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Abstract 

Since the use of LNG as an alternative fuel has drawn increasing attention from the marine 

industry, this paper aimed to evaluate three competitive LNG fuelled engine systems: ultra-

steam turbine, four-stroke medium speed engine, and two-stroke low-speed engine systems. 

To achieve this goal, the paper developed an enhanced hybrid decision-making model which 

was applied to integrate the economic, environmental and technical performance of these 

systems. This model can be represented as a semi-quantitative multi-criteria decision making 

process in combination of several novel techniques, particularly ‘life cycle cost assessment’ for 

economic analysis, ‘life cycle assessments’ for environmental analysis, ‘fuzzy order preference 

by similarity to ideal solution’ for technical analysis and ‘fuzzy analytic hierarchy process’ for 

multi-criteria decision making. A case study with a 174K LNG carrier has revealed that the 
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two-stroke low-speed engine system is the most effective overall and suggested that this type 

of engine system will hold the lead over the other candidates in the large LNG carrier market. 

It has also demonstrated the effectiveness of the proposed model to improve the inherent 

subjectivity in existing qualitative multi-criteria decision-making processes by guiding the 

overall process in a more objective direction. Finally, this paper has revealed an underlying 

novelty of the proposed model to enhance the level of confidence level in the decision by 

expanding our short-term perspective to the holistic one. 

 

Keywords: life cycle assessment, multi-criteria decision making, marine LNG system, Fuzzy 

AHP, Fuzzy TOPSIS 

  



1. Introduction 

1.1. Background of gas-fuelled engines on LNG carriers 

With an increasing environmental concern in the marine industry, International Maritime 

Organization (IMO) and local authorities have rectified a series of stringent regulations to curb 

the emissions produced from shipping activities. Above all, MARPOL Annex VI Regs 13 and 

14 require progressive reduction of the emissions of nitrogen oxide (NOx), sulphur oxides (SOx) 

and particulate matters (PM) based on phased plans (IMO 2019a; 2019b). 

Along with the technical advancement of LNG process systems, the use of LNG as a marine 

fuel source has been recognised as one of the most promising choices to meet those regulations. 

As a result, the number of LNG-fuelled vessels has steadily increased over the last decade, and 

by 2025, the global market for these ships will reach 700 in the world (DNV 2014). 

This trend can be more clearly observed in the current market of LNG carriers where several 

types of marine LNG engine systems have been actively adopted: notably, the ultra steam 

turbines (UST), four-stroke medium speed engines (FME) and two-stroke low-speed engines 

(TLE) (MAN Diesel 2015). 

On the other hand, this trend, leading to the diversity and complexity of maritime systems, has 

added the burden on shipyards and owners who always have to make the best choices to survive 

in fierce competition. In this context, a comparative analysis of these representative LNG 

engine systems in terms of economic, environmental and technical aspects can provide 

stakeholders with valuable insights into proper decisions. 

 



1.2. Technical overview of LNG engine systems 

The conventional propulsion system employed in most LNG carriers was an external 

combustion type that could run on both the boil-off gas (BOG) - a form of LNG vapour -, and 

liquid oil products. However, since 2000, the technical development of internal LNG 

combustion systems has diversified the choice of marine LNG engine systems. The 

representative systems in a tough competition are summarized as follows: 

UST 

UST is an upgraded system of conventional steam turbine (CST) system which can obtain 

propulsion power from main boilers. It uses intermediate pressure (IP) turbines to 

improve the efficiency by enriching heat capacity through the increase in the overheating 

level and the initial steam pressure. 

FME 

FMEs can run on both gas and diesel fuels; while the Diesel cycle is applied for the liquid 

fuel mode, the Otto cycle is adopted in the gas mode similar to the combustion method 

of an automotive gasoline engines. 

TLE 

TLEs differ from the FMEs in that the mechanism of engine combustion follows the 

Diesel cycle in both the gas and liquid fuel modes. In order to inject the fuel gas directly 

into the high-pressure combustion chambers, the fuel gas generally has a pressure as high 

as 300 bars. 

 



1.3. Market overview and current issues 

Fig. 1 shows the market trend of LNG engine systems for the LNG carriers over the six decades, 

revealing the four significant milestones. 

 

Fig. 1. LNG propulsion market trend (Tu 2019).  

 

Phase 1 - 1960s to early 2000s: Era of steam turbine engines 

Over the past decades, CSTs dominated the LNG carrier market as these systems were easier 

to manage the BOG and less costly than other candidates. The advantage of the steam turbine 

was that the pressure in the LNG cargo tanks could be controlled by burning the excess BOG 

naturally generated from LNG cargo. 

 

Phase 2 - early 2000s to mid 2000s: Advent of FME and competition with steam turbine engines. 

The technological advancement of the onboard BOG handling systems (known as the re-

liquefaction system) has brought out a new era in LNG carrier market. Since the early 2000s, 



FMEs began to be adopted as a propulsion system for LNG carriers. For that reason, the intense 

competition between CSTs and FMEs has continued until the mid 2000s. 

 

Phase 3 - mid 2000s to early 2010s: Domination of FSEs 

During this period, the FMEs were proved to improve operational flexibility and fuel saving 

by up to 40 % compared to CSTs, which forced CSTs to withdraw from the market (Wartsila 

2016; Kwon 2017). Eventually, the FMEs have taken the leading position in the market.  

 

Phase 4 - early 2010s to present: fierce competition across two, four-stroke gas engines and 

ultra stream turbine. 

Since the beginning of 2010, the marine engine market has encountered a new challenge with 

the introduction of USTs as well as TLEs. The market share of the FMEs is still high, but the 

strengths of the two counterparts have begun to be acknowledged and gradually penetrating 

the market.  

During ship building, innumerable decisions are to be made. Given that the propulsion system is 

one of the most important parts of ship, a proper decision making in engine selection is 

exceptionally valuable. 

The tremendous amount of CST and FME operating records contrasts with the brevity of TLEs 

and USTs, which may interferes with proper engine selection.  

The engine manufacturers tend to highlight the advantages of their products while to avoid 

disadvantages in terms of sales. To ensure the optimal choice objectively, the extensive data needs 

to be collected, analysed and compared from diverse stakeholders: not only manufacturers, but 

also industrial advisors and exerts who have experience of operation and maintenance of the 



propulsion systems and crew members. Due to lack of trained staff and relevant tools, ship-owners 

are least motivated to carry out logical process of decision making. Consequently, as a culture of 

ship building process, they tend to decide what they are most familiar with. Evidently, there lacks 

research on systematically comparing the three representative nominees. 

On the other hand, such a muddled practice don't provide much evidence of logic, good input, 

fairness, or representation of interests. Therefore, the easier it is for ship-owners to walk out of 

the room with the wrong message with a plenty of room for errors and misunderstandings (Jeong 

et al. 2018b). 

Nonetheless, propulsion systems have a significant impact on cost, emissions and safety, so the 

marine industry should promote the use of logical decision-making processes that will contribute 

to business success. 

 

1.4. Research aim and direction 

This research was motivated to answer the fundamental question on identifying the engine system 

that ultimately outperforms the others in the large LNG carrier market. Therefore, this paper 

sought to provide a holistic view of the strengths and limitations of the three engine systems by 

analytically exploring their performance from the economic, environmental and technical 

perspectives with various methods. In particular, life cycle cost assessment (LCCA), life cycle 

assessment (LCA), fuzzy analysis, multi-criteria decision making analysis (MCDM) were 

combined together to draw the final outcomes. Therefore, the proposed model can be expressed 

as a hybrid decision-making model. Such a combination of noble technologies not only improves 

the reliability of the MCDM, but also extends the scope of analysis systematically taking into 

account various aspects. To prove the suitability of the proposed model, a case study with a 

174,000 m3 LNG carrier was proposed to evaluate the best engine system from a comprehensive 



viewpoint. 

 

2. Method applied 

2.1. Overview of life cycle assessment (LCA) 

LCA was born with the great concerns on environment during 1960s. In 1969, the US Coca-

Cola analysed the comparative study of beverage containers as an effort to minimize 

environmental pollution and natural resource depletion. This work was recognised as the first 

LCA (Guinee et al., 2010). 

