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Abstract: Recently, triboelectric nanogenerators (TENGs) are 

generating increasing interest due to their important applications as 

energy harvesters and self-powered active sensors for pressures, 

vibrations and other mechanical motions. However, there is still little 

research within the research community on their potential as self-

powered impact sensors. This paper considers the development of a 

novel triboelectric nanogenerator, which is prepared using a simple and 

economic fabrication process based on electrospinning. Furthermore, 

the paper studies the changes in the generated electric response caused 

by small energy impacts. For the purpose, the TENG electric outputs 

generated by the impact of a free-falling ball dropped from different 

heights are investigated. The idea is to investigate the relation between 

the electric responses of the nanogenerator and the energy of the impact. 

The experimental results demonstrate that the voltage and current 

outputs increase linearly with the increase of the impact energy. 

Moreover, the electric responses of the triboelectric nanogenerator 

show a very high sensitivity (14 V/J) to the changes in the impact 

energy and good repeatability. The main achievements of this paper are 

in the development of novel triboelectric nanogenerator composed of 

polyvinylidene fluoride nanofibers and a thin film of polypropylene, 

and its successful application as an impact sensor for real-time 

assessment of small energy impacts. 
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1 Introduction 

 

An impact sensor plays a critical role in vehicle safety, fast medical assistance of 

elderlies and structural health monitoring. For example, in the event of a car crash an 

impact sensor detects the collision to release an air-bag for the protection of the 

passengers. In the case of falls in the elderly, an impact sensor can be used to inform 

about the accident and provide a fast-medical assistance. Other practical examples 

could be detection of impacts in hail storms, where impacts are responsible for a 

considerable number of accidents in aircrafts, wind turbines and other civil 

infrastructures. Therefore, the sensing and the quantification of impacts is of vital 

importance for a number of applications as impacts can seriously affect the health and 

safety of humans. 

 

Recently, various approaches have been developed and applied for detection and 

measurement of impacts in environment as for example piezoelectric sensors [1, 2], 

capacitive sensors [3], optical sensors [4], acoustic sensors [5] and vibration sensors 

[6]. Special attention deserves the works of Yang’s group [7, 8] which investigates the 

applications of flexible piezoelectric sensors for detection and measurement of 

pressures, which can be used for important applications as sleeping monitoring, tactile 

measurements, or sensing of human heartbeats. Additionally, other authors as [9] 

investigated the potential of piezoelectric nanogenerators as acceleration sensors for 

real-time collision monitoring, which has important applications as vehicle safety 

monitoring. However, most of these technologies require an external power supply or 

battery to sense the impact which is a disadvantage of the non-self-powered operation 

which leads to limited life-time and increased maintenance cost. Therefore, an 

environmentally friendly self-powered technology is very much desired for the 

detection of impacts. 
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In the last five years, triboelectric nanogenerators (TENGs) are gaining a lot of 

popularity  within the scientific community, which results in a considerable amount of 

research on the potential of triboelectric nanogenerators as energy harvesters [10-13] 

and self-powered active sensors for vibrations [14, 15], accelerations [16, 17], touches 

[18, 19], pressures [20-23], magnetic fields [24, 25], and environmental changes [26, 

27]. However, until now, there are almost no works to report about the potential of 

triboelectric nanogenerators for detection and evaluation of impacts [28]. Therefore, it 

is urgently needed to investigate the potential applications of triboelectric 

nanogenerators for detection and measurement of impacts. 

 

The working principle of triboelectric nanogenerators is based on the contact 

electrification and electrostatic induction [29, 30]. The contact electrification occurs 

when two materials with different electron affinities are brought into contact with each 

other, which induce positive and negative charges in the surfaces of the contacted mats. 

The amount of charge transferred between the two materials is related to the area of 

the materials in contact and their differences in electron affinities [31]. The 

electrostatic induction takes places when the two materials with opposite and 

equivalent triboelectric charges are separated, which result in a dipolar moment and a 

strong potential difference.   

