
Material removal and friction behaviour in scratching of RB-SiC ceramics at 

elevated temperatures 

 Xiaoshuang raoa,b, Feihu Zhanga**, Xichun Luob*, Fei Dingb, Yukui Caib, Jining Sunc, Haitao Liua 

a School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China 

b Centre for Precision Manufacturing, DMEM, University of Strathclyde, Glasgow G1 1XQ, UK 

c Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, 

Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK 

*Corresponding author E-mail address: *xichun.luo@strath.ac.uk; **zhangfh@hit.edu.cn  

Abstract: Thermal-assistant is considered potentially as an effective approach to improve 

machinability of hard and brittle materials. Understanding the material removal and friction 

behaviour influenced by the purposely introduced heat is crucial to obtain high quality 

machined surface. This paper aims to reveal material removal and friction behaviours of RB-

SiC ceramics scratched by a Vickers indenter at elevated temperatures. Material removal 

mode, scratching hardness, critical depth of ductile-brittle transition, scratching force and 

friction were discussed under different penetration depths. Size effect of scratching hardness 

was used to assess the plastic deformation at elevated temperature. A modified model was 

established to predict the critical depth at elevated temperatures by taking into account of the 

changes of mechanical properties. The results revealed that the material deformation and 

adhesive behaviour enhanced the material removal in ductile regime and the coefficient of 

friction at elevated temperatures. 
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1 Introduction  

In recent decades, reaction-bonded silicon carbide (RB-SiC) has provoked the interests of 

researchers because of its promising applications in lightweight space mirror, moulding dies 

and nuclear industry [1–3]. Strict demands on the surface integrity are put forward by these 

mailto:*xichun.luo@strath.ac.uk
mailto:**zhangfh@hit.edu.cn


industrial applications, especially in the optics. Therefore, some thermal-assisted hybrid 

machining processes such as laser-assisted grinding [4] and electrical discharge diamond 

grinding [5] have been applied in machining of RB-SiC ceramics to obtain better surface 

integrity by changing the material property of the machined surface. The ductile removal 

regime is considered as the way to obtain a better machined surface finish [6,7] for this hard 

and brittle material. As a result, the friction between the tool and workpiece will also change 

due to the transition of the material removal mode, which may cause surface/subsurface 

damage. Thus, material removal and friction behaviour are crucial to surface integrity during 

the machining process. 

Scratch technology with a single diamond grit/indenter is widely applied in the study of 

material removal mechanism and friction behaviours. By ploughing and cutting the surface of 

a weaker material, the scratching test can be used to assess the adhesion, damage, wear, 

strength and some other properties of the material [8]. The whole process is basically 

subdivided into five regimes, namely the elastic regime, the plastic regime, the subsurface 

cracking regime, the surface and subsurface cracking regime and the micro-abrasive regime 

in nanoscratching experiments [9,10]. The plastic deformation regime only occurs when 

stress appears on the surface of material and accumulated damages still has not emerged [11]. 

However, the shearing stress on the material surface during scratching is strongly influenced 

by the coefficient of friction [9]. Brittle material can often be removed in ductile regime 

rather than brittle fracture when the plastic deformation induced by the force and friction is 

small enough to avoid brittle fracture [12]. In scratching test, the transition from ductile to 

fracture behaviour is directly related to the residual groove recovery angle, initial contact 

radius, coefficient of friction (COF), applied load and workpiece material [13–16]. With 

increasing scratching load, the regime changes from smooth plastic deformation to limited 

cracking and even gives birth to many debris [17,18]. However, fracture is still the 



predominant form of damage to ceramics in most conventional processes. A large fragment 

of material is often removed by fracture occurred in a larger scale [19]. As a result, a higher 

surface roughness is achieved in brittle material removal mode [20]. The material removal 

mode, brittle or ductile, plays a vital role in quality control of the machined surface for 

machining hard and brittle material [21]. 