Facing the global oil crisis in the early 1970s, research on energy demand and supply for 

fossil fuels and renewable energies boosted the interest in LCA. However, as the oil shortage 

stabilised, such an interest in LCA research began to decline. Once again since late 1980s, 

LCA was resumed due to global waste issues and became a tool for solving environmental 

problems (LeVan, 1995). 

In the 1990s, the Environmental Toxicology and Chemistry Association (SETAC) actively 

participated in the LCA field. This indicates that LCA practitioners, users and scientists have 

begun to establish basic concepts, understandings and approaches to LCAs  

(Guinee et al., 2010). 

Lastly, the process of LCA was standardized by the International Organization for 

Standardization (ISO) and after being revised, these standards which are ISO 14040 and ISO 

14044 have been extensively used in a variety of fields such as automotive, construction, etc 

(ISO, 2006).  



LCA was first introduced to the shipping industry in the 1990s by Annik Magerholm Fet 

(1996) who attempted to estimate the environmental impacts of platform supply vessels. The 

following research was made with M/V Color Festival, a roll-on / roll-off vessel in 1999 

(Johnsen and Fet. 1999).  

Since the mid-2000s, LCA-based ship design, ship building and operation have started to 

gain more and more attention. This resulted in the development of a software tool known as 

LCA-ship (Jivén et al., 2004). 

There are some notable LCA studies related to the marine engineering to be introduced. 

Alkaner and Zhou examined the performance of alternative power sources by comparing 

dissolved carbon fuel cells with marine diesel engines (Alkaner and Zhou, 2006). This 

comparison was implemented in practice (Bengtsson, Andersson, and Fridell, 2011). 

Kameyama, Hiraoka, & Tauchi, (2007) conducted an assessment of ballast water treatment 

systems (BWTS) that emphasized social sustainability assessment. Similar works with 

BWTS were introduced by several research publications: Blanco-Davis and Zhou (2014) and 

Basurko and Mesbahi, (2014).  

Notable LCA work has been carried out through the EU project Eco-REFITEC, which aimed 

to provide technical support to EU repair shipyards (Blanco-Davis, 2015, Blanco-Davis, Del 

Castillo, & Zhou, 2014, Blanco-Davis & Zhou. 2014). 

 

 

 

 

2.2. Overview of multi-criteria decision making  

Compared to single-criterion decision making analysis, MCDM can interpret the complexity of 



various characteristics of credible options. In general, MCDMs are applied to help decision-

makers to map and systematize problems in order to make informed choices. Various techniques 

have been developed and implemented across industries. Wang et al. (2009) reviewed the 

published research on MCDM applied to sustainable energies, pointing out the increasing 

popularity of MCDM methods in the area. the MCDM applications can be found in some of the 

latest studies presented below: 

Stoycheva et al. (2018) introduced an MCDM framework to evaluate the sustainability of 

the automobile manufacturing industry. From the social, economic and environmental 

aspects, they mainly assessed the optimal selection of the raw materials among various 

options. 

Neves et al. (2018) also adopted a conventional MCDM to evaluate the sustainable energy 

strategy of Portugal. 

On the other hand, despite the considerable efforts for evaluating the impacts of various aspects, 

the use of MCDM in these studies appeared still limited to qualitative approaches. In this context, 

the fuzzy theory is often incorporated into conventional MCDMs in efforts to enhance the 

reliability of the decision-making processes. Here are some key fuzzy based MCDMs worth being 

discussed; 

The fuzzy analytic hierarchy process (AHP) - a combined technique between the fuzzy theory 

and AHP method - was developed to remedy the drawbacks of the conventional AHP and to 

solve real-life problems reliably. Van Laarhoven and Pedrycz (1983) were known as one of 

the first fuzzy AHP applicators by defining the triangular membership functions for the 

pairwise comparisons. The research was succeeded by Buckley whoc (1985) contributed to 

the determination of the fuzzy priorities of comparison ratios with triangular membership 

functions. Since then there have been a number of research introduced with fuzzy AHP 
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methods. 

Fuzzy order preference by similarity to ideal solution (fuzzy TOPSIS) is an enhanced process 

of TOPSIS which was initially developed by Hwang and Yoon (1981) (Tzeng and Huang 

2011) and further elaborated by Yoon (1987) and Hwang et al. (1993). The basic idea of this 

technique is that the selected candidate has the shortest geometric distance from the positive 

ideal solution (PIS) and the longest geometric distance from the negative ideal solution (NIS). 

The fuzzy theory reinforces the application of TOPSIS to areas where data is often incomplete 

or inconclusive. 

The fuzzy based MCDM processes have been extensively applied to research in a variety of 

industries. Obviously, voluminous studies using these techniques have been published. On the 

other hand, these techniques appears to be immature in the marine/offshore industry, considering 

the number of publications in the past. Despite the lack of applications, some outstanding 

maritime research is worthy of being presented as below: 

Wan et al. (2015) investigated the excellence of LNG-fuelled ships through a hybrid 

MCDM analysis in which the SWOT (strengths, weaknesses, opportunities, and threats) 

analysis combined with the AHP. They invited 16 experts to assess various aspects of using 

LNG as a marine fuel. Likewise, scoring for each criterion was made by the expert 

knowledge. 

Lazakis and Ölçer (2016) evaluated the best maintenance approach for shipboard equipment, 

using the technique of fuzzy-TOPSIS analysis. They linguistically assessed the advantages 

and disadvantages of three maintenance strategies - namely corrective, preventive and 

predictive maintenance - based on the four experts’ judgements. 

Balin et al. (2016) adopted a hybrid MCDM model, a combination of Fuzzy AHP and 

TOPSIS methods, to investigate various failures associated with gas turbine components. 



This study concluded that the proposed hybrid MCDM was effective in evaluating the best 

equipment to minimise such failures.  

Stavrou et al. (2017) have developed an MCDM model, based on the ELECTRE method 

and selected the optimal ship-to-ship bunkering location in accordance with the operational 

eligibility. 

However, the past research could not be free from uncertainties originated from human 

subjectivity. Several studies have made interesting attempts to address this limitation. 

 

2.3. Combination of LCA with MCDM 

Some noteworthy studies focusing on environmental impact assessment include: 

Myllyviita et al. (2012) assessed the environmental impact of biomass production chains 

with a combined method between LCA and MCDM. In this case, MCDM was applied as 

a normalisation tool. Domingues et al. (2015) assessed the environmental impact of 

various vehicle fuel types using LCA model. Then, it involved a conventional MCDM to 

determine the optimal fuel solution. 

Sohn et al. (2017) carried out LCA which was coupled with a conventional MCDM for 

investigating the effective level of industrial building insulation. 

Miah et al. (2017) reviewed recent publications dealing with enhanced MCDMs. The 

findings concluded that various fields had accommodated the hybrid frameworks which 

could improve the reliability of decision-making. A similar work was also done by Martín-

Gamboa et al. (2017). Their work was focused on the methods to assess the sustainability 

of energy systems: notably, it discussed MCDM in the combination of LCA and data 

envelopment analysis. They pointed out the high capability of such a combination when 



assessing case studies. Zanghelini et al. (2018) reviewed the effectiveness of the 

combination MCDM and LCA on environmental impact assessment of various systems 

and processes. The focus of these reviews was on exploring how effectively the MCDM 

techniques can be coupled with the LCA context to aid the assessment of the 

environmental impacts of various systems and processes. 

However, the use of MCDM technique for such research was largely limited to the of the 

environmental impact assessment as a single criterion. Given that a decision is made in 

consideration of various aspects rather than a single one, more comprehensive models are to 

be introduced in order to integrate the impacts of diverse criteria together. 

 

2.4. Shortcomings of conventional MCDM approaches 

Previous research may lead us to the agreement that the MCDM methods are robust for proper 

decision making in consideration of the complexity of options’ characteristics, provided that the 

proceedings of criteria selection, weighting and assessments are appropriate for specific decision 

problems. 

Although it does not deny the benefits in using qualitative MCDM methods, they have several 

inherent shortcomings (Vinnem 2007; Rausand and Høyland 2004; Jeong et al. 2018) as described 

below:  

 It could be problematic when assessing the advantages/disadvantages of systems for which 

there is a lack of knowledge and experience. 

