denotes the different

choices for P . Next

γ|δ ∼ N(0, D) with D = diag(κ2
1, . . . , κ

2
nk), κ

2
j = (1 − δj)κ

2
0j + δjκ

2
1j, (A5)

ψ2
jj ∼ Gamma(aj, bj), j = 1, . . . , n, (A6)

ηj|ω ∼N(0, Fj) with Fj = diag(ξ2
1j, . . . , ξ

2
j−1,j), j = 2, . . . , n,

ξ2
ij = (1 − ωij)ξ

2

0j
+ ωijξ

2

1j
, j = 2, . . . , n, i = 1, . . . , j − 1,

(A7)

ρj ∼ Bernoulli
(
p
αj

)
, (A8)

δj ∼ Bernoulli
(
p
γj

)
, (A9)

ωij ∼ Bernoulli
(
p
ψij

)
. (A10)

From (A9) and (A10) we can derive the prior distribution for d as

d|ρ, δ ∼ N(0, G), (A11)

where G is constructed from A and D.

We now can derive the following conditional posterior distributions:
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1. b∗ ∼ N(b̄, B̄) with

B̄ =
[
(α∗Σ−1α∗′) ⊗ (X ′X) + Irmax

⊗ P−1
]−1

(A12)

and
b̄ = B̄(α∗Σ−1 ⊗X ′)[y − (In ⊗W )γ]. (A13)

2. d ∼ N(d̄, D̄) with

D̄ =
(
Σ−1 ⊗ Z ′Z +G−1

)−1
(A14)

and
d̄ = D̄(Σ−1 ⊗ Z ′)y. (A15)

3. ψ2
jj are independent of one another ψ2

jj ∼ Gamma(aj + 0.5T, bj) with

bj =

{
b1 + 0.5 v11, for j = 1,

bj + 0.5 [vjj − v′j(Vj−1 + F−1
j )−1vj], for j = 2, . . . , n

(A16)

and
V ≡ (Y −Xβ∗α∗ −WΓ)′(Y −Xβ∗α∗ −WΓ) (A17)

has elements vij, vj ≡ (v1j, . . . , vj−1,j)
′ and Vj is the upper left j × j

block of V .

4. ηj are independent of one another ηj ∼ N(ηj, V j) with

V j = (Vj−1 + F−1
j ) (A18)

and
ηj = −ψjjV jvj. (A19)

5. P(φ = φj) ∝ pj with pj = fN(b∗; 0, Ir ⊗ Pj) where fN(.) is the Normal
p.d.f.

6. ρj are independent of one another ρj ∼ Bernoulli(pαj) with

pαj =

1

ν1j

exp

(
−
α2
j

2ν2
1j

)
p
αj

1

ν1j

exp

(
−
α2
j

2ν2
1j

)
p
αj

+
1

ν0j

exp

(
−
α2
j

2ν2
0j

)(
1 − p

αj

) . (A20)
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7. δj are independent of one another δj ∼ Bernoulli(pγj) with

pγj =

1

κ1j

exp

(
−

γ2
j

2κ2
1j

)
p
γj

1

κ1j

exp

(
−

γ2
j

2κ2
1j

)
p
γj

+
1

κ0j

exp

(
−

γ2
j

2κ2
0j

)(
1 − p

γj

) . (A21)

8. ωij are independent of one another ωij ∼ Bernoulli(pψij) with

pψij =

1

ξ
1ij

exp

(
−
ψ2
ij

2ξ2

1ij

)
p
ψij

1

ξ
1ij

exp

(
−
ψ2
ij

2ξ2

1ij

)
p
ψij

+
1

ξ
0ij

exp

(
−
ψ2
ij

2ξ2

0ij

)(
1 − p

ψij

) .

(A22)
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Appendix B: Further Details on Prior Elicita-

tion

Our SSVS prior for VECMs requires the construction of Hj for j = 1, .., 18
which impose the over-identifying restrictions or restrict the manner in which
deterministic trends enters the cointegrating residuals. The manner in which
such matrices are constructed is described in Strachan and Inder (2004) and
the reader is referred to that paper for details. The matrices below are not
semi-orthogonal, but since sp (H) = sp (Hκ) for any full rank square κ,
after constructing H, we may innocuously make it semi-orthogonal by the
transformation H → H (H ′H)−1/2 .