 

The present paper investigates a novel triboelectric nanogenerator prepared by a 

membrane of polyvinylidene fluoride (PVDF) nanofibers and an ultra-thin layer of 

polypropylene (PP). The triboelectric nanogenerator is designed with PVDF due to its 

strong tendency to gain triboelectric charges from almost any other mats [32]. This 

behaviour is attributed to the large amount of fluorine in PVDF that has the highest 

electronegativity among all the elements [33]. As a result, the surfaces of PVDF and 

polypropylene become negative and positive charged after the contact, respectively. 

The design of the TENG was based on nanofibers because it is one of the practical 

ways to increase the effective contact area between the triboelectric materials, which 

is beneficial to increase the generation of triboelectric charges of the TENG [34]. To 

the best of our knowledge, this is the first work to report a triboelectric nanogenerator 

based on the combination of these triboelectric mats. 
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Furthermore, the paper studies the potential applications of the developed TENG 

as self-powered impact sensor. For that purpose, the triboelectric sensor is impacted at 

various energies using a free-falling ball dropped from five different heights. The idea 

is to study if the electric responses of the nanogenerator are affected and how by the 

magnitude of the impacts. The experimental results demonstrate that the electric 

responses of the triboelectric nanogenerator are influenced by the energy of the 

impacts and are directly proportional to it so that higher electric outputs are found with 

increased energy impacts. Furthermore, the voltage and current outputs show a very 

high sensitivity, linearity and reproducibility, which demonstrates the potential of the 

TENG as self-powered impact sensors. In our view, this work presents an innovative 

approach for self-powered impact detection, which has important implications in 

multitude of areas as e.g. vehicle safety, structural health monitoring or urgent medical 

attention of elderlies.  

   

2. Fabrication of the triboelectric nanogenerator 

 

The fabrication process of the triboelectric nanogenerator is schematically shown in 

Fig. 1(a) and can be divided into three main steps: preparation of the top and the bottom 

sections of the TENG and assembly of the nanogenerator. Initially, a 2 mm thin film 

of PVDF nanofibers is deposited on a copper foil via electrospinning to form the 

TENG top section. After that, an ultra-thin film of polypropylene with a thickness of 

25 µm is attached with copper foil using double side copper tape to form the TENG 

bottom section. Lastly, the two prepared sections are placed face to face and sealed 

with polyethylene terephthalate film to form the triboelectric nanogenerator. A digital 

photography of the TENG with a small size of 55 x 55 x 3 mm and the low-weight of 

6.75 g can be seen on Fig. 1(b). It is worthy to note that the small size and weight of 

the device are beneficial for the practical applications of the sensor. 
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 The triboelectric nanogenerator has a multi layered structure with two main 

sections as detailed in Fig. 1. It consists of two sections- a lower and an upper one. In 

the lower section is made of a film of polypropylene is adhered to copper foil to act as 

one of the triboelectric materials. In the upper section, nanofibers of polyvinyl fluoride 

are deposited on copper foil and this serves as the other oppositely charged 

triboelectric material. The roles of PVDF nanofibers and polypropylene film is to act 

as frictional materials while the copper foils serve as electrodes for the nanogenerator 

owing to the low cost and the high electrical conductivity of the copper. 

 

 

 

 

 

Fig. 1. (a) Fabrication process of the triboelectric nanogenerator: (i) Preparation of the 

top section. (ii) Preparation of the bottom section and (iii) structure of the 

nanogenerator. (b) Digital photography of the triboelectric nanogenerator as-fabricated. 

 

From a fabrication point of view, this procedure is simple, low-cost and can be 

easily scaled-up for large scale production, which is desired for the practical 

applications of the device. 

 

3. Preparation and characterization of PVDF nanofibers 

 

This paragraph describes the preparation of the PVDF fibres used for the fabrication 

of the triboelectric nanogenerator, which is used here as an impact sensor. As was 

mentioned above the TENG and the current sensor are prepared using PVDF and PP 

nanofibers. 