 It is difficult to make a quantitative prediction with high credibility because the knowledge 

produced might not be generalised to other people or other cases. 



 It overly relies on the experts’ judgement and experience, possibly bringing personal biases 

into the process, thereby leading to misjudgement. 

 It reveals the lack of the holistic view in decision-making. 

It revealed that the initial data for assessment was driven from psychological or qualitative sources, 

like expert judgement. Therefore, it is thought that if an expert makes a wrong judgement, the 

conventional MCDM can mislead conclusions. Moreover, despite the remarkable technological 

advancement in the marine LNG propulsion systems, the systematic investigation into the 

advantages and disadvantages of different engine concepts are insufficient. In this context, the 

likelihood of professional misconduct may be higher than when performed with proven systems. 

In order to remedy such inaccuracies or vagueness inherent in the information provided by a 

human, an enhanced approach was proposed in this paper. 

Moreover, the previous maritime research somewhat lacked a holistic view of decision making. 

Although a ship has several life stages from the cradle to the grave: mainly, construction, 

operation, maintenance and scrapping (Jeong et al. 2018), the practice of the existing MCDMs is 

due largely focused on specific parts of the ship’s life, providing only a narrow view in decision. 

For example, in the interest of shipbuilders, analytic research is more likely to be applied for the 

shipbuilding stage, but from the ship-owners’ perspective, it may be concentrated on the operation 

and maintenance stages. Such restricted analyses may prevent us from making trustworthy 

decisions. 

 

2.5. The enhanced method with the proposed idea 

The underlying idea placed on the proposed model is that numerical or quantitative values would 

help people make the right decision with higher confidence. The overall process of the projected 

MCDM is outlined in Fig. 2 which is an enhanced version of the conventional MCDM in 



consideration of economic, environmental and technical aspects. 

In this principle, the economic and environmental impacts of target options can be quantified 

through the LCCA and LCA, and the technical impact can be assessed on the basis of the fuzzy 

TOPSIS. Thereafter, the impact of each criterion on a subject option is integrated and compared 

to those obtained from alternative options by using the fuzzy AHP. This integration process is 

believed to make the analysis more extensive and reliable, reducing the human subjectivity. 

Therefore, the proposed approach was applied to a case ship to which the credible three engine 

systems were imaginary fitted. 

 

  

Fig. 2. Outline of the proposed MCDM for maritime gas engines. 

 



2.5.1. Economic impact 

The economic impact can be expressed as a combination of the total costs relating to the outcome 

of selecting options over the ship’s lifetime. This impact has a negative influence on the decision-

making, so lower values are a better choice. Taking into account the ship life stage, this paper 

estimates the entire costs by integrating the expenses in four categories: construction, operation, 

maintenance and decommission. 

 

Fig. 3. Outline of the proposed approach on investigating the economic impact. 

 

Construction cost 



The construction cost, which can be described as the initial cost, represent the sum of the expenses 

of products and services such as delivery, onboard installations, engineering works, etc. 

 

Operational cost 

The operational cost pertinent to ship service is mainly contributed by the fuel costs directly 

related to engine fuel consumption that can be calculated based on Eq. (1) (Jeong et al. 2018). The 

SFOC related to energy consumption was determined by courtesy of the engine manufacturers. 

 
n

i i i

i=0

OC = SFOC ×RP ×t ×FP        (1) 

Where, 

RPi  Required power at operational condition, i (kWh) 

OC Operation cost 

SFOCi Specific oil/gas consumption at operational condition, i 

ti  Time spent at operational condition, i 

FP Fuel price ($) 

Index, i  particular operational condition (three representative conditions were assigned for this study: berthing,  

maneuvering and transit) 

 

Maintenance cost 

Engine systems are subject to regular maintenance from daily inspections to overhauls. The 

maintenance plan is generally scheduled according to the engine running hours. The maintenance 

costs are related to the costs of supplies, consumables and spare parts that need to be updated on 

a regular basis. Given that on-board engineers usually are responsible for maintenance work, 



labour costs (already included in their wages) were not necessarily considered in this paper. 

 

Decommission cost 

At the end of ship life, recycling or disposal of engines is also included in financial consideration, 

so that equal importance needs to be paid to the decommissioning cost or revenue for engines. 

Table 1 shows the material content and recycling revenue from a typical marine engine. 

 

Table 1  

Material content and recycling price of a typical marine engine (Scania 2016; ScrapSales 

2017). 

Engine Material Recycling metal price  

(USD / kg) 

Steel $0.190 

Cast iron $0.110 

Aluminium [Al] $1.990 

Copper [Cu] and Zinc [Zn] $4.770 

Lead [Pb] $1.330 

Plastic - 

Rubber - 

Paints - 

Oils and Grease - 

 

 



Financial parameters to be considered  

 Discount rate: in order to consider the monetary value of time, the discount rate was 

generally assumed to be 5 %. 

 Service life: it corresponds to a life expectancy of ship or engine systems. Most ships are 

built of welded steel, generally having a lifetime of 30 years. On the other hand, LNG 

carriers are intent to be considered more conservative even if their actual lifetime is longer. 

In the real project inspiring this research, moreover, the LNG carrier has agreed to engage 

in 20 year service between the United States and South Korea. Therefore, it is appropriate 

to assume that the life of the case ship is 20 years. 

 Fuel prices: market prices of fuels include the expenses of fuel extraction, mining, 

transportation and processing for onboard usage, which may vary considerably depending 

on different time periods and geometrical regions. This research referred to the fuel prices 

in May 2018: USD 2.91/MMBtu for LNG and USD 695/ton for marine gas oil (MGO) 

(Ship&Bunker 2018). 

The overall economic impact of the proposed systems can be expressed based on Eq. (2). 

-tn

final t t

t=1

1-(1+r)
NPV =CC+DC+ ×(OC +MC )

r
      (2) 

Where, 

NPVfinal Final net present value  

CC Construction cost 

OCt Operation cost at given year, t 

MCt Maintenance cost at given year, t 

DC Decommission cost 



r Discount rate (%)  

 

2.5.2. Environmental impact 

Error! Reference source not found. illustrates the process of estimating the holistic 

environmental impact of the feasible options. The environmental impacts for the marine engine 

systems were investigated based on the LCA approach which was primarily guided by the 

International Organisation for Standardization (ISO) (ISO 2006a and 2006b). The computational 

tool, GaBi software provided by PE International GmbH were used to support the analysis (PE 

2018). The types and quantities of emissions associated with the processes involved in this 

analysis were quoted from the GaBi database, while the rigorous review of wide-ranging 

publications in both academy and industry was conducted to obtain supplementary data that Gabi 

database could not provide. 

In the first phase, the research objectives and scope are clearly set. The life cycle inventory should 

then be analyzed taking into account the energy consumptions and emission productions from all 

relevant activities of the specific product from cradle to grave: maybe including material 

extraction, transportation, manufacture, use and disposal stages. 

Potential environmental life cycle impact assessments are performed with input / output data 

derived from the life cycle inventory stage. The selection of the impact categories and evaluation 

methods for each category are subject to the purpose of the study: generally including resource 

depletion, ozone depletion, global warming, eutrophication, acidification, photochemical oxides 

and human toxicity. At the last stage, the interpreted LCA results are ultimately to represent the 

holistic environmental impact of the proposed model/system as internal process environmental 

conditions. It can, therefore, provide reasonable criteria or insights for eco-friendly design and 

production. 



 

Fig. 4. Outline of the proposed approach on investigating the environmental impact. 



Focusing on the case study for this paper, ship activities associated with the particular options 

have been modelled at different ship life stages. The purpose of such modelling was to track 

emissions produced throughout all activities such as the material production, transportation and 

energy consumption, thereby estimating the environmental impact of those options. The result of 

analysis generally indicates more than 100 emission types and this paper normalised and 

converged them into the five major marine pollutants using CML2001 (CML 2016) and ILCD 

PEF (JRC 2010), an environmental impact assessment method: nitrogen oxides (NOx), non-

methane volatile organic compound (NMVOC), sulphur oxide (SO2), particular matter (PM2.5) 

and carbon dioxide (CO2). 