An investigation on material removal in ductile or brittle modes is the basic way to interpret 

material removal mechanism. However, previous researches are mainly focused on influences 

of scratching speed [22], scratching depths [21], repeated or multiplied scratching [23,24], 

grit shapes [25] and applied load [19] on material removal mode. Few reports have involved 

in the effects of the variation of material mechanical properties induced by process condition 

such as high temperatures on material removal mode. At high temperatures, i.e., above the 

ductile-to-brittle transition temperature, dislocations become active and assist in the plastic 

deformation of these nominally brittle (covalently bonded) materials [12,26]. Simultaneously, 

the high temperature also changes the coefficient of friction as a result of the adhesive 

behaviour induced by material thermal softening and oxidation [27–29]. The surface integrity 

will correspondently undergo some changes in these thermal-assisted machining process. 

The aim of this paper is to investigate the material removal and friction behaviour of RB-SiC 

ceramics at elevated temperatures. Scratching tests will be conducted with a Vickers diamond 

indenter on an ultra-precision machine. A fibre-laser is used to generate the desired 

temperatures on the surface of RB-SiC specimens by setting the laser power. In order to 

obtain the critical information on the transition of material removal mode, all scratching tests 

will be performed under linearly increased penetration depths. Then, the morphology of the 

residual scratching grooves, scratching hardness, critical depth of ductile-brittle transition and 

coefficient of friction will be analyzed to investigate the deformation and friction behaviours 



in the scratching tests. Eventually, the influence of heat on the material removal and friction 

of RB-SiC ceramics are determined.  

2 Details of scratching experiment 

2.1 Specimen preparation 

The RB-SiC ceramics from Goodfellow Cambridge Ltd. (UK) were used in the scratching 

test. The specimen was prepared in dimensions of 10 mm × 10 mm × 6 mm. All specimens 

were polished with diamond slurry of 0.25µm until surface-finish of 20 nm (Sa) was obtained. 

The polished specimens were then cleaned with acetone in an ultrasonic cleaner (ULTRA 

8051) for 20 minutes. The X-ray diffraction result shows that the RB-SiC specimen consists 

of 6H-SiC, 3C-SiC and Si phases, shown in Fig.1(a). The SEM backscattered electron image 

reveals the microstructure of the RB-SiC specimen with SiC grains and free Si, shown in 

Fig.1(b).  In previous work, the main mechanical properties of RB-SiC ceramic were 

investigated by Vickers indentation at elevated temperatures [30] and summarized in Table 1.  

 

Fig 1 The XRD pattern and microstructure of RB-SiC specimen. (a) XRD result (b) SEM 

image 

Table 1 Mechanical properties of RB-SiC ceramic at different temperatures [30] 

Mechanical properties 

Ambient temperature 

Room 

temperature 
200°C 600°C 900°C 1200°C 



Vickers hardness vH  (GPa) 23.18 21.14 17.25 14.46 12.61 

Elastic modulus E  (GPa) 406.6 392.1 364.8 307.6 236.6 

Fracture toughness cK  (MPa‧ m1/2) 2.13 2.43 2.60 2.64 2.20 

2.2 Experimental setup 

The scratching tests were conducted with a Vickers indenter on an ultra-precision machine-

micro-3D shown in Fig.2(a). The Vickers indenter, with a tip radius of 200 nm shown in 

Fig.2(b), was fixed on the current-controlled linear guide rail of the machine by a special 

clamp. The specimen was fixed in the sink of the insulating asbestine block by a bench vice. 

The bench vice was fastened to a dynamometer which was installed on the machine table. 

The Y-direction of the dynamometer was parallel to the X-axis of the machine, as shown in 

Fig.2 (a) and (c), which is the same direction of the scratching test. A fibre-laser (maximum 

power 200W) was used to heat the specimens in the scratching test. An infrared thermometer 

(IR-750-EUR, USA) was used to measure the temperature on the surface of RB-SiC 

specimen under different laser power. The relationship between the laser power and the 

resultant temperatures on the surface of RB-SiC specimen has been investigated in previous 

work [30], which showed a stable temperature can be obtained after enough heating time. 

Thus, all specimens were heated by the laser at different powers for sufficient time before the 

scratching tests to obtain the desired temperatures. In order to minimize the thermal drift 

caused by contact between the cold indenter and heated specimen, the Vickers indenter was 

simultaneously heated by keeping the specimen-indenter in contact during the heating 

process.  