(b)                                                                                                                                    (a)                                                                                                                                    

Copper electrodes PVDF nanofibers Polypropylene film 
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The film of PVDF nanofibers is prepared using the technique of electrospinning 

because is a simple and economic way to prepare triboelectric mats with large surface 

area [35]. The preparation of the nanofibers can be summarized as follows: First, the 

polymer solution for electrospinning is prepared by dissolving 2g of PVDF pellets 

(MW=275,000 gmol-1) in 10 ml solvent mixture of N,N- dimethylformamide (DMF) 

and acetone (40/60). Second, the polymer solution is inserted into a plastic syringe to 

be spun in a commercial electrospinning machine (Nanon-01A) using the following 

processing parameters: applied voltage of 15 kV, needle tip-collector distance of 15 

cm, feed rate of 1 ml/h, 21G steel needle and a static collector. As a result, a 2 mm thin 

layer of interconnected PVDF nanofibers is deposited on the surface of a copper 

electrode. A schematic description about the electrospinning process used to prepare 

the nanofibers can be found on Fig. S1. 

 

 

 

 

 

 

 

Fig. 2 Preparation of nanofibers via electrospinning: (a) SEM image of PVDF nanofibers 

and (b) fibre diameter distribution of PVDF fibers. 

The design of the sensor was based on nanofibers because it is one of the 

practical ways to increase the effective contact area between the frictional materials, 

which is beneficial to enhance the generation of triboelectric charges [34]. Fig. 2 (a) 

shows a scanning electron microscopy image of the PVDF nanofibers prepared by 

electrospinning. From the image, it can be clearly appreciated a dense population of 

interconnected fibres of PVDF, which will result in a very large surface area. The 

nanofibers are distributed randomly in the membrane and show a few bead defects, 

200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

F
re

q
u
e
n
c
y
 (

%
)

Fiber Diameter (nm)

   (a) 

20 µm 

(b) 



7 

which can be associated to the nature of the polymer solution and the high voltages 

used during the electrospinning [36].  

 

Fig. 2 (b) displays the fibre diameter distribution of the nanofibers. The 

preparation of the fiber diameter histogram can be summarized as follow: Initially, the 

diameters of 100 nanofibers are measured from the SEM image using the software 

Image J. After, the numbers of fibers which correspond to a certain diameter range 

(e.g. 800-1000 nm) are counted. The histogram reveals that the diameter of the fibers 

is not uniform and varies between 200 and 2000 nm. The wide distribution of 

diameters in the fibers is attributed to the nature of the electrospinning process. From 

the histogram, it can be deducted that the diameter of the fibers varies between 800 

and 1000 nm with a probability of about 18%. As a result, the average fibre diameter 

of the nanostructures is 1087 nm with a standard deviation of 419 nm.  

 

PVDF is a well-known piezoelectric material when there is betha crystalline 

phase and the ferroelectric domains of β-phase are well oriented [37]. To find out if 

the electric response of the PVDF nanofibers is also attributed to the piezoelectric 

effect X-ray diffraction (XRD) spectroscopy were performed on the membranes of 

polyvinyl fluoride fibres to identify the crystalline phase. The XRD pattern is shown 

in Fig. S2. From the XRD pattern, it can be clearly observed three intense peaks at 2θ 

= 18.43°, 20.06°, and 26.75° which are associated to the (0 2 0), (1 1 0) and (0 2 1) 

planes of the alpha crystalline phase. Thus, it can be concluded that the crystalline 

phase of PVDF is the non-piezoelectric alpha phase, and the electric response detected 

from the PVDF nanofibers is not caused by the piezoelectric effect. 

 

4. Operating principle of the triboelectric nanogenerator 

 

Fig. 3 illustrates the working principle of the triboelectric nanogenerator, which is 

based on the contact-separation mode reported by Wang’s group [38- 41]. The electric 

responses of the TENG are generated due to the conjunction between contact 
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electrification and electrostatic induction of two materials with different electron 

affinities [42, 43]. 

 

At the initial state (Fig. 3 (a)), there is no contact and separation between the 

film of PVDF nanofibers and polypropylene, which results in non-electric response. 

When the ball hits the sensor, the TENG configuration changes from the original to 

the contact state as shown in Fig. 3 (b). Since PVDF has a higher electronegative 

behaviour than polypropylene, the electrons are transferred from polypropylene to 

PVDF. Therefore, net negative charges are generated on the PVDF surface and equal 

amount positive ones in the polypropylene film. When the ball rebounds, the device 

changes from the contact to the separation state as described in Fig. 3 (c). In this 

configuration, the opposite triboelectric charges are separated, and a potential drop is 

generated between the two electrodes. As a result, there is transference of electrons 

between the bottom electrode and the upper one through the external circuit. Finally, 

the deformation of the sensor decreases, and the sensor returns to its original state (Fig. 