 NOx: it is a generic term for the nitrogen oxides, mainly nitric oxide (NO) and nitrogen 

dioxide (NO2) which are primarily attributed to acid rain and ground level ozone as well 

as adverse health effects such as respiratory problems. NOx emissions from ship engine 

combustion processes are progressively restricted by IMO MARPOL Annex VI Reg. 13. 

 SO2: Sulphur dioxide is a highly toxic, colourless, non-flammable gas, which is generated 

from fossil fuel combustion. IMO MARPOL Annex VI Reg. 14 strictly limits the 

maximum sulphur content of the marine fuel oils in order to curb the SO2 emissions from 

ship service. 

 NMVOC: As a collection of organic compounds, NMVOC is emitted into the atmosphere 

from substantial combustion activities in the marine industry. This type of emission is 

hazardous to human health as well as contributing to the formation of ground level 

(tropospheric) ozone. The production of NMVOC during the ship service is rigorously 

controlled by IMO MARPOL Annex VI Reg. 15. 

 CO2: Not only the marine industry but also all other sectors, carbon dioxide is regarded 

the culprit contributing to global warming. IMO Resolution. MEPC.203 (62) provides a 

series of guidelines to measure, monitor, track and finally reduce this emission. Moreover, 
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IMO MEPC at its 72nd session adopted the IMO’s Greenhouse Gases Emissions strategy 

as a framework for guiding principles and lists potential short, mid and long-term further 

measures to reduce GHG emissions with possible timelines (IMO 2018). 

 PM2.5: It is the term for a mixture of solid particles and liquid droplets found in the air 

such as some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be 

seen with the naked eye. Fine particles (PM2.5) are the primary cause of reduced visibility 

(haze) as well as human health problems. Along with the limit of SOx, IMO MARPOL 

Annex VI Reg. 14 strictly controls the production of PM during ship service. 

As the interpretation work for comparison, all emissions were converted into monetary values 

designated by EU; the prices given to each emission type can be regarded a different format of 

weights on the different impact of emissions. The values were given through a thorough 

investigation of experts through several EU projects (Maibach et al. 2008). For instance, the 

monetary value of CO2 is $24/tonnage and that of NOx is $4,602/tonnage in the UK. From this 

information, we can objectively infer that one tonnage of NOx emission would have 191 times 

higher adverse impact on the environment than one tonnage of CO2. 

 

Construction phase 

The energy consumed in the ship construction phase mainly accounts for the manufacturing and 

production for the following items: steel plates, supporters, engines, equipment, fittings, paints, 

etc. (Shama 2005). Regarding the scope of this paper, a focus was placed on the production and 

installation of the main engine systems as outlined in Fig. 5. 



 

Fig. 5. A process of ship construction associated with engine systems. 

The LCA for the engine systems begins with the proper process modelling from the manufacturing 

to the onboard installation. This model assumed that the raw materials would be produced in steel 

industries and transported to engine manufacturers whose raw materials would be processed into 

engine systems. The completed items are delivered to the shipyard and finally installed in the 

machinery space. The energy usage for each activity is analysed based on the electricity 

consumptions: 8.5 MJ/m for steel cutting, while 15.1 MJ /m for the welding (Gilbert et al., 2017). 

 

Operation phase 

It needs to be repeated that that the vessel operation phase is primarily concerned with the cargo 



transport to a specified distance and the main energy consumption is related to the operation of 

the engine system. Fig. 6 shows this scope of the process in the ship operation phase. 

 

Fig. 6. A process of ship operation associated with engine systems. 

 

Table 2  

Average emission factors for top-down emissions from typical fuel combustion (IMO 2015). 

Emissions 

substance 

Marine HFO 

emissions 

factor (g/g 

fuel) 

Marine MGO 

emissions 

factor (g/g 

fuel) 

Marine LNG 

emissions 

factor (g/g 

fuel) 

CO2 3.114 3.206 2.75 



CH4 0.00006 0.00006 0.0512 

N2O 0.00016 0.00015 0.00011 

NOx 0.093 0.08725 0.00783 

CO 0.00277 0.00277 0.00783 

NMVOC 0.00308 0.00308 0.00301 

SOx 0.04908 0.00264 0.00002 

PM2.5 0.00699 0.00102 0.00018 

 

Maintenance phase 

In terms of environmental impacts on engine maintenance, the related activities were considered 

relatively immaterial because spare parts renewals and engine overhauls are scarcely sensitive to 

the significance of electrical consumption, compared to activities in the other phases (Jeong et al. 

2018). In this context, this paper was convinced to disregard this phase. 

 

Decommission phase 

The ship was assumed to be delivered to a recycling facility where the mechanical systems are to 

be disassembled along with ship structures. The related activities were modelled to estimate 

energy sources and emissions as shown in Fig. 7. 



 

Fig. 7. A process of ship decommission associated with engine systems. 

Presumably, the parts of the material constructing the engine systems are to be recycled whereas 

some other parts are to be scrapped. Thanks to the efforts of various researchers, the summary of 

the energy consumed and emissions produced for recycling process can be shown in Table 3 

(Ling-Chin and Roskilly, 2016; Jeong et al. 2018). 

Table 3  

The summary of the energy consumed and emissions produced for recycling process (Ling-Chin 

and Roskilly, 2016; Jeong et al. 2018). 

Item Steel and 

cast iron 

Stainless 

steel 

Al Cu Zn Pb Ni 

Key references (Yellishetty 

et al., 2011; 

Norgate, 

2014) 

(Crundwell 

et al., 2011) 

(Gaustad 

et al., 

2012; 

Paraskevas 

et al., 

2015) 

(Muchova 

et al., 

2011) 

(Gordon 

et al., 

2003) 

(Genaidy 

et al., 

2009) 

(Johnson 

et al., 

2008) 

Energy MJ Electricity 1.71 7.18 0.10 - 0.73 - 1.92 

Natural gas 0.62 2.60 10.22 - 0.34 - 2.30 

Coal - - - - 1.46 - 1.71 



Blast furnace gas - - - 4.95 - 7.00 - 

Heavy fuel - - - - - - 0.22 

Material kg Pig iron 0.02 0.06 - - - - - 

Oxygen (l) 0.04 0.17 - - - - - 

Emission Kg SO2 1.02E-04 4.28E-04 4.41E-03 2.00E-05 3.67E-03 2.00E-05 - 

NOx 2.40E-04 5.27E-06 2.65E-03 7.00E-05 1.57E-03 7.00E-05 - 

CO2 1.05E-01 4.41E-01 5.45E-01 2.00E-01 - 2.00E-01 1.19E-02 

CO 2.40E-03 1.01E-02 8.83E-04 1.50E-05 - 1.50E-04 - 

PM2.5 1.59E-02 6.71E-02 8.83E-04 1.90E-04 3.94E-05 7.90E-03 2.95E-04 

PM10 2.01E-04 8.46E-04 - 2.60E-04 7.56E-06 1.06E-02 4.29E-05 

 

 

Conversion to monetary values 

The weighting process was applied to consolidate the various types and amount of emissions 

estimated in the analysis into a single comparable unit. The conversion factors (expressed here as 

monetary values) were added to each type of emissions in accordance with the emission database 

with potential emission costs priced across the European countries (Maibach et al. 2008): based 

on EU- 25, NOx (USD 5,150/ton), NMVOC (USD 1,300/ton), SO2 (USD 7,750/ton), PM2.5 (USD 

30,500/ton), CO2 (USD 36/ton). 

 

2.5.3. Technical impact 

Fig. 8 shows the Fuzzy-TOPSIS analysis process expected to complement the disadvantages of 

the existing TOPSIS analysis. 



 

Fig. 8. Outline of the proposed approach on investigating the technical impact. 

To investigate the technical impacts of the selected engine systems, this paper carried out surveys 

where four former on-board marine engineers with more than ten-year experience in this field. 

More importantly, the selected experts are direct stakeholders who have participated in the actual 

project that motivated this research. Also, the experts were the representative of each stakeholder 

group who was actually supposed to make the right decision for engine selection: class surveyor 

(E1), maritime professor (E2), marine engineering researcher (E3) and ship-owner (E4). The 

group of experts were subject to offer the performance rating on six different attributes across the 



ship’s lifecycle as presented in Table 4. 