 

Fig.1 Illustration of scratching test at elevated temperatures. (a) Experimental setup, (b) Tip 

radius profile of Vickers indenter measured by AFM, (c) and (d) Schematic diagram of 

scratching with linearly increased depth. 

In the scratching test, the scratching direction was parallel to one of the indenter diagonals 

and the X-axis of the machine. Considering the possible thermal expansion of the specimen 

during the heating process, the indenter was moved upward to a certain distance from the top 

surface of the RB-SiC specimen before starting the scratching test. As a result, the scratching 

could be certainly started from the top surface of the specimen (i.e. at a penetration depth of 0 

μm), as shown in Fig.1 (c). During the scratching test, the Vickers indenter was fed 

downward while the worktable moved along the X-axis of the machine at the same time. In 

order to obtain a ramping scratching depth and keep it consistency at different temperatures, 

the ratio of feed rate of the Vickers indenter to the scratching speed (the velocity of the 

worktable movement) was kept constant. The details of the scratching parameters are listed in 

Table 2. For comparison, the scratching test at room temperature (RT) was also conducted. 

Table 2 Details of the scratching parameters 

Parameter Value 

Ambient temperature, T (℃) RT, 200, 600, 900, 1200 



Scratching speed, vs (μm/s) 20  

Ratio of indenter feed rate (vi) to vs 1/15 

Scratching time, t (s) 30 

2.3 Specimen characterization and measurement 

A three-component piezoelectric dynamometer (Kistler 9129 AA) with resolution of 1mN 

was used to record the forces during the scratching tests. After the scratching tests, all 

specimens tested at different temperatures were ultrasonically cleaned for 20 minutes in 

acetone. Then the morphologies of the residual scratching grooves were detected by a 

scanning electron microscope (SEM, FEI Quanta3D FEG). The scratching lengths of 

different material removal regimes and the widths for the whole grooves at different 

temperatures were then measured by image analysis software (Digimizer, Belgium). The 

residual depths and heights of material pile-up along groove sides in the ductile regime were 

measured by an atomic force microscopy (AFM, DI Dimension 3100). 

3. Results and discussion  

3.1 Characteristics of scratches at different temperatures 

Fig.3 shows the typical topography of the residual scratching grooves at different 

temperatures detected by SEM. By analogy with the finished surface with absence of cracks 

or few cracks defined as ductile-mode grinding in machining of zirconia ceramics [31], all 

scratches at different temperatures can be divided into three regimes, i.e. the ductile regime, 

the ductile-brittle transition (DBT) regime and the brittle regime along the scratching 

direction according to the different surface morphologies of the residual grooves. The scratch 

started with smooth surfaces and sides of the grooves at shallower penetration depth, 

implying the ductile regime. When the penetration depth increased, cracks and minor fracture 

were found on the sides of the residual grooves. Fracture was dominant on the groove sides in 



the brittle regime. However, the fracture tended to decrease due to the increase of 

temperatures, indicating the increase of ductile material removal at elevated temperatures 

because of thermal softening [32]. The scratching lengths of the ductile and DBT regimes 

increased when the temperature increased to 900℃. The reduction in ductile regime 

scratching length at 1200℃ was attributed to the decrease of the fracture toughness with 

detailed discussion in Section 3.3. As a result, the corresponding critical depth of ductile-to-

brittle transition may also increase when the temperature rises at the increase of penetration 

depth, which will also be discussed in detail in Section 3.3.   



 

Fig. 3 SEM micrograph of the scratch grooves with linearly increased penetration depth at 

different temperatures. (a) RT, (b) 200℃, (c) 600℃, (d) 900℃ and (e) 1200℃. 

In order to identify the morphology in different regimes at elevated temperatures, the detailed 

characteristics of the morphology were captured at the location in Fig. 3 marked with dotted 

boxes and were summarized in Table 3. The groove surface is smooth coupled with 

significant material pile-up on the sides in ductile regime. Fig.4 (a) shows the average heights 

of the material pile-up in ductile regime along the scratching direction measured by AFM. As 

observed in SEM images of the scratching grooves in Table 3, the material pile-up increases 

with the increase of temperatures, indicating the enhancement of plastic deformation. As a 

result, the measured scratching width increases because of the larger material pile-up at 

elevated temperature in ductile regime, shown in Fig.4 (b). Massive microcracks on the 

surface and minor fracture on the sides of the grooves are detected in the DBT regimes. 

