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ABSTRACT 

The degradation of tensile and creep properties is inevitable during high temperature service operation. 

Hence this work aims to evaluate the effect of prior creep-fatigue interaction damages on remnant tensile and 

creep properties of 9%Cr steel. Prior creep-fatigue tests interrupted at different lifetime fractions and 

different tensile hold times are performed at 650 °C. Afterwards, subsequent tensile and creep tests are 

conducted at the same temperature. Results reveal that high lifetime fraction of prior creep-fatigue loading 

leads to obvious reduction of remnant tensile strength and creep resistance. However, the increase in tensile 

hold time hardly alters the remnant properties. Microstructure and fracture surface observations indicate that 

the deterioration of remnant tensile strength is mainly ascribed to the decline of dislocation density occurred 

during prior creep-fatigue process, whereas the growth of martensite lath plays the dominated role in the 

reduction of remnant creep resistance. Moreover, surface crack also accelerates the decline of creep 

resistance at high lifetime fraction. To quantify the prior creep-fatigue interaction damage, a fatigue damage 
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indicator is proposed. Determined relationships between remnant tensile, creep properties and defined 

fatigue damage are obtained. 

Key words: Prior creep-fatigue loading; Remnant tensile and creep properties; Microstructure; Damage 

indicator. 

1. Introduction 

At high temperature, the deterioration of material properties is inevitable, especially when components 

are subjected to complicated loadings simultaneously [1]. Among these loadings, low cycle fatigue (LCF) 

and creep-fatigue interaction (C-F) are the most common damage modes [2-5], which are frequently 

encountered by the components serviced in modern fossil fuel and nuclear power plants due to frequent 

start-ups, shut-downs and other possible fluctuations [6, 7]. Regarding the material properties, tensile and 

creep properties are the primary characters to be considered during the high temperature component design. 

Therefore, it is significant to evaluate the effect of prior fatigue loading on remnant tensile and creep 

properties to ensure the safety of high temperature components. Previous works have revealed that the 

material tensile and creep properties could be altered by prior LCF loading [8-26]. However, the studies 

about the influence of prior C-F loading on subsequent tensile and creep properties are still limited. 

Rubio et al. [8-11] investigated the effect of prior LCF loading on subsequent tensile behavior of 

6061-T6 aluminum alloy and AISI 4140T steel and found that the tensile deformation of 6061-T6 aluminum 

alloy kept relatively stable despite the prior LCF was introduced, while the prior LCF significantly reduced 

the tensile strength of AISI 4140T steel. Mocko et al. [12-14] found that the yield stress and ultimate stress 

of DP500 steel could be increased by stress-controlled prior LCF loading and he also proposed a constitutive 

model to predict the uniaxial tensile behavior after LCF loading [15, 16]. Shankar et al. [17-19] further 

pointed out that both LCF and C-F loading degraded the tensile strength of modified 9Cr-1Mo steel and the 
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increase of temperature led to additional decline of tensile properties. Regarding the remnant creep properties 

after prior fatigue loading, the prior LCF generally accelerates the creep rate and reduces the creep life of 

Cr-Mo steel [20-24]. It is also shown that the damage level of prior LCF is temperature [25], cycle number 

[23] and strain amplitude [26] dependent. However, to the best of the authors’ knowledge, the influence of 

various prior C-F loadings on subsequent tensile and creep properties has not been elucidated yet. In our 

previous work [27], it is concluded that increasing tensile hold time from 0 s to 600 s at 600 °C results in 

70% reduction of fatigue life, which suggests that the remnant material properties may be related to the 

tensile hold time. Consequently, the effect of different hold times prior C-F loadings on subsequent tensile 

and creep properties should be clarified. 

Among many materials, 9%Cr ferritic steel has been widely used in the structures of the fossil fuel and 

nuclear power plants due to the high fatigue and creep strength, good weld ability and high thermal 

conductivity at elevated temperature [28, 29]. In this study, strain controlled C-F tests at various tensile hold 

times are conducted and interrupted at the same lifetime fraction. Afterwards, subsequent tensile and creep 

tests are performed on the same specimens to investigate the remnant properties. Finally, fracture surface and 

microstructure observations are carried out to characterize the damage mechanisms of prior C-F loading. To 

quantify the prior C-F damage, a fatigue damage indicator is proposed and quantitative relationships between 

the defined fatigue damage and the remnant tensile and creep properties are determined. 