Table 4  

The technical attributes applied to fuzzy-TOPSIS 

Ship phase Attributes Description 

Contraction 

and 

decommission 

Physical impact 

(A1) 

the quality of system design, shape, mechanism and 

the intimacy with marine vessels 

Operation  Reliability (A2) the level of providing redundancy in preparation for a 

single failure 

Training (A4) 

 

operators' confidence, knowledge and familiarisation 

in systems 

operability (A5)  the level of easiness and convenience in system 

operation 

Maintenance  Management 

commitment (A3) 

the level of time and efforts to be made for system 

maintenance and repair 

Safety (A6) the level of potential risk caused by a system failure 

 

 

Experts’ preference was expressed by placing different levels of weights on each attribute. The 

weights range from 0 to 100 (corresponding to ‘the least important’ and to ‘the most important’ 

respectively). 

To assess the attributes, five different rating categories were employed in linguistic terms: ‘very 

low’, ‘low’, ‘medium’, ‘high’ and ‘very high’. The scale of ‘very high’ was regarded to be the 

most positive remark and the opposite was also true. The linguistic values obtained from the 

experts were transformed into trapezoidal fuzzy numbers following Table 5 (Chen and Hwang 

1992; Lazakis and Ölçer 2016). 

Table 5 

Fuzzy numbers for five linguistic scales. 



Scale Fuzzy numbers 

Very low (0, 0, 0.1, 0.2) 

Low (0.1, 0.2, 0.2, 0.4) 

Medium (0.4, 0.5, 0.5, 0.6) 

High (0.7, 0.8, 0.8, 0.9) 

Very high (0.8, 0.9, 1, 1) 

In general, the trapezoidal fuzzy number can be defined as m = (a,b,c,d)% which is given by Eq. (3) 

(Zheng et al. 2012; Soheil and Kaveh 2010). 
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Where, 

 [b, c]  mode intervals of m%  

[a, d]  lower and upper limits of m%      

m%  membership function of m% 

 

The aggregation of trapezoidal fuzzy numbers can be made with the operational laws through 

Eqs (4)- (9) as described below: 

1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2A(+)B = (a ,b ,c ,d )(+)(a ,b ,c ,d ) = (a +a ,b +b ,c +c ,d +d )% %    (4) 

1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2A(-)B = (a ,b ,c ,d )(-)(a ,b ,c ,d ) = (a -a ,b -b ,c -c ,d -d )% %    (5) 



1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2A( )B = (a ,b ,c ,d )( )(a ,b ,c ,d ) = (a a ,b b ,c c ,d d )     % %    (6) 

1 1 1 1
1 1 1 1 2 2 2 2

2 2 2 2

a b c d
A( )B = (a ,b ,c ,d )( )(a ,b ,c ,d ) = ( , , , )

a b c d
 % %     (7) 

1 1 1 1kA = (k a ,k b ,k c ,k d )   %        (8) 

The aggregated fuzzy numbers A = (a,b,c,d)% , can return to the crisp values through 

defuzzification process (Zheng et al. 2006). 

(a+2b+2c+d)
N=

6
        (9) 

To evaluate the technical impacts of each option, the TOPSIS method was applied. Firstly, the 

crisp values obtained from the defuzzification can be normalised based on Eq. (10).  

ij

ij
N
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ij

i=1

x
r =  ;  j=1, 2, ..., m ; i=1, 2, ..., n

x

      (10) 

Where, i is the number of options; j is the number of attributes. 

Then, the factors, which had been pre-assigned by the experts, were weighted on the normalised 

values of each attribute as shown in Eq. (11). 

ij j ijv = w r   ;  j=1, 2, ..., m ; i=1, 2, ..., n       (11) 

Where, wj represents the weight of the jth attribute. 

To determine the ideal and nadir ideal solutions, the ideal values set and the nadir values set 

were determined as described in Eqs (12) and (13). 

+ ,

1 2 n ij ij{v , v ,..., v } {(max v ), (min v )   ;i=1, 2, ..., m}j k j k        (12) 



,

1 2 n ij ij{v , v ,..., v } {(min v ), (max v )   ;i=1, 2, ..., m}j k j k         (13) 

Where, k is the index set of benefit attributes and k’ is the index set of cost attributes.  

Based Eqs (14) and (15), the two Euclidean distances for each option were calculated.  
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Calculate the relative closeness to the ideal solution. The relative closeness to the ideal solution 

can be determined as shown in Eq. (16). 

-
+ i
i i+ -
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S
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S +S
        (16) 

Finally, the most appropriate strategy will be indicated where is with the highest +

iC . On the 

other hand, economic and environmental impacts were described as costs where higher value 

is negatively desired. 

 

2.5.4. Multi-criteria decision making (Fuzzy AHP) 

The results of the impact assessment makes the final decision-making process using fuzzy AHP 

to be ready. The normalisation process converts each impact expressed in various units into a 

single compatible ratio (%). 

In order to reflect the priorities of decision-makers, it applies AHP technique which is 

renowned for a subjective weighting method or the pair-wise comparison model for 



determining the weights of each criterion. The matrix of the pair-wise comparisons for n criteria 

can be expressed as Eq. (17) (Wang et al. 2009). 
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Where, dk

mn
% represents the kth decision maker’s preference of nth criterion over mth criterion. 

The average preferences for each decision maker are calculated as in Eq. (18). 
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The geometric mean of fuzzy comparison values of each criterion is derived from Eqs (19-20) 

(Zheng et al. 2012). 
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Then the weights can be obtained as described in Eq. (21). 

1 1 1 1

j j j j =(α δ ,β γ , γ β ,δ α ) ; j=1, 2, ....mjw       % % % %% %% % %      (21) 

The defuzzification of those fuzzy numbers was made by Eq. (22) (Ayhan 2013; Chou and 

Chang 2008). 
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Where, Mj represents defuzzifed value for the criterion jth. 

Finally, the normalisation is processed with Eq. (23) (Ayhan 2013).  

j
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Where, Nj represents the final weight for the criterion jth. 

Lastly, a sensitivity analysis was carried out to identify the influence of weighting factors on 

the final decision with three different stakeholder groups: environmentalists, economists and 

engineers. 

To assess the decision makers' preferences, five different scales for relative rating importance 

were used in linguistic terms: ‘equally important’, ‘weakly important’, ‘fairly important’, 

‘strongly important’ and ‘absolutely important’. The linguistic values obtained from the experts 

were transformed into trapezoidal fuzzy numbers in accordance with Table 6 (Chen and Hwang 

1992; Lazakis and Ölçer 2016). 

Table 6 

Fuzzy numbers for five linguistic scales. 

Linguistic variable A scale of 

relative 

importance 

Fuzzy 

Trapezoidal 

number 

Equally important 1 (1, 1, 1, 1) 

Weakly important 3 (2, 2.5, 3.5, 4) 

Fairly important 5 (4, 4.5, 5.5, 6) 

Strongly important 7 (6, 6.5, 7.5, 8) 

Absolutely important 9 (8, 8.5, 9, 9) 

x=2,4,6,8 are intermediate scales (x-1, x-1/2, x+1/2+1) 

 



 

3. Case study 

Amid a rapid change in the world energy market, Korea Gas Corporation (KOGAS) was 

committed to diversify the source of the LNG suppliers which had been overly relied on the 

Middle East. As a result, it has successfully signed several new projects, such as an Australian 

GLNG project and a US Sabine Pass LNG, to secure the long term energy supply. It was 

reported that KOGAS would purchase about 6.3 million tons of LNG annually from the two 

projects, which claimed 8 new LNG carriers having 147,000 m3 cargo capacity to be 

constructed. The project of building new LNG carries has undergone a rigorous technical 

review and decision-making processes to identify the best choice across the credible engine 

systems before the conceptual design was complete. 

The case study pertinent to this paper started from this background. Hence, it was designed to 

investigate the strengths and the limits of the credible engine systems as described in Section 

1.2 from the economic-environmental-technical perspectives. The proposed method discussed 

in Section 2 was applied to evaluate the optimistic engine system in a holistic view. 