When the temperature increases, the area of the fracture tends to decrease while the 

microcrack becomes obvious. In the brittle regime, a serious fracture occurs on both side and 

bottom of the grooves at room temperature and 200℃. With the increase of temperature, 

fracture in the valley of groove is converted into microcrack. Apparent track is then found on 

the bottom of groove at and above 600℃. The reduction in fracture ultimately results in the 



decrease of the measured scratching width in brittle regime above 600℃ shown in Fig. 4 (b). 

This is because the dislocation is nearly immobile at and below 600℃ while it is active above 

600℃ due to the DBT temperature [12],  resulting in the gradual increase of plasticity in 

brittle regime above 600℃. 

         

Fig. 4 Material pile-up and scratching width along the scratching distance (a) averages of the 

material pile-up in ductile regime and (b) scratching width in all regimes. 

In addition, it is noteworthy that the material tearing, microcrack and fracture prefer to be 

generated at the grain boundary at all ambient temperatures. A similar result was also 

reported in Li et al.’s work [33]. RB-SiC ceramic is a typical polycrystalline workpiece 

including α-SiC, β-SiC and free Si [34]. The grains of SiC are oriented in different crystal 

orientations. The changes of grain orientation make the indenter experience the specimen 

with different crystallographic orientations and directions of cutting. Some of the grain 

boundaries cause the individual grains to slide along the easy cleavage direction and build-up 

of stresses at the grain boundaries [35]. Consequently, the different material removal modes 

of RB-SiC ceramics at elevated temperatures is easy to form at the grain boundary. All these 

changes in different regimes provide the direct evidences of the influence of heat on the 

material removal and the ductile-brittle transition of RB-SiC ceramics. Therefore, it is 

expected that the ductile removal of RB-SiC ceramics will be easier to achieve at a deeper 

cutting depth with the help of thermal process. 



Table 3 Morphologies of the residual groove in different regimes at different temperatures 

Tem. Ductile regime DBT regime Brittle regime 

RT 

   

200℃ 

   

600℃ 

  

 

 

900℃ 

   

1200℃ 

   

 



3.2 Scratching hardness  

Scratching hardness is considered as an indicator of the inherent material resistance to 

deformation in scratching process, which can be used to assess the material deformation of 

RB-SiC ceramic in different material removal regimes at elevated temperatures.  By analogy 

with the static indentation hardness, the scratching hardness is defined as [36]:  

 
nA

P
H s   (1) 

Where P  is the normal force and nA is the normal projected area of the contact region. Due to 

the scratching direction was parallel to one diagonal of the indenter, only the two front faces 

of the indenter were kept in contact with the RB-SiC specimen during the scratching process 

shown in Fig.5 (a). Thus, the area of the projection can be deduced from the residual 

scratching width b  regardless of the elastic deformation: 
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2

n

b
A    (2) 

 

Fig. 5 Schematic of the contact area of the indenter during the scratching test. (a) the 

projection of the contact area for calculated scratching hardness (b) the projection of the 

actual contact area between the indenter and RB-SiC specimen in ductile regime considering 

the elastic deformation. 



Fig. 6 (a) shows the scratching hardness along the scratching direction. These results present 

that the calculated scratching hardness decreases as the penetration depth increases along the 

scratching direction at all temperatures. As material is apt to undergo a ductile-brittle 

transition when subjected to a small infeed rate [35], the RB-SiC specimen is certainly 

suggested to remove in ductile regime at the beginning of the scratching process. The 

projection area of the actual contact region in Fig. 5 (b) is larger than the calculated contact 

area in Fig.5 (a) because of the elastic deformation. Consequently, a higher scratching 

hardness is obtained at the beginning of the scratching process. The scratching hardness 

decrease when the rigid-ductile/brittle regime become dominant, indicating a size effect 

similar to the indentation size effect phenomena observed in the Vickers indentation test [30]. 