3 (a)), which causes the voltage output drop back to zero.  

 

 

 

 

 

 

Fig. 3. Operating principle of the triboelectric nanogenerator: (a) The original state of 

the TENG prior to the ball impact. (b) The state of the TENG during the ball impact 

and (c) the state of the TENG after the impact. 
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5. Experimental investigation of the triboelectric 

nanogenerator 

 

The aim of this section is to describe the experiment used to evaluate the response of 

the manufactured sensor to impacts. To carry out this investigation, a drop ball impact 

test is used to investigate the relation between the electric responses of the 

nanogenerator and the impacts of a free-falling ball. The main goal of this experimental 

study is to study if and to what extent the voltage and current outputs of the 

triboelectric nanogenerator are affected by the energy of the impacts.  

 

 

 

 

 

 

 

Fig. 4 Experimental testing of the triboelectric nanogenerator: Schematic description of the 

experimental setup. The inset of the figure shows the electric outputs of the triboelectric 

nanogenerator due to the ball impact. 

 

Fig. 4 shows a schematic representation of the experimental setup. From the 

figure, it can be appreciated that the experiment utilizes a simple setup which consist 

of an impact ball, a plastic tube and a triboelectric nanogenerator connected to an 

apparatus to measure the electric responses. In the experimental test, a 21 g glass ball 

with a diameter of 2 cm is dropped on the top surface of the triboelectric sensor. The 

idea is to drop a glass ball from five different heights ranging from 20 to 100 cm (with 

a drop height interval of 20 cm) by using plastic tubes of different lengths and record 
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the voltage and current responses of the triboelectric nanogenerator as result of the 

impacts by using a Tektronix 2012B commercial oscilloscope and Agilent 34410A 

digit multimeter. The main goal of the experiment is determinate if the amplitude of 

TENG electric signals is affected by the height of the ball impact.   

 

Our experimental method was inspired by [44] and represents a simple and low-

cost procedure to analyse the impact sensitivities of TENGs. The experimental 

procedure can be divided into the following three steps: First, a 2 cm diameter glass 

ball with a weight of 21.22 g is dropped from five different heights of 20, 40, 60, 80 

and 100 cm which correspond to five different impact energies. Second, the plastic 

tube holds on a heavy metallic base which is used as a fall guide for the glass ball to 

have a direct impact on the triboelectric nanogenerator. Finally, the voltage and current 

responses of the triboelectric sensor are measured in order to analyse if the amplitude 

of the sensor electric outputs is affected by the energy of the impact. It is also important 

to mention that the energy of the impacts for the different impact balls is calculated 

using equation (1): 

𝐸 = 𝑚𝑔ℎ               (1) 

where m represents the mass of the glass ball, g is the acceleration due to the gravity 

and h indicates the impact height. For the sake of simplicity, the drag forces caused by 

the air resistance during the ball drop and the side walls of the plastic tube are 

neglected. 

 

Fig. 4 also includes the variations of voltage caused by the impact of a free-

falling ball dropped at 100 cm drop height. From the graphic, it can be clearly seen 

four peaks which are associated to the multiple collisions of the impact ball. The 

largest peak is the first peak, which correspond to the highest impact energy of the ball 

falling on the TENG. The amplitude of the subsequent peaks decreases proportionally 

for the following bounces due the reduction of the impact energies. The figure also 

shows the time interval between the ball bounces, where it can be observed a lower 

time-intervals for the lower impact energies. For the sake of simplicity, the 
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experimental results presented in the results and discussion section only show the first 

peak attributed to the first bounce of the ball. 

 

6. Results and Discussion 

 

This section shows and discusses the experimental results obtained from the drop ball 

impact test. Initially, the effect of the energy of the impacts on the electric outputs of 

the nanogenerator is analysed. After, the repeatability of the voltage and current 

responses of the TENG for five repetitions of the same energy impact is discussed. 