 

3.1. Data collection 

Fig. 9 shows a brief outline of data collection from stakeholders: mainly, the ship-owner, 

operators, engine manufacturers, shipyards and marine engineering experts. The collected data 

was thoroughly analyzed by the project team as a third party in an effort to properly select the 

engine system for a series of new vessels. 

 



 

Fig. 9. Outline of date collection.



 

 

3.2. Case ship 

3.2.1. Description of ship particulars and voyage information 

Given that the LNG import was estimated at 2,800,000 tons annually from Sabine Pass 

between 2017 and 2037 (20 year project period), Fig. 10 shows the basic information of the 

case ship and its routine voyage between Incheon, South Korea and Sabine Pass, USA. 

Fig. 10. Information of case ship and voyage (KOGAS 2013). 

 

3.2.2. Application of the engine systems  

Table 7 summarises the configuration of each engine system which was specifically 

modelled in accordance with the specification of the case ship. This conceptual design work 

was performed and validated during the actual project. 

UST 



By using the external combustion principle, the high pressure steam generated from the UST 

is used to rotate the gearbox connected to the propeller. Two sets of turbine generators are 

to be installed to supply electricity to the vessel. UST does not require specific fuel supplying 

systems and excess BOG, if any, can be consumed in the main boilers with steam dumping. 

FME 

Four FME sets were arranged in parallel so that the electricity generated by the engine could 

be delivered to the primary consumer. Electric power is supplied to the electric motor 

installed on the propeller in the electric hub, which is called the Main Switchboard. Parts of 

electricity from FMEs are also provided for electrical consumers and auxiliary systems.  

  TLE 

Unlike FMEs, two TLEs adopt the mechanical propulsion principle in which the physical 

engine power is directly transmitted through the shafts which are coupled with the propellers. 

Three sets of generators are to be additionally added in response to electricity loads.  

This case study was assumed that the all proposed engine systems would be operated in gas 

mode where using BOG as fuel. However, for the internal combustion engines in gas mode, 

FMEs and TLEs require to use MGO or HFO as a pilot fuel (a starting fuel) accounting for less 

than 1 % of BOG usage. On the other hand, FME and TLE are equipped with a fuel gas supply 

system (FGSS), which is a compact module mainly composed of pumps and heaters. 

  



Table 7 

The configuration of proposed engine systems for case ship. 

Engine 

type 

Outlines Composition 

-BOG 

handling 

Power 

transmission 

Generator 

engines 

Fuel used 

UST 

 

High-pressure 

boiler 

(2 sets) 

High, medium 

& low-pressure 

turbine 

- Burning on 

boilers 

- Steam 

dumping 

Reduction 

gear 

T/G (2 sets) 

D/G 

(for 

emergency) 

HFO and /or 

Gas 

 

No pilot oil 

FME 

 

Medium 

Speed 

Diesel (4 sets) 

- Burning in 

the engine 

- Oxidizer 

Electric 

propulsion 
NIL 

HFO and /or 

Gas 

 

MGO for pilot 

oil 

TLE 

 

Slow Speed 

Diesel (2 sets) 

- Burning in 

the engine 

- Oxidizer 

Mechanical 

shaft 

G/E (3 sets) 

HFO and /or 

Gas 

 

MGO for pilot 

oil 

 

 



3.3. Results of analysis 

3.3.1. Economic impact 

Table 8 presents the summary of life cycle cost estimates according to the different engine 

systems. 

Table 8  

Summary of economic impact estimates. 

   Items UST FME TLE 

Construction Gensets (includes redundancy)  5.3 15.8 5.0 

Main Engine  Main turbine 

Main boiler 

Main turbine 

Feed water pump 

& turbine 

Generator turbine 

-  10.5 

Electrical systems  8.0 1.5 

Fuel Gas Supply 2.0 8.0 

Gearbox 1.5 -  

Spare parts 2.0 0.5 

Total budget price USD  26.5 29.3 25.5 

Operation LNG (tonnes/yr) - - - 

BOG (tonnes/yr) 38,184 34,905 28,360 

MGO (tonnes/yr) - - 1,296 

MDO (tonnes/yr) - 385 48 

BOG (M$/yr) 22.9 20.9 17.0 

MGO(M$/yr) 0.0 0.0 1.3 

MDO (M$/yr) 0.0 0.4 0.0 

Lube oil (M$/yr) 0.0 0.1 0.1 

Sum 23 21 18 

Maintenance Maintenance (M$/yr) 0.2 1.2 0.7 

Decommission  Recycling benefits (M$) -0.06   -0.05 -0.11  

 

The costs of engine systems in the construction phase was estimated with the help of 

representative engine manufacturers. The engine configuration with FMEs was found to be 



relatively expensive ($ 29.3M), whereas the TLE equivalence was generous ($ 25.5M). The 

UST was costed between the two internal engine systems: $ 26.5M.  

High initial costs for FMEs seem to be influenced by the system complexity based on the 

fact that the electric propulsion system adopted by the FMEs required an intermediate system 

to convert mechanical power to electricity, while the TLEs could use direct mechanical 

power for propulsion. Also, the UST requires an intermediate system to convert steam power 

to mechanical one, but this process is relatively simple compared to electric propulsion. 

The operational costs of engine systems are directly related to the system efficiency. The 

TLEs are known to have better performance than other two types, which are smoothly 

revealed with the results of economic assessment. On the other hand, despite a significant 

upgrade, the UST was still less efficient, which claimed higher level of fuel consumption, 

thereby operating costs. 

Assessment results revealed that the 20-year operating costs would account for the largest 

part of the economy impact. 

While there would be more than a few maintenance items, this paper directly adopted the 

annual maintenance costs provided by the engine manufacturers (KOGAS 2013; MHI 2013). 

Therefore, the following maintenance costs were assigned to the analysis: UST is $0.2 

M/year; FME is $1.2 M/year; TLE is $0.7 M/year. The UST was found to be the most cost-

effective regarding maintenance viewpoint than the internal combustion engine systems. 

This is because maintenance of the external combustion engine system is relatively handy 

and the number of spare parts to be replaced regularly is low. The FMEs were shown to 

require higher maintenance costs than the TLEs because the maintenance intervals are 

frequent and there are more spare parts than the others. 



Unlike the other ship life stages, the decommission phase can be characterised as an economic 

benefit from material recycling, rather than expense. Table 9 shows the types and amount of 

recycling materials for each engine system. 

Table 9 

 Recycling materials for engine systems (Jeong et al. 2018a; Scania, 2016). 

Engine type Materials Each weight (ton) Total weight (ton) 

UST 

Steel 178.6 About 380.0 

Cast iron 201.4 

FME (4 sets) 

Steel 74.0 About 185.0 

Cast iron 85.1 

Aluminium 14.8 

Plastic 1.665 

TLE (M/E 2sets) 

FME (G/E 3 sets) 

- M/E G/E M/E about 350 .0 

G/E about 44.0 

Steel 140 17.6 

Cast iron 161 20.24 

Aluminium 28 3.52 

Plastic 3.15 0.396 

 

The results of the holistic economic evaluation taking account of the discount rate are 

summarised in Fig. 11 which shows the cumulative cost over the ship's lifecycle. 



 

Fig. 11. Cumulative costs for economic impact over ship life cycle. 

 

3.3.2. Environmental impact 

Table 10 shows the amounts of the representative emissions; by means of GaBi software, 

in accordance with CML 2001 and ILCD PEF, various types of emissions were converted 

into the five representative emissions as declared earlier. 

 



 

Table 10 

Summary of environmental impact estimates. (Unit: kg). 