2. Experimental procedures 

2.1. Material 

This study focuses on a circumferentially P92 steel pipe. A pipe with an outer diameter of 105 mm and 

a wall thickness of 24 mm was supplied in the as-received state of normalized and tempered condition. The 

chemical compositions of the investigated P92 steel pipe are listed in wt%: 0.106 C; 0.361 Mn; 0.235 Si; 
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0.017 P; 0.0081S; 9.18 Cr; 0.368 Mo; 0.182 V; 0.061 N; 0.108 Ni; 0.0059 Al; 0.078 Nb; 1.85 W; 0.0022 B; 

Bal. Fe. Fig. 1 shows the optical (a) and TEM (b) micrographs of the as-received state. It can be observed 

that the as-received P92 steel consists of prior austenite grains, blocks, packets, precipitates and martensite 

laths. The detailed microstructure is schematically shown in Fig. 2 and Leen et al. [30] have pointed out that 

these microstructures were the main contributors to the excellent fatigue and creep performances of 9%Cr 

steel. Cylindrical specimens with 25mm gauge length and 8mm gauge diameter were machined from the 

pipe along the axial direction, as shown in Fig. 3. Specimens used for the C-F test and the following tensile 

and creep tests have all the same geometrical dimensions. 

2.2. Prior C-F and subsequent tensile and creep tests 

Test procedure can be divided into three steps: C-F lifetime determination test, interrupted prior C-F 

test and subsequent tensile and creep tests. Schematic representation of the C-F lifetime determination test 

and the interrupted prior C-F, subsequent tensile and creep tests are shown in Figs. 4 and 5, respectively. 

(1) Determination of C-F lifetime: to acquire the prior C-F specimens with various tensile hold times and 

various lifetime fractions, the C-F lifetime, Nf, at different tensile hold times (ranging from 0 s to 600 s) 

should be determined primarily. Reference specimens were C-F tested to failure in total-strain control 

mode with a constant strain rate of 1×10
-3

 s
-1

. These C-F tests were conducted in accordance with the 

ASTM E2714 standard [31]. To keep consistent with our previous works [26, 34], the strain amplitude of 

0.4% was adopted. Deformation in the specimen gauge length was measured by a high temperature 

extensometer produced by Epsilon. Regarding the dispersion of C-F lifetime, at least three tests were 

carried out at each hold time. However, the shortest C-F lifetime was adopted for the subsequent tests to 

prevent the possible premature fracture. The method to determine the C-F lifetime is presented in Fig. 4 

(inserted figure), which has been elaborately discussed in our previous work [35]. 



 

 

5 

(2) Interrupted prior C-F test: according to the C-F lifetime determined in the first step, new specimens were 

then C-F tested and interrupted at different lifetime fractions, i.e. 10%, 20%, 50% and 70%, as shown in 

Fig. 5 (blue line). 

(3) Subsequent tensile and creep tests: after the prior C-F test, the prior C-F exposure specimens were tensile 

and creep tested to fracture, as shown in Fig. 5 (red line). Tensile tests were conducted under 

displacement control of 0.025 mm/s according to ASTM E8 standard [32]. Creep tests were carried out 

at 130 MPa according to ASTM E139 standard [33]. All of the tests were performed in air at 650 °C and 

the temperature was controlled within ±2 °C. Detailed test conditions and results are listed in Table 1. 

2.3. Microstructure observation 

After the subsequent tensile and creep fracture, specimen surface crack and fractographs were observed 

by a Zeiss Axio Imager A1m optical microscopy (OM) and a JSM-6360LV scanning electron microscopy 

(SEM), respectively. A JEOL JEM-2010 transmission electron microscope (TEM) was utilized for the 

microstructure characterization. TEM samples for the microstructure observation were extracted from 

transverse section of the tested specimens. Martensite lath width was measured from the TEM micrographs 

with the linear intercept method by counting all clearly visible lath boundaries. The martensite lath width 

presented in the study was averaged from at least twenty measured results. 

3. Experimental results 

3.1. Peak tensile stress during prior C-F 

It has been revealed that 9%Cr steel exhibits continuous cyclic softening as C-F progresses [36, 37]. In 

regard to the studied P92 steel, peak tensile stress recorded during C-F process is plotted in Figs. 4 and 6. 