Noting that the tth row of X is ordered as (1, t, pot , et, i
∗

t , it,∆pt, qt, pt−p
∗

t ,
ht−qt, q

∗

t ), the following restriction matrices can be constructed. The matrix
which imposes no restrictions at all and simply leads to the noninformative
prior for the cointegrating space defined in the body of the text is:

H1 = I.

The matrix which deletes the deterministic trend term, but otherwise leaves
the cointegrating space unrestricted is:

H2 =




1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




The matrix which deletes the intercept and deterministic trend term, but
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otherwise leaves the cointegrating space unrestricted is:

H3 =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




The matrix which imposes the purchasing power parity relationship in (4),
but otherwise leaves the cointegrating space unrestricted is:

H4 =




0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




The matrix which imposes the interest rate parity condition in (4), but oth-
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erwise leaves the cointegrating space unrestricted is:

H5 =




0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




The matrix which imposes the restriction implied by neoclassical growth
models for the UK and the rest of the world in (4), but otherwise leaves the
cointegrating space unrestricted is:

H6 =




0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0




The matrix which imposes the restriction implied by Fisher inflation par-
ity arguments in (4), but otherwise leaves the cointegrating space unrestricted

32



is:

H7 =




0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




The matrix which imposes the first and second of the restrictions in (4) is:

H8 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




The matrix which imposes the first and third of the restrictions in (4) is:

H9 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 −1 0 0 0 0 0 0
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The matrix which imposes the first and fourth of the restrictions in (4) is:

H10 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




The matrix which imposes the second and third of the restrictions in (4) is:

H11 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 −1 0 0 0 0 0 0




The matrix which imposes the second and fourth of the restrictions in (4) is:

H12 =




0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
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The matrix which imposes the third and fourth of the restrictions in (4) is:

H13 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0




The matrix which imposes the first, second and third of the restrictions in
(4) is:

H14 =




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 −1 0 0 0 0




The matrix which imposes the first, second and fourth of the restrictions in
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(4) is:

H15 =




0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




The matrix which imposes the first, third and fourth of the restrictions in
(4) is:

H16 =




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 −1 0 0 0 0 0




The matrix which imposes the second, third and fourth of the restrictions in
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(4) is:

H17 =




0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 −1 0 0 0 0 0 0




The matrix which imposes all of the restrictions in (4) is:

H18 =




0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 1 0 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 −1 0 0 0 0
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Appendix C: Data Appendix

The data set is an updated version of the data set constructed by Garratt et
al. (2003) and runs from 1965Q1 through 2008Q1. The variables are:

1. qt: the natural logarithm of UK real per capita domestic output, com-
puted as:

ln(GDPt/POPt).

GDPt is real gross domestic product (at 1995 prices; 1995=100; sea-
sonally adjusted; source: Office of National Statistics (ONS), Economic
Trends, code: YBEZ). POPt is total UK population (in thousands;
source: ONS, Monthly Digest of Statistics, code: DYAY, annual se-
ries), which was available up to 2007. The 2008 number is obtained by
extrapolating the 2007 number using the average growth rate for the
period 2003-2007. The population series is converted into a quarterly
series through geometric interpolation and rebased 1995=1.

2. pt: the natural logarithm of the domestic price level, computed as:

ln(Pt),

where Pt is the UK producer price index (manufactured products;
1995=100; not seasonally adjusted; source: ONS, Economic Trends,
code: PLLU).

3. ∆pt: the UK inflation rate, computed as:

ln(P̃t) − ln(P̃t−1),

where P̃t is the UK retail price index (all items; 1995=100; not season-
ally adjusted; source: ONS, Economic Trends, code: CHAW).

4. it: the quarterly domestic nominal interest rate, computed as:

1

4
ln

(
1 +

Rt

100

)
× 100,

where Rt is the 90 day treasury bill average discount rate (annualized
rate; source: ONS, Financial Statistics, code AJNB).

38



5. ht − qt: the natural logarithm of real per capita money stock as a
proportion of real per capita income, computed as:

ln

(
Ht

Yt

)
,

where Ht is the M0 money stock (end period; in Million Pound Sterling;
seasonally adjusted; source: ONS, Financial Statistics, code AVAE).
The AVAE series was available for the period 1969Q2-2006Q1. Out-
side this period the series is projected using the percentage change of
estimated circulation of notes and coins with the public. Nominal in-
come Yt is measured using gross domestic product at market prices (in
Million Pound Sterling; seasonally adjusted, source: ONS, Economic
Trends, code: YBHA).

