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Abstract

Consider a stochastic differential delay equation driven by G-Brownian motion (G-SDDE)

dx(t) = f (x(t), x(t − τ))dt + g(x(t), x(t − τ))dB(t) + h(x(t), x(t − τ))d〈B〉(t).

Under the global Lipschitz condition for the G-SDDE, we show that the G-SDDE is exponentially stable in mean
square if and only if for sufficiently small step size, the Euler-Maruyama (EM) method is exponentially stable in
mean square. Thus, we can carry out careful numerical simulations to investigate the exponential stability of the
underlying G-SDDE in practice, in the absence of an appropriate Lyapunov function. A numerical example is
provided to illustrate our results.
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1. Introduction

Motivated by mathematical finance problems with Knightian uncertainty, Peng has developed G-expectation
and G-Brownian motion theory (see e.g. [1, 2]). Since then, stochastic differential equations driven by G-Brownian
motion (G-SDEs) have received a great deal of concern due to the potential applications in uncertainty problems,
risk measures and the superhedging in finance and so on (see e.g. [3, 4, 5]). In the framework of G-expectation5

(G-framework), many efforts have been made to investigate the stochastic stability, for example, the quasi sure
stability [3], the moment stability [4], etc. It is known that a powerful tool for investigating the stochastic stability
of the underlying systems is to apply the G-Lyapunov function technique (see e.g. [4, 6]). A natural problem is:
in the absence of an appropriate G-Lyapunov function how do we judge the stochastic stability of the systems? Of
course, we may use a numerical solution to approximate the exact solution of the corresponding system and then10

infer the stability of the system by the properties of the numerical solution. Now, we are faced with a key question:
(Q) Does the stochastic stability of the numerical solution equivalent to that of the corresponding system?

If we can obtain a positive answer to this question, then it is feasible to judge the stochastic stability of the
system from the careful numerical simulations. In the case where the SDEs are driven by the classical Brownian
motion and stochastic stability means exponential stability in mean square sense, papers that answer question (Q)15

for SDEs, SDDEs and NSDDEs (neutral stochastic differential delay equations) can be found in [7], [8] and [9],
respectively. However, in the case where the SDEs are driven by the G-Brownian motion, related papers on
the stability equivalence are comparatively few and [10] is the only one, so far as we know, in which the authors
showed that the stochastic θ-method is pth (p ∈ (0, 1)) moment exponentially stable for sufficiently small step
size if and only if the corresponding G-SDE is also pth (p ∈ (0, 1)) moment exponentially stable under the global20

Lipschitz assumption.
Inspired by the aforementioned works, in this paper, we aim to study the stability equivalence between the

G-SDDE and the corresponding numerical method in the sense of exponential mean square. In the G-framework,
this issue is more difficult to be dealt with than SDEs, due to the non-linearity of G-expectation and distribution
uncertainty of G-Brownian motion. We borrow the thought proposed by Mao in [7, 8] and apply the properties of25
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G-Brownian motion to address the issue, but the computations involved to cope with time delay and integral with
quadratic variation process of G-Brownian motion are nontrivial. The main contributions of this work are twofold.
Firstly, we develop a numerical method for solving the G-SDDE. Secondly, we prove that in the G-framework, the
mean square exponential stability of the EM numerical method is equivalent to that of the underlying system. We
extend Mao’s work [8] to the case of nonlinear expectation as well as Yang’s results [10] to the case with delay.30

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. If A is a vector or matrix,
its transpose is denoted by AT , its norm is denoted by |A| =

√
trace(AT A). If x is a real number, its integer part is

denoted by bxc. Let τ > 0 and BC([−τ, 0];Rn) denote the family of all bounded continuous Rn-valued functions
ϕ defined on [−τ, 0] to Rn with norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|. For more details on the notions of G-expectation Ê
and G-Brownian motion on the sublinear expectation space (Ω,H , Ê), one can refer the reference [2]. Let Ht be
a filtration generated by G-Brownian motion {B(t)}t≥0. If x(t) is a continuous Rn-valued stochastic process on
t ∈ [−τ,∞), we let xt = {x(t + θ) : −τ ≤ θ ≤ 0} which is regarded as a C([−τ, 0];Rn)-valued stochastic process. For
p ≥ 1 and 0 ≤ T ≤ +∞, define

Lp
H0

([−τ, 0];Rn) =
{
ϕ : ϕ is H0-measurable, BC([−τ, 0];Rn)-valued random variable,

such that ϕ ∈ Mp
G([−τ, 0];Rn)

}
,

Lp
Ht

([−τ,T ];Rn) =
{
X : X is Ht-measurable, continuous on [−τ,T ], such that X ∈ Mp

G([−τ,T ];Rn)
}
.