Comparison of peak tensile stress between different hold times illustrates that long hold time results in low 
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peak tensile stress and short C-F lifetime, as shown in Fig. 4. It is also noteworthy that all the peak tensile 

stresses of prior C-F tests almost overlap with the total lifetime C-F tests, as shown in Fig. 6, which 

manifests the good repeatability of these interrupted C-F tests. Moreover, the peak tensile stress of C-F test 

displays three softening stages: initial rapid softening stage, subsequent linear stable stage and final 

accelerated stage. The microstructure evolutions have been identified as the main reason for the observed 

cyclic softening behavior [38, 39], which is illustrated in the following paragraph. 

3.2. Microstructure evolution during prior C-F 

Figs. 7 and 8 show the TEM micrographs at different lifetime fractions of 180 s hold time and TEM 

micrographs at 20% lifetime fraction of different hold times, respectively. An overall observation shows that 

recovery of the martensite lath is obvious due to the growth of subgrains. Meanwhile, the dislocation 

networks [40] appear inside the martensite laths, indicating the significant depletion of dislocation density 

[41]. These microstructure evolutions are recognized to be related to the cyclic softening as presented in Figs. 

4 and 6 [42]. Detailed observation on Fig. 7 further shows that the increasing in lifetime fraction drives 

martensite lath transforms to lower energy structure, such as cells or equiaxed structure. As the lifetime 

fraction reaches 70% (Figs. 7(d)), the cells or equiaxed structure is dominant. Apart from the observed 

growth of martensite lath and the decrease of dislocation density, precipitates coarsening may also take place 

during long-term high temperature experiment. Nevertheless, no appreciable coarsening of precipitates 

occurs in the present study, because the precipitate coarsening is strongly time-dependent and the longest 

prior C-F test period (32 h) in the present work is relatively short. This is also in agreement with the results 

obtained by Gopinath et al. [43] and Xuan et al. [37]. Further comparison of microstructures between 

different hold times of 20% lifetime fraction (Figs. 7(b) and 8) gives an indication that martensite lath and 
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dislocation density barely change with increasing hold time. It manifests that within 600 s, length of hold 

time has little effect on the microstructure evolution. 

3.3. Remnant tensile properties 

Figs. 9(a) and (b) respectively depict the tensile curves after various lifetime fractions of 180 s hold 

time and tensile curves after 20% lifetime fraction of different hold times. Note that the tensile curves after 

various lifetime fractions of 180 s hold time show similar shape, except the tensile curve after 70% lifetime 

fraction. In addition, the increase in lifetime fraction leads to serious degraded behavior of tensile properties. 

By contrast, tensile curves after various hold times almost overlap, which indicates the period of hold time 

has little effect on subsequent tensile properties. The relationships between tensile properties, lifetime 

fraction and hold time are shown in Fig. 10 and listed in Table 1. Figs. 10(a) and (b) depict the varied 

behaviors of 0.2% offset yield stress and ultimate tensile stress with respect to lifetime fraction and hold time, 

respectively. It is shown that existence of prior C-F exposure decreases the yield stress and the ultimate 

tensile stress for all prior C-F loading conditions. The trend of the decreased tensile strength with respect to 

lifetime fraction (Figs. 10(a)) is similar to the first stage and second stage of the cyclic softening curve 

shown in Figs. 4 and 6. As lifetime fraction increases, the tensile strength decreases continuously and rapid 

decreasing behavior can be observed before 20% lifetime fraction. Afterwards, the yield stress and ultimate 

tensile stress decrease linearly with increasing lifetime fraction. Nevertheless, the increase in hold time 

barely introduces additional degradation on the tensile strength, as shown in Fig. 10(b). The yield stress and 

the ultimate tensile stress almost keep constant at 240 MPa and 270 MPa, respectively, regardless of the 

variation of hold time. In regard to the elongation and uniform elongation (Figs. 10(c) and (d)), their 

variations show different behaviors with respect to lifetime fraction and hold time. Degeneration of 

elongation happens with increasing lifetime fraction. By contrast, the increase of hold time slightly enhances 
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the elongation. Furthermore, it is interesting to see that the increase in the lifetime fraction and the hold time 

leads to the increased uniform elongation, as shown in blue line of Figs. 10(c) and (d). This is in agreement 

with the result of ultrafine grain or nanostructured materials [44, 45]. Since the uniform elongation and 

tensile strength are dominantly affected by the microstructure [46] while the elongation is not only relative to 

the microstructure but also the conditions of specimen surface [19], the combined effect of microstructure 

and specimen surface modification after prior C-F loading should be therefore deserved more attention. 