 UST FMEs TLEs 

Emissions Construction Operation Scrapping Total Construction Operation Scrapping Total Construction Operation Scrapping Total 

CO2 Eq. 5.31E+05 2.63E+09 5.30E+05 2.63E+09 9.52E+05 2.44E+09 9.52E+05 2.44E+09 1.07E+06 2.09E+09 1.07E+06 2.09E+09 

NOx Eq. 1.85E+02 2.91E+06 1.81E+02 2.91E+06 3.34E+02 3.01E+06 3.24E+02 3.01E+06 3.76E+02 3.35E+06 3.64E+02 3.35E+06 

NMVOC Eq. 6.43E+02 1.03E+07 6.30E+02 1.03E+07 1.16E+03 1.04E+07 1.13E+03 1.04E+07 1.31E+03 1.09E+07 1.27E+03 1.09E+07 

SOx Eq. 1.03E+03 3.76E+06 1.03E+03 3.76E+06 1.86E+03 3.96E+06 1.85E+03 3.96E+06 2.09E+03 4.54E+06 2.08E+03 4.55E+06 

PM2.5 Eq. 6.99E+02 1.73E+05 6.98E+02 1.74E+05 1.19E+03 1.74E+05 1.19E+03 1.76E+05 1.34E+03 1.81E+05 1.33E+03 1.83E+05 

 



Firstly, the results of the environmental analysis revealed that the emission level of CO2 eq. 

was much higher than the other emission types. For example, the use of the UST system 

produced 2.63E+9 kg CO2 eq. while emitting 2.91E+6 kg NOx eq., 1.03E+7 kg NMVOC eq., 

3.76E+6 kg SOx eq. and 1.74E+3 kg PM2.5 eq. 

Comparing the engine systems, the use of TLEs was revealed to reduce the emission of CO2 

eq. modestly, whereas the use of UST was shown to be the worst. This trend could be observed 

by the fact that the amounts of emissions generated were proportional to the amount of fuels 

used: as discussed previously, the UST proved to consume more fuel than the other options. 

On the other hand, to be surprised, the UST was turned out the most optimistic in terms of the 

pollution levels of the other emission types: NOx eq., NMVOC eq., SOx eq. and PM2.5 eq. Such 

a result was attributed to the adverse characteristics of internal combustion engines which 

require MGO or MDO to be consumed as pilot fuel. This finding indicates that the use of the 

conventional liquid fuels has significantly contributed to marine pollution. 

In Fig. 12, the estimated emissions were converted into the monetary values. 



 

Fig. 12. Cumulative costs for environmental impact over ship life cycle. 

 

3.3.3. Technical impact 

From a technical standpoint, actual KOGAS project participants were invited to compare the 

performance of each engine type. The project team selected representatives from four 

stakeholder groups: engine builders, marine engineers, taxonomies and ocean professors. 

A rigorous survey was conducted with the questionnaire distribution with the assigned 

experts. Then, their views on the six technical attributes were returned as shown in Table 11. 

To support their evaluation, general remarks from experts were summarised in Table 12. 



Some remarkable points can be highlighted. Firstly, it was viewed that the compact systems 

of TLEs was expected to contribute to facilitating the arrangement of machinery space. On 

the other hand, the TLEs require additional safety verification for of the 300 bar high-

pressure gas injection system. Secondly, the UST was considered to need to overcome the 

adverse characteristics of the steam turbine system with relatively low efficiency, 

particularly during manoeuvring. Besides, the complexity of the UST system arrangement 

also needs to be optimised. Lastly, the strengths of FMEs were placed on the lower risk of 

low gas pressure and reliable redundancy with good safety records.  



 

Table 11  

Summary of technical impact estimates. 

Attributes 

/Solutions 

E1 (class surveyor) E2 (Maritime Professor) E3 (marine engineering researcher) E4 (ship-owner) 

UST TLE FME UST TLE FME UST TLE FME  UST TLE FME 

A1 

(Physical impact) 

medium 

(0.3, 0.5,0.5,0.7) 

very high 

(0.8, 0.9, 1, 1) 

high 

(0.6, 0.75, 0.75, 0.9) 

low 

(0.1, 0.25, 0.25, 0.4) 

very high 

(0.8, 0.9, 1, 1)  

high 

(0.6, 0.75, 0.75, 0.9) 

low 

(0.1, 0.25, 0.25, 0.4) 

very high 

(0.8, 0.9, 1, 1) 

high 

(0.6, 0.75, 0.75, 0.9) 

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

very high 

(0.8, 0.9, 1, 1) 

A2 

(Reliability) 

low 

(0.1, 0.25, 0.25, 0.4) 

high 

(0.6, 0.75, 0.75, 0.9) 

very high 

(0.8, 0.9, 1, 1)  

low 

(0.1, 0.25, 0.25, 0.4) 

high 

(0.6, 0.75, 0.75, 0.9)  

very high 

(0.8, 0.9, 1, 1) 

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

high 

(0.6, 0.75, 0.75, 0.9) 

medium 

(0.3, 0.5,0.5,0.7) 

medium 

(0.3, 0.5,0.5,0.7) 

very high 

(0.8, 0.9, 1, 1) 

A3 

(Management 

commitment) 

very high 

(0.8, 0.9, 1, 1) 

medium 

(0.3, 0.5,0.5,0.7) 

low 

(0.1, 0.25, 0.25, 0.4) 

very high 

(0.8, 0.9, 1, 1) 

high 

(0.6, 0.75, 0.75, 0.9)  

low 

(0.1, 0.25, 0.25, 0.4) 

very high 

(0.8, 0.9, 1, 1) 

high 

(0.6, 0.75, 0.75, 0.9) 

high 

(0.6, 0.75, 0.75, 0.9) 

very high 

(0.8, 0.9, 1, 1) 

medium 

(0.3, 0.5,0.5,0.7) 

medium 

(0.3, 0.5,0.5,0.7) 

A4 

(Training) 

very low 

(0, 0.1, 0.1, 0.2) 

very high 

(0.8, 0.9, 1, 1) 

very high 

(0.8, 0.9, 1, 1) 

low 

(0.1, 0.25, 0.25, 0.4) 

high 

(0.6, 0.75, 0.75, 0.9)  

medium 

(0.3, 0.5,0.5,0.7) 

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

very high 

(0.8, 0.9, 1, 1) 

medium 

(0.3, 0.5,0.5,0.7) 

very high 

(0.8, 0.9, 1, 1) 

high 

(0.6, 0.75, 0.75, 

0.9) 

A5 

(operability) 

low 

(0.1, 0.25, 0.25, 0.4) 

high 

(0.6, 0.75, 0.75, 0.9) 

medium 

(0.3, 0.5,0.5,0.7)  

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9)  

medium 

(0.3, 0.5,0.5,0.7) 

low 

(0.1, 0.25, 0.25, 0.4) 

high 

(0.6, 0.75, 0.75, 0.9) 

high 

(0.6, 0.75, 0.75, 0.9) 

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

very high 

(0.8, 0.9, 1, 1) 

A6 

(Safety) 

high 

(0.6, 0.75, 0.75, 0.9) 

low 

(0.1, 0.25, 0.25, 0.4)  

medium 

(0.3, 0.5,0.5,0.7) 

very high 

(0.8, 0.9, 1, 1) 

low 

(0.1, 0.25, 0.25, 0.4)  

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

medium 

(0.3, 0.5,0.5,0.7) 

high 

(0.6, 0.75, 0.75, 0.9) 

high 

(0.6, 0.75, 0.75, 0.9) 

very low 

(0, 0.1, 0.1, 0.2) 

very high 

(0.8, 0.9, 1, 1) 



Table 12  

Summary of experts’ view on the technical impact of each engine. 

 UST FMEs TLEs 

A1 - A complicated process of making steam through the boiler 

and injecting it into the turbine. 

- High engine room space requirement 

- A relatively complex system in combination of main generator, 

motors and integrated automation systems. 

- Simple fuel gas management design: satisfying IMO Tier III 

on gas 

- Easier to handle with low pressure 

- Compact space management leading to optimal cargo space 

design 

- Easy retrofitting of existing main engines to gas engines.  

- The additional requirement of the gas supply system for gas 

compression 

A2 - Lack of redundant system due to a large installation 

capacity 

- If a critical component such as the main boiler fails, the 

propulsion is completely lost. 

- Very high redundancy due to the operation of two 

independent motors, switchboards, and multiple engines. 

- High flexibility in fuel selections 

- High redundancy with two main engines 

- However, if a critical component such as a main switchboard or 

gas engine fails, the propulsion can be lost. 