For xt ∈ L2
Ht

([−τ,T ];Rn), define ‖xt‖
2
Ê

= sup−τ≤θ≤0 Ê|x(t + θ)|2.

Let B(t) a one-dimensional G-Brownian motion with G(a) := 1
2 Ê[aB(1)2] = 1

2 (σ2a+ − σ2a−), for a ∈ R ,
where σ2

= Ê[B(1)2], σ2 = −Ê[−B(1)2], and 〈B〉(t) be the quadratic variation process of the G-Brownian motion
B(t). By the properties of G-Brownian motion and the Hölder inequality, we obtain that for any η ∈ M2

G([−τ,T ];Rn)

Ê
∣∣∣∣∣∣
∫ T

0
ηtd〈B〉(t)

∣∣∣∣∣∣2
 ≤ σ4T Ê

[∫ T

0
|ηt |

2dt
]
. (2.1)

In this article, we consider the following G-SDDE

dx(t) = f (x(t), x(t − τ))dt + g(x(t), x(t − τ))dB(t) + h(x(t), x(t − τ))d〈B〉(t), t ≥ 0, (2.2)

initial data x0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ L2
H0

([−τ, 0];Rn), where f , g, h : Rn × Rn → Rn, as well as
f , g, h ∈ M2

G([−τ,T ];Rn), ∀T ≥ 0. We impose the following hypotheses:

Assumption 2.1. (H1) Assume that f , g, h satisfy the global Lipschitz condition, that is, there exist positive con-
stants L1, L2 and L3 such that

| f (x, y) − f (x̄, ȳ)|2 ≤ L1(|x − x̄|2 + |y − ȳ|2),

|g(x, y) − g(x̄, ȳ)|2 ≤ L2(|x − x̄|2 + |y − ȳ|2),

|h(x, y) − h(x̄, ȳ)|2 ≤ L3(|x − x̄|2 + |y − ȳ|2),

for all x, x̄, y, ȳ ∈ Rn. For the purpose of stability study, we further assume that f (0, 0) = g(0, 0) = h(0, 0) = 0.35

Under condition (H1), the G-SDDE (2.2) has a unique continuous solution on t ≥ −τ, see [11]. We denote this
solution by x(t; 0, ξ).

Definition 2.2. The G-SDDE (2.2) is said to be exponentially stable in mean square if there are constants α and
K such that for any initial data ξ ∈ L2

H0
([−τ, 0];Rn), Ê|x(t; 0, ξ)|2 ≤ K‖ξ‖2

Ê
e−αt, ∀t ≥ 0. We refer to α as the rate

constant and K as the growth constant.40

Given a step size ∆ = τ/m for a positive integer m. Let tk = k∆ for k ≥ −m. Then the discrete EM solution
for G-SDDE (2.2) is defined by

y(tk+1) = y(tk) + f (y(tk), y(tk−m))∆ + g(y(tk), y(tk−m))∆Bk + h(y(tk), y(tk−m))∆〈B〉k, k ≥ 0, (2.3)
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where ∆Bk = B(tk+1) − B(tk), ∆〈B〉k = 〈B〉(tk+1) − 〈B〉(tk). Set y(tk) = ξ(tk), for −m ≤ k ≤ 0. Define z(t) = y(tk), for
t ∈ [tk, tk+1) with the initial value z(t) = ξ(t) on [−τ, 0]. We extend the discrete EM solution to the continuous one
by the following

y(t) = y(0) +

∫ t

0
f (z(s), z(s − τ))ds +

∫ t

0
g(z(s), z(s − τ))dB(s) +

∫ t

0
h(z(s), z(s − τ))d〈B〉(s), t > 0. (2.4)

Set y(t) = ξ(t), for −τ ≤ t ≤ 0. It is obvious that y(tk) = z(tk). Let us now define exponential stability in mean
square for the continuous EM method.

Definition 2.3. Given a step size ∆ = τ/m for a positive integer m, the continuous EM method is said to be
exponentially stable in mean square on the G-SDDE (2.2), if there are constants β and H such that for any initial
data ξ ∈ L2

H0
([−τ, 0];Rn), Ê|y(t; 0, ξ)|2 ≤ H‖ξ‖2

Ê
e−βt, ∀t ≥ 0.45

3. Main results

In this section, we prove that the EM method shares exponential mean square stability with the G-SDDEs,
and vice versa.