3.4. Remnant creep properties 

The effects of lifetime fraction and hold time of prior C-F loading on subsequent creep curves are 

shown in Fig. 11. An overview of these creep curves reveals that the prior C-F loading doesn’t change the 

creep deformation shape. The creep curves still consist of three stages: primary stage, secondary stable stage 

and tertiary accelerated stage. However, significant degradation of creep resistance due to prior C-F loading 

was observed on both various lifetime fractions (Fig. 11(a)) and various hold times (Fig. 11(b)). The creep 

life and creep rupture strain are different at various lifetime fractions, as shown in Fig. 11(a). Whereas, the 

creep curves at various hold times do not present much difference, as shown in Fig. 11(b). Yet the creep 

resistances at various hold times are still lower than that of the as-received condition, which is also consistent 

with the observation of tensile curves shown in Fig. 9(b). Quantitative descriptions of the creep properties 

are depicted in Figs. 12 and 13 and listed in Table 1. Figs. 12(a) and (b) show the varied behaviors of creep 

life and reduction of creep life with respect to lifetime fraction and hold time, respectively. It is evident that 

creep life decreases a lot after prior C-F loading in comparison with the as-received state. The decreased 

behavior of creep life at different lifetime fractions shows three distinct stages: initial slow stage, subsequent 

accelerated stage and final stable stage. The sharp reduction in creep life appears between 20% and 50% 

lifetime fraction. This is different from the tensile properties shown in Fig. 10(a). Further observation on Fig. 
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12(a) manifests that the creep life tends to be saturated as the lifetime fraction continuously increases. This 

phenomenon is similar to the prior LCF effect as discussed in our previous work [26]. Regarding the effect 

of hold time period, as shown in Fig. 12(b), the creep life and the reduction of creep life still keep almost 

unchanged, which are about 875 h and 23.5%, respectively. To further illuminate the effect of prior C-F 

loading on subsequent creep strength, creep rate curves at different lifetime fractions and different hold times 

are compared, as shown in Fig. 13. An overview of these curves evidences that there is an obvious difference 

between secondary and tertiary creep stages. The prior C-F loading accelerates the creep rate of secondary 

and tertiary creep stages. However, prior C-F loading has no significant impact on creep rate in the first 

creep stage. In addition, the creep rate increases with increasing lifetime fraction, as shown in Figs. 13(a) and 

(c). The variations of creep rate and the minimum creep rate with respect to hold time (Figs. 13(b) and (d)) 

still verify that increasing in hold time hardly introduces additional damage on subsequent creep properties.  

3.5. Fractograph observation 

It has been reported that high temperature fatigue loading not only induces microstructure evolution but 

also alters the surface features [18, 19]. In our previous studies, surface alternation due to prior LCF has also 

been discussed, in which the surface crack did not appear [26, 47]. However, since the C-F damage on 

surface modification is generally higher than that of the LCF loading [27, 48], whether the surface crack is 

produced or not during prior C-F process is still unclear. Therefore, the cross section micrographs near 

fracture location of the tensile failed specimens are investigated, as shown in Fig. 14. Evident surface cracks 

are noticed at 50% and 70% lifetime fractions due to the serious slip band and surface oxidation at high 

lifetime fraction [19]. However, comparison between Figs. 14(d)-(f) shows that hold time period does not 

obviously affect the surface crack formation, which demonstrates that the effect of the increase in lifetime 

fraction is larger than that of hold time. These phenomena can also be noticed on creep failed specimens 
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presented in Fig. 15. Comparison of surfaces between tensile failed specimens and creep failed specimens 

indicates that the oxidation of creep failed specimens is severer due to the long-term duration of creep 

process. It is also noteworthy that the surface cracks after subsequent creep loading are more visible, as 

shown in Figs. 15(b) and (c). More interesting thing is that a lot of creep voids distribute near the surface 

crack tips. It may be deduced that surface crack accelerates the formation and coalescence of micro voids 

during the subsequent creep process. Consequently, the effect of surface crack on the tensile and creep 

properties should not be neglected and the surface cracks contribute to the variation of tensile elongation and 

the rapid reduction of creep properties. 