6. et: the natural logarithm of the UK nominal effective exchange rate,
computed as:

− ln(Et),

where Et is the Sterling effective exchange rate (1995=100; source:
ONS, Financial Statistics, code: AGBG (old code: AJHX); ONS de-
fines Et as the foreign price of domestic currency, hence the minus sign).
The AGBG series was available until 2006Q1. Afterwards, we project
the series using the percentage change of a broader exchange rate index
(source: ONS, Financial Statistics, code: BK82).

7. q∗t : the natural logarithm of real per capita foreign output, computed
as:

ln

(
GDP ∗

t

POP ∗
t

)
,

where GDP ∗

t is the gross domestic product index for the original OECD
countries (at 2000 prices; 1995=100; seasonally adjusted; source: OECD,
Main Economic Indicators (MEI), code: OTF.VPVOBARSA.2000.S1).
POPt is the population of these countries (annual series; source: OECD,
Labor Force Statistics), which was available up to 2003. The later
figures are obtained by extrapolating the 2003 number using the av-
erage growth rate for the period 1999-2003. The population series is
converted into a quarterly series through geometric interpolation and
rebased 1995=1.
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8. p∗t : the natural logarithm of the foreign price index, computed as:

ln(P ∗

t ),

where P ∗

t is the OECD producer price index (1995=100; source: OECD,
MEI, code: OTO.PPI). Data was available on this series from 1982Q1.
The data prior to 1982Q1 was constructed by backwardly imposing the
percentage changes of a separately constructed weighted average index
of OECD consumer and producer prices on the 1982Q1 figure.

9. i∗t : the quarterly foreign nominal interest rate:

1

4
ln

(
1 +

R∗

t

100

)
× 100,

with R∗

t being a weighted average of foreign annualized interest rates
computed as:

R∗

t = 0.4382RUS
t + 0.236RGermany

t + 0.2022RJapan
t + 0.1236RFrance

t .

The weights are chosen according to Garratt et al. (2003). The an-
nualized interest rates are all from the IMF’s International Financial
Statistics (IFS). For the US we use the three-month treasury bill rate
(code: 60C.ZF), for Germany the money market rate (code: 60B.ZF),
for Japan the money market rate (code: 60B.ZF) and for France the
three-month treasury bill rate (code: 60C.ZF).

10. pot : the natural logarithm of the oil price, computed as:

ln(P o
t ),

where P o
t is the average price of crude petroleum (in US dollar per

barrel; source: IMF, IFS, code: 176AAZZF; 1995=100).
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Appendix D: Additional Empirical Results

In the text, point estimates of the impulse responses were provided (these
remain the solid lines in the figures below). Here we also add 95% credible
intervals (the dashed lines in the figures below) to give the reader some idea
of the dispersion associated with the point estimates.

Figure D1: Response to a Monetary Shock (SSVS for Everything)
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Figure D2: Response to a Monetary Shock (Best Model)
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Figure D3: Response to a Monetary Shock (GLPS Model)

0 10 20 30 40

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

Domestic interest rate (r)

Horizon (quarters)

A
nn

ua
l p

er
ce

nt

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

Foreign interest rate (r*)

Horizon (quarters)

A
nn

ua
l p

er
ce

nt

0 10 20 30 40

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Real money balances (h)

Horizon (quarters)

%
 c

ha
ng

e

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

0.
5

Domestic output (y)

Horizon (quarters)

%
 c

ha
ng

e

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

Foreign output (y*)

Horizon (quarters)

%
 c

ha
ng

e

0 10 20 30 40

−
0.

5
0.

0
0.

5

Inflation

Horizon (quarters)

A
nn

ua
l p

er
ce

nt

0 10 20 30 40

−
2

−
1

0
1

2

Exchange rate (e)

Horizon (quarters)

%
 c

ha
ng

e

0 10 20 30 40

−
2

−
1

0
1

Relative prices (p−p*)

Horizon (quarters)

%
 c

ha
ng

e

43



Figure D4: Response to an Oil Price Shock (SSVS for Everything)
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Figure D5: Response to an Oil Price Shock (Best Model)
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Figure D6: Response to an Oil Price Shock (GLPS Model)
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