- High flexibility in fuel selections 

A3 - A high advantage in maintenance expense 

- Easiness and infrequent maintenance intervals 

- Frequent maintenance intervals with multiple engines and 

subsequent systems 

- A number of spare parts to be regularly renewed 

- Frequent maintenance intervals 

A4 - Low familiarity with ship engineers 

- Lack of operation records 

- High familiarity with engineers; multiple uses for generator 

engines 

- Proven familization on conventional engines.  



A5 - Manoeuvring performance is poor due to characteristics of 

the steam turbine 

- Sophisticated control of steam systems with  

- complex automation with complicated systems 

such as controls of main generators, main electric power 

generation, motors and integrated automation system. 

- Otte cycle control:  

 Mixer ratio is important  

 Knocking to be counted 

 Methane slip (discharge of unburned gas) to be 

considered 

- Relatively simple automation with compact systems 

- Diesel cycle 

 Mixer ratio is not affected 

 Less knocking 

 Methane slip (discharge of unburned gas) can be 

ignored 

A6 - A potential risk of handling high-pressure steam 

- No safety records 

- Low risk with relatively low gas pressure 

- Good safety records 

- the highest risk factors of high pressure (300 bar) 

 



Fig. 13 presents the results of technical impact assessments across the engine systems 

utilising Fuzzy TOPSIS, providing a clear indication that TLEs should be technically 

the best choice. 

 

 

Fig. 13. Results of technical impact assessment. 

 

3.4. Results of MCDM 

As the last process, the impact values estimated throughout sections 3.2.1 to 3.2.3 were 

integrated employing Fuzzy AHP method where this paper assumed that three different 

decision-making groups: ship-operator, ship-owner (or manufacturer) and environmentalist.  



In this case, rather than hiring experts groups, we set up a few cases that deliberately give 

different weighting levels on condition that different stakeholder groups have different 

preferences for weighting factors on the criteria. Hence, sensitivity analysis to investigate the 

weighting effect on the final outcomes was organised based on the following assumptions. 

The ship-operator would regard the technical impact fairly more important than two other 

impacts (Case 1); ship-owner (or manufacturer) considers the economic impact would be 

fairly more important than two other impacts (Case 2); environmentalist argues the 

environmental impact would be fairly more weighty than other two impacts (Case 3). Case 

0 is assigned to be the importance of all impacts were equally treated. 

As summarised in Fig. 14, MCDM results clearly suggested that the TLE option be ultimately 

better than two others in all cases. It also revealed that the performance of the FMEs be slightly 

better than that of the UST. Despite different weights across the cases, the final results were 

consistent. 

 



 

Fig. 14. Summary of MCDM results in various cases. 

4. Discussion 

Given that proper decision-making is paramount for the success of the business, this paper has 

been driven from the strong industrial need by the ship-owner (KOGAS) who strived to identify 

the optimal marine gas engine systems. To achieve this goal, we investigated economic, 

environmental and technical impacts and integrated them to make the best choice. Since the 

conventional MCDMs overly rely on qualitative assessments, thereby lacking the reliability, it 

was an essential process to develop a useful integration model as well as an enhanced MCDM 

quantitatively, leading to making a proper decision in the holistic view (Jeong et al. 2018). 

Evidently, the case study has proven the effectiveness of the proposed MCDM model by 

investigating the strengths and limits of the marine LNG engine systems. The functionality for 



sensitivity analysis has also shown to be excellent for understanding the consistency of the final 

outcomes. 

Since maritime environmental regulations are getting stricter and stricter, the use of LNG as an 

alternative fuel is for sure a way forward. As discussing the strengths and the limits of current 

marine LNG engine systems, the research findings are believed to be a valuable guidance for 

ship designers and owners who are subjected to proper decision-making among various engine 

options. Also, the research results could be a modest indicator for anticipating the future trend 

of marine LNG engines. This paper also provides engine manufacturers with constructive 

recommendations on the places where their systems to be enhanced to build up the market 

competitiveness. 

For a particular example, the Energy Efficiency Design Index (EEDI), which regulates the CO2 

emissions, has been applied to new vessels since January 1, 2015. In this context, the amount 

of CO2 eq. generated by each engine type was the highest for UST at 2.63E+09 kg, and the 

TLEs and FMEs were similar at 2.44E+09 kg and 2.09E+09 kg, respectively. Therefore, to 

satisfy the EEDI, the ship selecting the UST as the propulsion engine needs to take more 

consideration of the fuel consumption and ship speed than the ships equipped with FMEs and 

TLEs. 

Moreover, the 'IMO-Tier III' requirement (NOx regulation) applied since 2016 cannot be 

overlooked. The only engine types that can satisfy 'IMO-Tier III' are the UST and the FMEs in 

gas mode, not diesel mode, at present. Therefore, when selecting the internal combustion 

engines, FMEs or TLEs, NOx treatment systems such as selective catalytic reduction (SCR) 

should be additionally installed to satisfy the Tier III requirement. It is because the use of MDO 

or MGO increases the NOx eq. emissions from FMEs and TLEs significantly. Meaningfully, 

the potential costs associated with environmental impacts were much higher than those related 



to economic impacts, which could be a good indicator of how seriously we are concerned about 

environmental conservation. 

While a massive number of new marine systems are continuously flooding the industry, it 

becomes harder and harder for designers, operators and the service organisations to determine 

the best option across various alternatives. On the other hand, the existing regulations and 

practices have some limitations and gaps to examine the holistic cost, environmental and 

technical impacts of ship activities as well as marine systems. Given that LCA, MCDM and 

fuzzy techniques, which can remedy their shortcomings, are still under-used in the marine 

industry, the utilisation of the enhanced hybrid model has presented the usefulness of their 

combination, which will undoubtedly help stakeholders to obtain comprehensive views on 

more accurate and reliable decisions. In this context, this research also implied that the use of 

the structured guidelines of the enhanced hybrid MCDM could also be extended to various 

potential future studies for determining the best systems. Therefore, this paper, with the 

proposed MCDM model, is highly expected to contribute to improving the competitiveness of 

shipyards, ship-owners, operators, and manufactures by enhancing the sustainability of marine 

systems involved in construction, operation, maintenance and decommission. 

Although this paper tested the proposed model for a marine case, there is no restriction on 

applying this model to various industrial studies that require appropriate decision making. 

On the other hand, the proposed model does not fully address the problem of the human 

subjectivity inherent in MCDM as discussed in Sections 2.2 and 2.3. However, this model 

suggested that this limit could be reduced by pursing the quantitative approaches and 

performing the sensitivity analysis to evaluate the consistency of the final outcomes. 

  

 



 

5. Conclusions 

The novelty of this paper can be placed on developing a proper model and evaluating the 

performance of various marine LNG engine systems in multiple aspects. Throughout the 

process, the research work has presented a way to contribute to enhancing the sustainability of 

the marine industry. 

Based on the research work discussed in this paper, the following conclusions can be drawn: 

1) There is an urgent need for a systematic investigation of the performance of newly-

introduced marine LNG engine systems. Key concerns in this analysis include 

economic, environmental and technical aspects. 

2) The enhanced hybrid MCDM model was developed and applied to a case study to 

demonstrate that it is a more objective and quantitative approach than conventional 

qualitative methods for proper decision-making. 

3) In examining the performances of three different marine LNG engine systems, research 

findings ultimately suggested that the TLEs would be the best option across them. 

There are some key outcomes to be discussed in detail: 

- The use of TLEs was found the most economical choice, thanks to its high 

propulsion efficiency which could significantly reduce the fuel consumptions 

during the operational phase. 

- The use of TLEs was also proven the best option concerning minimising CO2 eq. 

emissions while the use of UST was shown to be optimistic for reducing the other 

concerned emissions. 

- The most favourable engine type concerning technical impact was also considered 



as TLEs, but FMEs were noted for its exceptional stability and safety.  

4) Despite a much higher degree of confidence, the relative complexity of this 

comprehensive model may diminish our passion to take advantage of this approach 

while adhering existing simple approaches. Developing a computational tool to 

facilitate this proceedings may be a tremendous asset for the future work. Lastly, to 

make a greater contribution to the industry, it may be essential to conduct more 

extensive and systematic studies with the proposed model. 
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