To demonstrate the effect of surface crack, Fig. 16 and Fig. 17 display the fractographs of the tensile 

failed and creep failed specimens, respectively. The presence of dimples indicates typical ductile fracture 

[49]. Comparison of fractographs between various hold times (Figs. 16-17(d), (e) and (f)) shows that no 

obvious change occurs on the fractured surface, dimple size keeps similar. However, detailed observation 

seems to present a slight oxidation of the fracture surface, especially increasing in lifetime fraction and hold 

time leads to the additional oxidation. Moreover, it can be seen that after 50% and 70% lifetime fractions of 

180 s hold time (Figs. 16(b) and (c)), the tensile fracture surface shows a mixed fracture character (ductile 

mode and shear mode). Generally, the shear mode and ductile mode should not occur simultaneously in the 

same zone during uniaxial tensile test. Nevertheless, the surface crack shown in Fig. 14 may lead to 

multiaxial stress state which contributes to the mixed fracture mode. Furthermore, the tensile results shown 

in Fig. 10(a) suggests that the surface cracks are not big enough to obviously affect the yield stress and 

ultimate tensile stress, since the yield stress and ultimate tensile stress are measured from the uniform 

deformation of tensile process, in which the effect of surface crack can be neglected. Whereas, the elongation 

mainly determined by the necking process is dramatically decreased by the surface crack. Consequently, the 
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effect of surface crack on yield stress and ultimate tensile stress can be neglected, and the elongation is 

related to the surface crack can be concluded. Regarding the creep fracture surfaces shown in Fig. 17, in 

comparison with the tensile fracture surface, the oxidation of creep fracture surface is more evident. It is in 

agreement with the observation shown in Fig. 15. However, even after the 70% lifetime fraction of 180 s 

hold time, the creep crack initiation mode does not change. Furthermore, an overview of fracture surface in 

Figs. 17(b) and (c) presents a brittle fracture mode near the specimen surface, which also verifies the 

influence of surface crack on the creep deformation. 

4. Discussion 

4.1. Relationship between prior C-F damage and remnant properties 

According to the LCF damage definition in our previous work [34], its suitability for quantifying C-F 

damage is evaluated here. The defined fatigue damage indicator Df is expressed as  

0

f 0
 = 

n

in in

f

in in

D
 
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


                                   (1) 

where Df is the defined fatigue damage, 
0

in , 
f

in  and 
n

in  
are the initial inelastic strain range at the first 

cycle, the inelastic strain range at the fracture cycle and the studied cycle. Figs. 18(a) and (b) respectively 

depict the variation of inelastic strain range and defined fatigue damage during C-F process at different hold 

times. It is shown that the inelastic strain range and the defined fatigue damage present similar behavior at 

different hold times. Both the inelastic strain range and the defined fatigue damage evolutions consist of two 

obvious stages: initial rapid increasing stage followed by a relatively stable increasing stage. Obtained 

damages of prior C-F tests are listed in Table 1. The relations between yield stress, ultimate tensile stress and 

creep life with the defined prior C-F damage are shown in Fig. 19. It shows that both the yield stress and 

ultimate tensile stress display a linear relationship with the defined prior C-F damage irrespective of the 
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lifetime fraction and hold time, as shown in Figs. 19(a) and (b). The relationship between yield stress and the 

defined prior C-F damage can be obtained by the least-squares linear regression and given as 

σy=-102.7Df+320                                   (2) 

where σy, is the yield stress with unit of MPa. Similarly, the relationship between ultimate tensile stress and 

defined prior C-F damage can also be obtained by the least-squares linear regression and given as 

σUTS=-96.7Df+338                                  (3) 

where σUTS is the ultimate tensile stress with unit of MPa. It is interesting to find that the Eqs. (2) and (3) are 

the same with previous LCF study [34], which verifies that our proposed fatigue damage indicator can 

account for various fatigue loadings. Additionally, Fig. 19(c) presents the evolution of creep life with respect 

to the defined prior C-F damage. It shows that the creep life displays two linear stages with the defined prior 

C-F damage and it is different from the evolution of tensile strength shown in Figs. 19(a) and (b). Detailed 

observation on the evolution of creep life indicates that the reduction of creep life in the first stage is 

relatively slow, whereas the reduction of creep life in the second stage is rapid. This phenomenon is 

consistent with the experimental results shown in Figs. 11 and 12. The combined effect of microstructure 

evolution (Figs. 7 and 8) and surface crack (Fig. 15) occurred during prior C-F process could explain the 

phenomenon, which will be specifically discussed in the next section. Moreover, the relationship between 

creep life and defined prior C-F damage can be expressed as 

tc1=-347Df +1167 ( fD <0.8)                               (4) 

tc2=-4443Df +4457 ( fD >0.8)                              (5) 

where creep life tc1 and tc2 have unit of h. 