Moreover, the scratching hardness tends to decrease with the increase of temperature, 

although it is slightly higher at 200℃ than that at room temperature in brittle regime. The 

material plastic deformation is responsible for the decrease of the scratching hardness at 

elevated temperatures. 

In order to gain insight of the material deformation of RB-SiC ceramics at elevated 

temperatures, the scratching hardness governed by the Meyer’s law [30,37] was used to 

explain the size effect at elevated temperatures. By analogy with the evaluation of the 

indentation size effect in indentation test [38,39], the size effect in scratching test can be 

evaluated as:  

 nAbP    (3) 

Where constant A and Meyer’s index n can be derived directly from the regression fitting of 

Pln  (in Newton) versus bln  (in μm), plotted in Fig. 6 (b).  The size effect can be 

evaluated by the deviation of the n-value from 2 [38]. It is evident that the size effect 

decreases because the index n  is gradually close to 2 when the temperature increases, which 

indicates the increase of plastic deformation at elevated temperatures. Besides, the Meyer’s 



indexes dn  and bn  were also calculated in ductile/DBT and brittle regimes respectively and 

summarized in Table 4. The increasing tendency of the Meyer’s index with temperatures is 

owing to the decrease of elastic recovery [40], indicating the reduction in size effect induced 

by elastic deformation in ductile/DBT regime. In other words, the plasticity gradually 

dominates in material deformation of RB-SiC ceramics in ductile/DBT regime when the 

temperature increases, which is exactly the reason of the increase of material pile-up and 

scratching width at elevated temperatures observed in Section 3.1. In brittle regime, the 

decrease of the Meyer’s index is attributed to material softening and deformation at elevated 

temperatures. The reason has been explicated in previous work [30]. Thus, the scratching 

hardness will have different load/depth-independent values because of the different roles that 

the plastic deformation plays in the scratching test at different temperatures. 

  

Fig.6 Analysis of the scratching hardness at different temperatures. (a) the calculated 

scratching hardness based on the measurements of scratching width (b) the size effect 

evaluated by Meyer’s index. 

Table 4 Meyer’s index in ductile and brittle regimes at different temperatures 

Temperature 
Slope 

n  dn  bn  

RT 1.190 0.909 1.833 

200℃ 1.524 1.299 1.525 

600℃ 1.530 1.340 1.759 



900℃ 1.540 1.382 1.684 

1200℃ 1.611 1.585 1.669 

The averages of scratching hardness in different regimes have been plotted in Fig.7 (a). A 

comparison has also been made between the scratching hardness and the load-independent 

Vickers hardness listed in Table 1. The results are summarized in Fig.7 (b). As expected, the 

scratching hardness decreases as the material removal transfers from ductile to brittle. Higher 

values of scratching hardness result from smaller residual scratching width induced by the 

elastic recovery in ductile regime. Meanwhile, the deviations of scratching hardness also 

reduce with the increase of temperatures in this transition. This is attributed to the enhanced 

plasticity at high temperatures [41].  

            

Fig. 7 The average of the scratching Hardness in different regimes at different temperatures. 

(a) the scratching hardness in different regimes (b) the averages of scratching hardness in 

DBT regime and whole process and the Vickers hardness. 

In addition, it is interesting that the value of the scratching hardness in DBT regime is close 

to both that in whole process and that obtained in indentation test, which seems to suggest the 

elimination of the deviation on the scratching width induced by brittle fracture through plastic 

deformation. The scratching hardness in DBT regime has a slightly higher average than 

Vickers hardness at all temperatures except for 1200℃. This is attributed to the short loading 

time during the scratching test, whereas the hardness decreases at a longer loading time [42]. 



Higher value of the scratching hardness is hence obtained in the scratching tests. As a result, 

the scratching hardness in DBT regime can be treated as the depth-independent hardness at 

different temperature. It shows the reasonable application of the mechanical properties of 

RB-SiC ceramics obtained in Vickers indentation test in prediction of the critical depth of 

ductile-brittle transition in the scratching test. 