 

6.1 Effect of the impact height on the TENG voltage output  

 

As stated in the previous section, the triboelectric nanogenerator is subjected to various 

energy impacts using a drop ball impact test and the voltage outputs of the TENG are 

measured using a commercial oscilloscope. The aim of the experiment is to analyse if 

the TENG voltage outputs are affected by the energy of the impacts. 

 

Fig. 5 (a) shows the voltage outputs of the triboelectric nanogenerator when the 

ball was dropped from five different heights of 20, 40, 60, 80 and 100 cm respectively. 

The graph shows that when the ball was dropped from greater heights, the amplitude 

of the TENG voltage responses increases. Therefore, it can be clearly seen that the 

peak-to-peak voltage increases from 2.4 to 4.7 as the drop height increased from 20 to 

100 cm. This trend is in good agreement with other works. For example, the authors 

of [45] analysed the effect of controlled height impact balls on the voltage outputs of 

a TENG based on PVDF nanofibers and a mercury droplet. The results reveal that the 

electric responses of the TENG increased from 1.3 to 10.4 as the impact height is raised 

between 10 and 100 cm. Other works as [46] obtained similar results using a 

triboelectric nanogenerator composed of nanofibers of polyvinylidene fluoride and 

polyvinylpyrrolidone. To the best of our knowledge, [45, 46] are the only two works 
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that have investigated the effect of ball impacts in the voltage responses of triboelectric 

nanogenerators. 

 

 

 

 

 

 

Fig. 5 Influence of the impacts on the voltage responses of the new TENG: (a) Voltage 

outputs as a function of the time for the different ball impacts. (b) Voltage amplitudes as a 

function of the impact energy. 

 

Fig. 5 (b) displays the peak-to-peak voltages of the triboelectric nanogenerator 

as a function of the impact energy. The graph includes the average peak-to-peak 

voltage and corresponding standard deviations for five repetitions of each energy 

impact. The results show that the peak-to-peak voltage responses increase gradually 

under higher energy impacts in the measurement range 40-200 mJ. This behaviour can 

be explained by the fact that the voltage outputs of a TENG are strongly affected by 

the contact surface between the frictional mats [47, 48]. Therefore, higher energy 

impacts lead to a more intimate contact between the frictional mats, which results in 

higher electric outputs. From the results, it can also be seen a strong linear correlation 

for the relationship between voltage and energy with a high Pearson coefficient of 

0.997. Furthermore, the sensitivity of the TENG is calculated using the slope of the 

interpolated straight line and a very high sensitivity of 14 V/J is found on the detection 

range 40-200 mJ. 

 

Furthermore, the authors investigated the influence of the mass of the ball on the 

electric responses of the triboelectric nanogenerator. For this study, the device is 

impacted using balls of different materials (plastic, rubber and glass), which are 
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dropped from the same height. Fig. S3 shows the relationship between the mass of the 

ball and the sensor voltage outputs. From the graphic, it can be clearly seen that the 

voltage outputs are strongly affected by the mass of the ball and the voltage outputs 

increase with the increment of the mass of the impactor. This can be explained by the 

higher energy of the impact which increases the deformation of the sensors and results 

in higher electric outputs. 

 

The response time is a very important factor for a sensor as it shows how fast the 

response can be detected after the excitation (the impact in this case) is applied [7, 8, 

23]. The response time of a sensor can be defined as the time required for reaching the 

maximum voltage output which is calculated as the time period of the voltage output 

changing from 10% to 90% of its peak value. Fig. S4 displays the response time of the 

triboelectric sensor for a ball impact from a height of 100 cm. The figure shows that 

the response time of the triboelectric sensor is very fast 0.5 ms, which means that the 

triboelectric sensor takes a very short time to respond to the applied impact. Therefore, 

it can be concluded that the response of the developed sensor to impact is very fast, 

which is critical for the real time detection of impacts. 

 

On the basis of these results, it can be said that the TENG voltage responses are 

influenced by the energy of the impacts and increase proportionally in the range 

between 40 and 200 mJ. Furthermore, the straight lines used to interpolate the voltage 

responses show a very high sensitivity and linearity of 14 V/J and 0.997, respectively. 

These characteristics are the utmost importance as sensors with very high impact 

sensitivity and strong linear response are always preferred.   