Theorem 3.1. Under (H1), assume that the G-SDDE (2.2) is exponentially stable in mean square with rate con-
stant α and growth constant K. Choose ∆̄ such that for 0 < ∆ ≤ ∆̄,

2(C(2T − 2τ)∆ + Ke−α(T−2τ)) ≤ e−0.5αT and 2(C(T − τ)∆ + K) ≤ 3K. (3.1)

Then, for such ∆ the EM method is exponentially stable in mean square with rate constant β = 0.5α and growth
constant H = 3KC1e0.5αT , both of which are independent of ∆ , where T = τ(9 + b4 log(2K)/(τα)c), C1 and C(·)50

were defined in Lemmas 3.4 and 3.7, respectively.

Theorem 3.2. Under (H1), assume that the EM method on the G-SDDE (2.2) is exponentially stable in mean
square with rate constant β and growth constant H. Choose ∆ such that

2(C(2T − 2τ)∆ + He−β(T−2τ)) ≤ e−0.5βT . (3.2)

Then, the G-SDDE (2.2) is exponentially stable in mean square with rate constant α = 0.5β and growth constant
K = 2C1e0.5βT [C(T − τ)∆ + H], where T = τ(9 + b4 log(2H)/(τβ)c) , C1 and C(·) were defined in Lemmas 3.4 and
3.7, respectively.

Based on the Theorem 3.1 and Theorem 3.2, we derive the following conclusion.55

Theorem 3.3. Under (H1), the G-SDDE (2.2) is exponentially stable in mean square if and only if for sufficiently
small step size ∆, the EM method on the G-SDDE (2.2) is exponentially stable in mean square.

To prove this theorem, we first need to show a number of lemmas.

Lemma 3.4. Let (H1) hold, then

sup
−τ≤t≤τ

Ê|y(t; 0, ξ)|2 ≤ C1‖ξ‖
2
Ê, (3.3)

where C1 := 4[1 + τ(τL1 + σ2L2 + σ4τL3)]e4(τL1+σ2L2+σ4τL3)τ .

Proof. Write y(t; 0, ξ) = y(t). By the Hölder inequality, the Itô isometry, (2.1) and (H1), we have that for 0 ≤ t ≤ τ

Ê|y(t)|2 ≤ 4Ê|ξ(0)|2 + 4τÊ
∫ t

0
| f (z(s), z(s − τ))|2ds + 4Ê

∫ t

0
|g(z(s), z(s − τ))|2d〈B〉(s) + 4Ê

∣∣∣∣∣∣
∫ t

0
h(z(s), z(s − τ))d〈B〉(s)

∣∣∣∣∣∣2
≤ 4‖ξ‖2Ê + 4(τL1 + σ2L2 + σ4τL3)

∫ t

0
(Ê|z(s)|2 + Ê|z(s − τ)|2)ds.

Now, for any t1 ∈ [0, τ], we get

sup
0≤t≤t1

Ê|y(t)|2 ≤ 4(1 + τ(τL1 + σ2L2 + σ4τL3))‖ξ‖2Ê + 4(τL1 + σ2L2 + σ4τL3)
∫ t1

0
sup

0≤r≤s
Ê|y(r)|2ds.

Applying the Gronwall inequality and using that sup−τ≤t≤t1 Ê|y(t)|2 ≤ sup−τ≤t≤0 Ê|y(t)|2∨sup0≤t≤t1 Ê|y(t)|2, we obtain60

the desired assertion (3.3). 2
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Lemma 3.5. Let (H1) hold, then

sup
0≤t≤τ+T

Ê|y(t; 0, ξ)|2 ≤ C2‖ξ‖
2
Ê, for ∀T > 0, (3.4)

where C2 := C2(T ) = 4C1e8T (T L1+σ2L2+σ4T L3).

Proof. We write y(t; 0, ξ) = y(t) again. For t ∈ [τ, τ + T ], in the same fashion as in the proof of Lemma 3.4, we
have

Ê|y(t)|2 ≤ 4Ê|y(τ)|2 + 4T Ê
∫ t

τ

| f (z(s), z(s − τ))|2ds + 4Ê
∫ t

τ

|g(z(s), z(s − τ))|2d〈B〉(s) + 4Ê
∣∣∣∣∣∣
∫ t

τ

h(z(s), z(s − τ))d〈B〉(s)

∣∣∣∣∣∣2
≤ 4C1‖ξ‖

2
Ê + 4(T L1 + σ2L2 + σ4τL3)

∫ t

τ

(Ê|z(s)|2 + Ê|z(s − τ)|2)ds.