3.3 Ductile-brittle transition 

Based on the observation of the cracks and fracture generated on the bottom and sides of the 

residual groove, the transition of material removal mode from ductile to brittle fracture can be 

identified [43]. Therefore, the critical depth of ductile-brittle transition at different 

temperatures can be determined by combination of the observation on the morphology by 

SEM and AFM. The measurement results are summarized in Table 5. The corresponding 

cross-section profile at the location of ductile-brittle transition clearly unfolds the critical 

depth measured by AFM at different temperatures. It is clear that the critical depth of ductile-

brittle transition has an increasing tendency of temperatures except for 1200℃. The critical 

depth of brittle material is usually considered relevant to its mechanical properties [44]. 

When the mechanical properties of RB-SiC ceramics at elevated temperatures such as elastic 

modulus, hardness and fracture toughness is taken into consideration, an interesting fact is 

found that the critical depth obtained in present work shows the same tendency as the 

variation of fracture toughness against temperatures. It implicates the most important role of 

fracture toughness in scratching of RB-SiC ceramics, which explicates the reduction in 

ductile regime scratching length at 1200°C abovementioned in Section 3.1. Therefore, the 

critical depth decreases again when the fracture toughness decrease due to the difficulty in 

resisting crack propagation because of the free Si softening in RB-SiC ceramics [45].  

Table 5 The groove morphologies and corresponding cross-section profiles of ductile-brittle 

transition at different temperatures 



Tem. SEM AFM Cross-section profile 

RT 

   

200℃ 

   

600℃ 

   

900℃ 

   

1200℃ 

 
  

The relationship between the critical depth and the material properties is generally given by 

[46,47]: 
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Where E , H and CK  are the elastic modulus, hardness and fracture toughness of the material 

at a particular temperature, respectively.   is a dimensionless constant dependent on  

indenter equivalent geometry, which is usually valued at 0.15 for Berkovich indenter [44,48]. 

However, this value has been proved to be unsuitable for the occasions in consideration of the 

size effect in obtaining material properties [49], the anisotropic characteristics of the 

specimen [47] and the effects of scriber tip geometry, friction etc [48]. Meanwhile, there is no 

report on   at elevated temperatures. Thus, a reasonable   needs to be determined by the 

experimental results, especially for those at elevated temperature because of significant 

variations in material properties. Without consideration of the constant  ,  the relationship 

between the calculated critical depth and the measured critical depth at different temperatures 

is presented in Fig. 8(a). The ratios of the measured critical depth versus the calculated 

critical depth at different temperatures are also presented in Fig.8 (b). 

 

Fig.8 The calculated critical depth and measured critical depth. (a) relationship between the 

measured critical depth and calculated critical depth (b) ratio of measured critical depth 

(MCD) versus calculated critical depth (CCD) at different temperature. 

It is evident that a reasonable correlation exists between the calculated critical depth and the 

measured critical depth because of their linear relationship at different temperatures [44]. A 



unique value of   should be obtained without the influence of the temperature. However, 

the ratio of measured critical depth versus calculated critical depth shows a decreasing 

tendency when the temperature increases. By fitting, an exponential function of temperature 

is obtained for  : 

 )(xp85.052.0)( 0TTeT  ; 1.2510 T ℃  (5) 

It is noteworthy that both the calculated critical depth and measured critical depth at room 

temperature and 200℃ are near the radius of the indenter tip (shown in Fig.1). In the case of 

microscale and nanoscale scratching, the influence of specific scratching energy induced by 

tip radius increase the critical depth of ductile-to-brittle transition [50,51]. As a result, higher 

ratio is obtained at room temperature and 200℃.  Simultaneously, it should be noted that the 

)(xp 0TTe   in equation (5) approaches zero at high temperatures and the ratio trends to a 

constant at and above 600℃. Then, the equation (4) for scratching test of RB-SiC ceramic at 

high temperature can be modified: 
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To validate the equation (6), more experiments with varied maximum scratching was 

arranged from 10μm to 30μm with increasement of 10μm. The averages of critical depth 

under different temperatures is shown in Fig.9. The maximum error between the predicted 

result and experimental result is only 4.95% at and above the temperature of 600℃.  