4.2. Damage mechanisms of prior C-F loading 
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It is achieved above that the relationships between the defined prior C-F damage and remnant tensile 

and creep properties show different behaviors. Therefore, it is necessary to clarify the reason for this 

difference from point of view of the microstructure damage. On the one hand, it is documented that the C-F 

properties of 9%Cr steel are mainly determined by its martensitic microstructures: grain boundaries, 

dislocation substructures and precipitates [30], as shown in Fig. 2. However, these complex microstructures 

are altered during cyclic deformation. The as-received fine martensite laths and subgrains (Fig. 1) show a 

vanish behavior due to the disappearance of (sub)boundaries during the C-F progress, especially the low 

angle boundaries (LABs), as shown in Figs. 7 and 8. Simultaneously, the elimination of dislocation in these 

LABs takes place, which is manifested by the appearance of the dislocation network [41] shown in Figs. 7 

and 8. In addition, coarsening of precipitates may also happen at long-term high temperature experiment, 

however, this is not the case for the current study because the longest time of prior C-F exposure is about 32 

h, which is too short. On the other hand, considering that the high tensile and creep strengths of 9%Cr steel 

are also dependent on the fine martensitic structures [50-52], the degradation of subsequent mechanical 

properties are therefore reasonable attributed to the reduction of effective structures ((sub)boundaries and 

dislocation density) during prior C-F loading. Additionally, the effect of surface crack (Figs. 14 and15) due 

to prior C-F loading should not be excluded. The tensile strength has been revealed to be inversely 

proportional to the width of martensite lath, which is well known as Hall-Petch strengthening effect [53-55]. 

The measured width of martensite lath at different lifetime fractions is shown in Figs. 20(a). It can be seen 

that increasing in lifetime fraction induces the coarsening of martensite lath width and the variation of 

martensite lath width nearly presents a linear behavior, which is quite different from the tensile strength 

evolution (Figs. 9 and 10). Therefore, the recovery of martensite lath is not the predominant damage 

mechanism for the degeneration of subsequent tensile properties, and then the effect of dislocation density 
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should be considered. Unfortunately, due to the limited access to measuring the dislocation density during 

prior C-F process, reported data from literatures [30, 52, 56, 57-61] are used here. The evolution of 

dislocation density with respect to the lifetime fraction of 1800 s hold time is shown in Fig. 20 (c). As it can 

be seen, the dislocation density is high in the as-received condition, which contributes to the initial high 

tensile strength. During C-F process, the dislocation density decreases and shows two different stages: a 

rapid decline stage followed by a stable stage. This evolution behavior is consistent with the initial stage of 

cyclic softening (Figs. 4 and 6) and the degradation trend of yield stress and ultimate tensile stress (Fig. 

10(a)). It is therefore reasonable to deduce that the consumption of dislocation density dominates the 

degradation of subsequent yield stress and ultimate tensile stress. In addition, the reduced dislocation density 

can also explain the higher uniform elongation presented in Fig. 10(c). Owing to the low dislocation density 

after prior C-F, additional deformation may be required to trigger the dislocation movement and produce 

new dislocations to reach the ultimate tensile strength during subsequent tensile deformation [46]. 

Accordingly, a higher uniform elongation is evidenced.  

In regard to the creep properties, the creep life decreases slowly before 20% lifetime fraction, as shown 

in Figs. 11-13. During this period, no obvious surface crack is detected (Fig. 15(a)), the width of martensite 

lath grows tardily (Fig. 20(a)) while the dislocation density decreases rapidly (Fig. 20(c)). Normally, rapid 

reduction of dislocation density should lead to evident degradation of deformation resistance [62, 63]. 

However, according to Figs. 11-13, the creep strength is slightly affected by the reduction of dislocation 

density, which demonstrates that the creep strength is sensitive to the width of martensite lath rather than the 

dislocation density. Thus, the slow growth of martensite lath mainly contributes to the degradation of 

subsequent creep properties in this duration. From 20% to 50% lifetime fraction, the dislocation density 

hardly alters while obvious growth of martensite lath occurs (Fig. 20). The coarsening of meartensite lath 
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shows a linear tendency, meanwhile, the surface crack starts to form because of the formation of slip bands 

and surface oxidation. Therefore, the martensite lath combined with the limited effect of small surface crack 

dominate the degradation of subsequent creep properties in this duration. As the lifetime fraction increases, 

apart from the recovery of martensite lath (Fig. 20(a)), the distinctive propagation of surface crack occurs, as 