 

6.2 Effect of the impact height on the sensor current output 

 

As mentioned in Section 5, a free-falling ball is used to impact the developed TENG 

at different energy impacts and the current signals of the nanogenerator are measured 

using a digital multimeter. The main purpose is to investigate if the current electric 

signals of the TENG are influenced by the energy of the impacts. 
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Fig. 6 (a) shows the current responses of the developed triboelectric 

nanogenerator when the free-falling ball was dropped from various heights at 20, 40, 

60, 80 and 100 cm. For the sake of simplicity, the electrical outputs of the five different 

energy impacts are shown in the same graphic. The results show that the TENG current 

outputs increase significantly when height of the impact is increased. The increase of 

the current output as the drop impact height increases can be explained by the fact that 

the deformation of the TENG increases for higher energy impacts. When the TENG is 

impacted at smaller energies, the deformation of the sensor is smaller, which decreases 

the contact between the frictional mats and the generation of electricity. When the ball 

hits the TENG at higher energies, a stronger deformation is caused, which results in a 

larger contact between the frictional mats and higher current responses. 

 

 

 

 

 

 

 

 

Fig. 6 Effect of the impacts on the current outputs of the fabricated triboelectric nanogenerator: 

(a) Current responses for impacts at various drop heights of 20, 40, 60, 80 and 100 cm. (b) 

Current amplitudes as a function of the impact energy. 

 

The waveform shown in Fig. 6 (a) shows only one positive peak instead of the 

conventional two peaks with opposite directions for each impact. This can be 

explained by the short duration of the impacts (just a few milliseconds) which induces 

overlapping peaks in the electrical measurements. Moreover, the current output signal 

generated by the triboelectric sensor is rectified by the measurement equipment, which 

converts the negative peaks into positive. 
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Fig. 6 (b) shows the current amplitudes of the triboelectric nanogenerator as a 

function of the energy of the impacts. The results given are the average value and 

corresponding standard deviation for five repetitions of the same energy impact. From 

the graphic, it can be appreciated that the current responses are strongly affected by 

energy of the impacts and the amplitude of the current responses increase from 268 to 

441 nA as the energy of the impact changes between 40 and 200 mJ. The results reveal 

that the relation between the energy of the impacts and the TENG current responses is 

linear and has a high Pearson coefficient of 0.983. Furthermore, the sensitivity of the 

triboelectric nanogenerator is calculated using the slope of the straight line and a very 

high impact sensitivity of 901 nA/J is found. 

 

The increase of the voltage and current outputs with the increase of the height of 

the ball using the law of conservation of energy and the theory of contact mode 

TENGs. According to the law of conservation of energy, the height of the impact is 

directly proportional to the energy of the impact. Therefore, when the height of the 

impacts is increased, the energy of the impacts is higher. As suggested by the theory 

of contact mode TENGs, the voltage is dependent of the density of triboelectric 

charges (θ), the distance between the frictional layers (d) and the vacuum permittivity 

(εo) [49].  

𝑉 =
𝜃𝑑

𝜀𝑜
          (2) 

Therefore, when the nanogenerator is subjected to higher energy impacts, the density 

of triboelectric charges increases due to the higher friction between triboelectric 

materials and stronger deformation of the frictional materials, which results in higher 

voltage outputs. Additionally, the current is proportionally dependent of the 

capacitance (C) and the voltage (V) of the TENG [49].  

𝐼 = 𝐶
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝐶

𝜕𝑡
          (3) 

Therefore, when higher energy impacts are subjected to the nanogenerator, the voltage 

increase considerably for the reasons stated above (more intimate contact between the 

triboelectric layers), which results in higher current outputs. 
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In general, it can be concluded that the current outputs of the nanogenerator are 

strongly influenced by the energy of the impacts and increase linearly under stronger 

energy impacts. Furthermore, the current-energy relationship shows a very high 

sensitivity of 901 nA/J for the measurement range between 40 and 200 mJ. As a result, 

these results indicate the good performance of triboelectric nanogenerators for 

detection and evaluation small energy impacts. 

 

6.3 Repeatability of the TENG voltage/current outputs 

 

This paragraph of the paper investigates the repeatability of the TENG electric outputs 

for five repetitions of the same energy impact. The idea is to verify if the triboelectric 

nanogenerator produces similar electrical responses when the tests are repeated under 

the same conditions. For this study, the drop ball impact test explained in Section 5 is 

used to verify the stability of the TENG electric responses for five repetitions of the 

same impact. 