 

Fig. 9 The experimental results of critical depth for assessing accuracy of the modified model 

3.4 Scratching force and friction behaviour  

Fig. 10 shows the scratching forces at different temperatures. When the indenter penetrates 

into the specimen with linearly increased depth, the normal and thrust force gradually 

increases while the radial force keeps at zero because the two front faces of the indenter is 

symmetric as shown in Fig.10 (a). The fluctuation of the forces also increases because of the 

transition of material removal mode from ductile to brittle at all temperatures. Nevertheless, 

the fluctuating magnitude of the forces tends to reduce when the temperature increases. It 

indicates that high temperature facilities the ductile removal of the RB-SiC ceramics. 

Because more energy is consumed by ductile material removal and dislocations in brittle 

material are nearly immobile below the ductile-to-brittle transition temperature (less than ≈
2

1
 

the melting temperature of the material) [12], the normal and thrust forces increase below the 

temperature of 700℃ (about half of the melting temperature of the free Si in RB-SiC, which 

is 1410℃ [2]).  However, both the normal and thrust forces decrease again at 900℃ and 1200℃ 

owing to the plastic deformation of covalently bonded material in assistance of the active 

dislocation at higher temperatures [26]. The varied activity of dislocation at different 

temperatures will change the contact between the indenter and specimen, resulting in the 

different friction behaviour between them.   



   

 

 



Fig.10 Scratching force at different temperature. (a) schematic diagram of loads on the two 

front faces of the indenter (b) Room temperature, (c) 200℃, (d) 600℃, (e) 900℃ and (f) 

1200℃. 

In general, the thrust force or ‘friction’ force is considered as the sum of the adhesion and 

ploughing terms in scratching test, namely [36]: 

 pat FFF   (7) 

Where aF  and pF  are the adhesion force and ploughing force, respectively.  Moreover, the 

ratio of ploughing force pF  to the projected area tA (as shown in Fig.5) in the direction 

normal to the scratching direction of the indenter is defined as another value of the scratching 

hardness: 

 
t

p
p

A

F
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When it takes the elastic deformation into consideration (as shown in Fig.5 (b)), the projected 

area tA  can be determined by the geometric relationship while the normal projected area nA   

should be rewritten as: 

 

  

 
















2
2

2
2

tan1cot
4

tan11-2
4





d
A

d
A

t

n

 (9) 

Where   is the elastic recovery parameter with a range from 2  to 0 when the material 

removal mode changes from ductile to brittle with the increase of penetration depth 

[27,52,53].   is the half include angle between the opposite edges of the Vickers indenter 

shown in Fig.10 (a), which is 74°. Then, the overall coefficient of friction (COF) can be 

obtained by:  
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Note that the value of pH  is taken to be equal to the scratch hardness sH  [36]. Hence, 

combining Eq. (1), (8), (9) and (10), the overall COF can be rewritten as: 
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Where naa FF  is the adhesion term of the overall COF. However, the ploughing term of 

the overall COF depends on the elastic deformation during the scratching tests, which is 

given by the following equation according to Eq. (11): 
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Therefore, the overall COF will vary with the transition of the material removal mode shown 

in Fig.11. As it can be seen, the overall COF sharply increases at temperatures below 900℃ 

while dramatically decreases at 1200℃ with the increase of penetration depth in ductile 

regime. As it is more important for ploughing relative to adhesion in ductile regime, material 

plastic deformation is responsible for the maximum values and initial curvatures of the 

ploughing COF [52]. The projected area tA  is negligible compared to the available contact 

area nA  when the elastic dominates in the regime [52,53], namely the limiting condition 

2  , resulting in lower COF at the initial stage of the scratching process. Then the COF 

increases as result of the increase of plastic deformation when the penetration depth increases. 

Meanwhile, higher temperature facilitates significant material softening and plastic 

deformation of RB-SiC ceramics, leading to an ascending initial value of the COF at 1200℃. 

The dominant friction behaviour was even changed from ploughing to adhesion/rubbing at 



the initial stage of the scratching process because of the notable plastic deformation. As a 

result, the COF presents an extremely high value at the initial stage of the scratching process.  