presented in Figs. 15(b) and (c). The damage mechanism of prior C-F starts to transform to the combined 

effect of microstructure evolution and obvious surface crack. For better clarification of the associated 

features, the local magnifications of crack tips in Figs. 15(b) and (c) are shown in Figs. 21(a) and (b), 

respectively. Numerous intergranular creep voids (identified by red arrows) are evidenced near the tips of 

fatigue cracks (identified by yellow arrows). Simultaneous appearance of both fatigue surface crack and 

creep voids near the surface crack tips suggests that fatigue surface crack assists the initiation of creep voids 

and the growth of creep crack during the following long-term creep process. During creep process, the 

microstructure modification in prior C-F process facilitate creep voids initiation, especially near the surface 

crack tips due to the large local plastic deformation. Thereby, creep voids tend to initiate both in the 

specimen and near the surface crack tips simultaneously. Afterwards, these creep voids present a tendency to 

link together in subsequent creep exposure and the creep voids near surface crack tips unavoidably connect 

with the fatigue cracks (identified by white arrows in Fig. 21(b), named fatigue-creep crack), which 

eventually accelerates the creep damage (Figs. 11-13) and contributes to the mixed fracture model shown in 

Fig. 17(b) and (c). Consequently, creep life was reduced more evidently due to the combined effect of 

microstructure and obvious surface crack, and two linear variation stages of creep life were caused as shown 

in Fig. 19(c). The detailed process of these mechanisms is schematically depicted in Fig. 22.  

Regarding the effect of hold time, the microstructures at 20% lifetime fraction of different hold times 

do not present much difference (Figs. 20(b) and (d)), and no surface crack was induced even hold time 
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increases to 600 s. As a consequence, the influence of various hold times prior C-F loadings on subsequent 

tensile and creep properties remains similar, as shown in Figs. 9-13. However, further increase in hold time 

of C-F loading may induce severer surface oxidation and precipitate coarsening [64], which will play an 

important role in cyclic softening and remnant properties. Therefore, prolonged prior C-F tests should be 

further conducted to investigate the effect of surface oxidation and precipitate in the future.  

5. Conclusions 

In the present study, the influence of prior C-F damage on remnant tensile and creep properties of 9%Cr 

steel was evaluated. Prior C-F loadings at various hold times and various lifetime fractions were introduced 

to clarify the damage mechanisms. Through this work following conclusions can be drawn: 

(1) Remnant tensile and creep properties are degraded by prior C-F loading. The increase in lifetime 

fraction induces more damage than the increase in hold time. The degradation of subsequent tensile 

yield stress and ultimate tensile stress presents two stages with respect to lifetime fraction, while 

remnant creep life displays three stages. Prior C-F loading leads subsequent creep properties saturated 

after 50% lifetime fraction. 

(2) Reduction of dislocation density during prior C-F dominates the degradation of subsequent tensile yield 

stress and ultimate tensile stress, whereas the growth of martensite lath plays the primary role in the 

reduction of creep resistance. Furthermore, surface crack formed in prior C-F also accelerates the 

decline of creep strength at high lifetime fraction. The increase in hold times hardly alters the 

microstructure and the remnant properties. 

(3) The defined fatigue damage indicator can give a good description for C-F damage. Both yield stress and 

ultimate tensile stress vary linearly with the defined fatigue damage, in spite of the lifetime fraction and 
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hold time. However, due to the additional effect of surface crack, the evolution of creep life shows two 

linear stages behavior with respect to the defined fatigue damage. 
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Table 1 Prior C-F and subsequent tensile and creep tests data at 650 °C 

Test 

No. 

Hold 

time 

(s) 

Lifetime 

fraction 

(%) 

Defined 

damage  

Yield 

stress 

(MPa) 

Ultimate 

tensile 

stress 

(MPa) 

Elongation 

(%) 

Uniform 

Elongation 

(%) 

Creep 

life 

(h) 

Minimum 

creep rate 

(h
-1

) 

1 As-received state 318.5 337.8 35.9 1.792 1144 1.326×10-5 

2 0 20 0.73 252.0 272.0 35.0 1.952 864 2.230×10-5 

3 30 20 0.73 245.5 267.4 36.2 2.648 833 2.349×10-5 

4 180 10 0.61 248.5 272.6 36.1 2.443 1082 2.178×10-5 

5 180 20 0.78 235.5 260.7 36.7 2.694 921 2.797×10-5 

6 180 50 0.93 214.5 248.7 34.9 2.917 129 2.647×10-4 

7 180 70 0.99 199.0 232.8 25.1 3.279 185 2.284×10-4 

8 600 20 0.72 234.0 267.5 40.1 2.881 892 2.130×10-5 
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Fig. 1. (a) Optical and (b) TEM micrographs of the as-received P92 steel 