 

Table 1 Statics of the electric outputs for five repetitions of the same impact 

 

Table 1 summarizes the average voltage and current outputs for five repetitions 

of the same impact. From the results, it can be clearly seen that the electric responses 

are influenced for the energy of the impacts and increase gradually for the impacts at 

higher energies. Furthermore, the table also includes the standard deviations and 

Energy 

(mJ) 

Voltage 

(V) 

S.D. 

Voltage 

(V) 

C.V. 

Voltage 

(%) 

Mean 

Current 

(nA) 

S.D. 

Current 

(nA) 

C.V. 

Current 

(%) 

40 2.56 0.20 3.70 268.4 9.9 7.97 

81 3.07 0.20 2.62 305.6 8.0 6.54 

121 3.62 0.18 3.50 356.8 12.4 4.97 

162 4.32 0.17 2.40 371.4 28.3 4.00 

202 4.72 0.22 6.41 441.4 6.4 4.64 



17 

coefficient of variations for the five impact repetitions. The standard deviations for the 

voltage outputs vary between 0.17 V and 0.20 V, while the current standard deviations 

are increased from 6.4 nA to 28.3 nA. The coefficients of variations are small and vary 

in the range 2.4 - 7.9 % for the voltage and current outputs. In our view, the variations 

of the voltage and current responses could be attributed to the drag forces between the 

ball and the side walls of the plastic tube, which vary randomly for each experiment. 

 

In conclusion, it can be said that the electric responses of the nanogenerator 

shows a good repeatability with minimum changes in the voltage and current outputs 

after repeated applications of the same impact. Therefore, it can be concluded that the 

electric responses of the developed triboelectric nanogenerator are stable and can be 

potentially used for the quantification of small energy impacts. 

 

7. Conclusions 

 

In summary, this paper presents a novel triboelectric nanogenerator composed of a thin 

film polypropylene and a membrane of PVDF nanofibers and investigates its 

application as self-powered sensor for detection of small energy impacts in real time. 

 

The films of electrospun nanofibers used in the nanogenerator are prepared via 

electrospinning because it is one of the practical ways to increase the performance of 

the TENG. This fabrication is done for purposes of simplicity and flexibility of the 

preparation of the triboelectric nanogenerator, which does not require expensive mats 

or high cost technologies. Furthermore, this procedure can be easily upgraded for large 

scale mass production, with the advantages of low-cost production. 

 

Furthermore, the paper investigates the practical applications of the TENG as 

self-powered sensor for detection of small energy impacts. For this purpose, a simple 

experimental test using a free-falling ball is used to analyse the effect of the energy of 

the impacts on the electric responses of the triboelectric nanogenerator. The 



18 

experimental results demonstrate that the voltage and current outputs increase 

proportionally under higher energy impacts. Furthermore, a strong linear relationship 

between the electric outputs and the energy of impacts is detected. Additionally, it 

should be noted the rather high impact sensitivity of 14 V/J and 901 nA/J for the 

voltage and current outputs, which is persistent in the entire measurement range.   

 

Eventually, the repeatability of the electric responses of the triboelectric 

nanogenerator for five repetitions of the same energy impact is considered. As per the 

results, it should be pointed out that the voltage and current outputs of the developed 

triboelectric nanogenerator shows very small changes (the standard deviations are 

within the range between 2% and 7%) for repeated applications of the same impact. 

Therefore, it can be concluded that the electric responses of the triboelectric 

nanogenerator demonstrate very good repeatability, which is essential for the practical 

applications of the TENG as self-powered impact sensor.   

 

The results of this experimental study demonstrate and prove that the developed 

nanogenerator can be used for detection and assessment of small energy impacts. It 

has the considerable advantages of self-powered operation as compared to most 

conventional sensors. It should be also noted that the developed sensor is maintenance-

free and has the benefit of a simple fabrication method. These results contribute as an 

excellent initial step toward the development of self-powered impact sensors for 

multiple applications including vehicle safety, structural health monitoring and urgent 

medical attention of elderlies. 
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