Note that the Eq. (12) tends to a constant at the limiting condition 0  when the brittle 

dominates the material removal. And the overall COF also tends to be stable after the ductile 

regime. It indicates that the adhesive COF is independent on the scratching depth in brittle 

regime. Thus, the adhesive COF can be determined for RB-SiC ceramics at a particular 

temperature, shown in Fig. 11 (f). Due to the material softening at high temperatures, the 

adhesive COF increases. Whereas it drops again at 1200℃ because of the oxidation of free Si 

in RB-SiC ceramics. 

 



 

Fig. 11 Coefficient of friction at different temperatures. (a) Room temperature, (b) 200℃, (c) 

600℃, (d) 900℃, (e) 1200℃ and (f) The overall and adhesion COFs varied with temperatures. 

4. Conclusion 

In present work, the scratching experiments were conducted to explore the influence of heat 

on the material removal and friction behaviour of RB-SiC ceramics under different 

temperatures. Three material removal regimes, scratching hardness, critical depth of ductile-

brittle transition and the scratching force and corresponding COF were analyzed.  The 

following conclusions were drawn: 

(1) When the indenter penetrates the RB-SiC specimen gradually, the material removal 

undergoes ductile, ductile-to-brittle and brittle stages at all temperatures. The scratching 

length of the ductile regime increases from 11.8μm at RT to 31.1μm at 900℃, indicating 

high temperature facilitates the ductile removal of RB-SiC ceramics. The residual groove 

possesses smooth surface and material pile-up on the side formed in ductile regime. 

While minor fracture and mass microcrack are characteristics of residual groove formed 



in DBT regime and fracture is the main characteristics of residual groove formed in brittle 

regime. The fracture in brittle regime dramatically decreases at and above 600℃ so that 

apparent track is observed at higher temperatures, providing the evidence for obtaining 

fine machined surface finish in ductile machining of RB-SiC ceramics with deeper 

penetration depth at elevated temperatures.  

(2) Scratching hardness shows significant size effect similar to that in indentation test. Elastic 

recovery and plastic deformation are responsible for the size effects in ductile and brittle 

regimes, respectively. It is interesting to find that the average of scratching hardness in 

DBT regime is close to the hardness obtained in indentation test at all temperatures, 

which indicates that it is reasonable to predict the critical depth of brittle-ductile transition 

with the mechanical properties of RB-SiC ceramics obtained in indentation test. The 

scratching hardness decrease from 28.3±3.83GPa at RT to 9.8±0.56GPa at 1200℃, 

implying the ascending domination of plastic deformation at elevated temperatures. 

(3) Critical depth initially increases from 186.68nm at RT to 390.48nm at 900℃ and then 

decreases to 325.08nm at 1200℃, showing a similar tendency of the fracture toughness 

with temperature obtained in indentation test. It indicates that the fracture toughness is the 

most important factor in controlling the critical depth at elevated temperatures. 

Simultaneously, material deformation of RB-SiC ceramics contributes to the increases of 

critical depth at high temperatures. A predictive model of critical depth with the 

maximum prediction error of 4.95% has been established on consideration of the changes 

of the mechanical properties of RB-SiC ceramics at elevated temperatures. 

(4) The maximum normal scratching force of 5.25N occurs at 600℃ because of more energy 

consumption to ductile material removal and nearly immobile dislocation below 700℃. 

While it decreases to 1.71N at 1200℃ because the dislocation becomes active when the 

temperature is above 700℃. Meanwhile, the plastic deformation induced by material 



dislocation makes the COF increase gradually from a lower value to a stable value in the 

ductile regime at temperature below 1200℃. When the temperature is 1200℃, the 

significant plastic deformation even changes the predominant friction behaviour from 

ploughing to adhesion/rubbing at the initial stage of the ductile regime. As the adhesive 

COF increases with the increase of temperatures, the overall COF increases from 0.38 at 

RT to 0.60 at 900℃ but drops to 0.57 because of the oxidation of free Si in RB-SiC at 

1200℃. 
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