 

 

Fig. 2. Schematic microstructure and key strengthening mechanisms in 9%Cr steel [30] 

 

 

Fig. 3. Specimen geometry for C-F followed by tensile and creep tests (unit: mm) 
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Fig. 4. Cyclic softening curves of different hold times C-F tests and determination of C-F lifetime 
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Fig. 5. Schematic representation of interrupted prior C-F test and subsequent tensile and creep tests 
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Fig. 6. Evolution of peak tensile stress during prior C-F at different lifetime fractions of different hold times: (a) 0 

s, (b) 30 s, (c) 180 s, (d) 600 s 
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Fig. 7. TEM micrographs of interrupted specimens at different lifetime fractions of 180 s hold time: (a) 10%, (b) 

20%, (c) 50%, (d) 70% 

 

   

Fig. 8. TEM micrographs of interrupted specimens at 20% lifetime fraction of different hold times: (a) 0 s, (b) 30 

s, (c) 600 s 
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Fig. 9. Tensile curves at (a) different lifetime fractions of 180 s hold time and (b) 20% lifetime fraction of 

different hold times 

 

     

      

Fig. 10. Tensile strength (a, b) and elongation (c, d) at different lifetime fractions of 180 s hold time and 20% 

lifetime fraction of different hold times 
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Fig. 11. Creep curves (a) at different lifetime fractions of 180 s hold time and (b) 20% lifetime fraction of 

different hold times 

 

   

Fig. 12. Creep life at (a) different lifetime fractions of 180 s hold time and (b) 20% lifetime fraction of different 

hold times  
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Fig. 13. Creep rate curves (a, b) and the minimum creep rate (c, d) at different lifetime fractions of 180 s hold time 

and 20% lifetime fraction of different hold times  
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Fig. 14. Outer surface micrographs of the tensile failed specimens near the fracture location under various prior 

C-F loadings: (a) 20% lifetime of 180 s hold time, (b) 50% lifetime of 180 s hold time, (c) 70% lifetime of 180 s 

hold time, (d) 20% lifetime of 0 s hold time, (e) 20% lifetime of 30 s hold time, (f) 20% lifetime of 600 s hold 

time 

 

 

Fig. 15. Outer surface micrographs of the creep failed specimens near the fracture location under various prior 

C-F loadings: (a) 20% lifetime of 180 s hold time, (b) 50% lifetime of 180 s hold time, (c) 70% lifetime of 180 s 

hold time, (d) 20% lifetime of 0 s hold time, (e) 20% lifetime of 30 s hold time, (f) 20% lifetime of 600 s hold 

time  
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Fig. 16. Fractographs of the tensile failed specimens under various prior C-F loadings: (a) 20% lifetime of 180 s 

hold time, (b) 50% lifetime of 180 s hold time, (c) 70% lifetime of 180 s hold time, (d) 20% lifetime of 0 s hold 

time, (e) 20% lifetime of 30 s hold time, (f) 20% lifetime of 600 s hold time 

 

 

 

Fig. 17. Fractographs of the creep failed specimens under various prior C-F loadings: (a) 20% lifetime of 180 s 

hold time, (b) 50% lifetime of 180 s hold time, (c) 70% lifetime of 180 s hold time, (d) 20% lifetime of 0 s hold 

time, (e) 20% lifetime of 30 s hold time, (f) 20% lifetime of 600 s hold time 
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Fig. 18. Evolution of (a) inelastic strain range and (b) defied fatigue damage during C-F process 

 

   

 

Fig. 19. The relationship between (a) yield stress, (b) ultimate tensile stress and (c) creep life with the defined 

prior C-F damage  
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Fig. 20. Evolution of (a, b) martensite lath width and (c, d) dislocation density [30, 52, 56, 57-61] at different 

lifetime fractions and different hold times 

 

   

Fig. 21. Local magnification micrograph of the creep failed specimens near the fracture location under various 

prior C-F loadings: (a) 50% lifetime of 180 s hold time, (b) 70% lifetime of 180 s hold time  
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Fig. 22. Schematic representation of prior C-F and subsequent creep damage mechanisms 

 