Hence, sup0≤s≤t Ê|y(s)|2 ≤ 4C1‖ξ‖
2
Ê

+ 8(T L1 + σ2L2 + σ4τL3)
∫ t
τ

sup0≤r≤s Ê|y(r)|2ds. The assertion (3.4) follows
from the Gronwall inequality. 2

Lemma 3.6. Let (H1) hold, then for any T > 0,

Ê|y(t; 0, ξ) − z(t; 0, ξ)|2 ≤ C3‖ξ‖
2
Ê∆, for ∀t ∈ [0, τ + T ], (3.5)

where C3 := C3(T ) = 6(τL1 + σ2L2 + σ4τL3)C2(T ).65

Proof. Write y(t; 0, ξ) = y(t) and z(t; 0, ξ) = z(t). For any t ∈ [0, τ + T ], there is a integer k such that t ∈ [tk, tk+1).
Hence, by Lemma 3.5, we obtain

Ê|y(t) − z(t)|2 ≤ 3∆Ê
∫ t

tk
| f (z(s), z(s − τ))|2ds + 3Ê

∫ t

tk
|g(z(s), z(s − τ))|2d〈B〉(s) + 3Ê

∣∣∣∣∣∣
∫ t

tk
h(z(s), z(s − τ))d〈B〉(s)

∣∣∣∣∣∣2
≤ 3(∆L1 + σ2L2 + σ4

∆L3)
∫ tk+1

tk
(Ê|z(s)|2 + Ê|z(s − τ)|2)ds

≤ 6(τL1 + σ2L2 + σ4τL3)C2(T )‖ξ‖2Ê∆ = C3(T )‖ξ‖2Ê∆. (3.6)

Thus, we complete the proof. 2

Lemma 3.7. Write y(t) = y(t; 0, ξ) and define x(t) = x(t; τ, yτ) which is the solution to G-SDDE (2.2) with initial
data yτ = {y(θ) : 0 ≤ θ ≤ τ} at time t = τ. Then

sup
τ≤t≤τ+T

Ê|x(t) − y(t)|2 ≤ C(T )‖ξ‖2Ê∆, for ∀T > 0, (3.7)

where C(T ) := 3(T L1 + σ2L2 + σ4T L3)(4T + τ)C3(T )e12T (T L1+σ2L2+σ4T L3).

Proof. For τ ≤ t ≤ τ + T , applying the Hölder inequality, the Itô isometry and (H1), we get that

Ê|x(t) − y(t)|2 ≤ 3T Ê
∫ t

τ

| f (z(s), z(s − τ)) − f (x(s), x(s − τ))|2ds + 3Ê
∫ t

τ

|g(z(s), z(s − τ)) − g(x(s), x(s − τ))|2d〈B〉(s)

+ 3Ê
∣∣∣∣∣∣
∫ t

τ

(
h(z(s), z(s − τ)) − h(x(s), x(s − τ))

)
d〈B〉(s)

∣∣∣∣∣∣2
≤ 3(T L1 + σ2L2 + σ4T L3)

∫ τ

0
Ê|x(s) − z(s)|2ds + 6(T L1 + σ2L2 + σ4T L3)

∫ t

τ

Ê|x(s) − z(s)|2ds.

When τ ≤ s ≤ τ + T , using Lemma 3.6 gives

Ê|z(s) − x(s)|2 ≤ 2Ê|z(s) − y(s)|2 + 2Ê|x(s) − y(s)|2 ≤ 2C3(T )‖ξ‖2Ê∆ + 2Ê|x(s) − y(s)|2.

When 0 ≤ s ≤ τ, we have Ê|z(s) − x(s)|2 = Ê|z(s) − y(s)|2 ≤ C3(T )‖ξ‖2
Ê
∆ . Hence, we obtain

Ê|x(t) − y(t)|2 ≤ 3(T L1 + σ2L2 + σ4T L3)C3(T )(τ + 4T )‖ξ‖2Ê∆ + 12(T L1 + σ2L2 + σ4T L3)
∫ t

τ

Ê|x(s) − y(s)|2ds.
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Using the Gronwall inequality, we obtain the desired assertion (3.7). 2
Proof of Theorem 3.1 Fix any initial data ξ, write y(t; 0, ξ) = y(t) and define x(t) = x(t; τ, yτ). The exponential

stability in mean square of the G-SDDE (2.2) means

Ê|x(t)|2 ≤ K‖yτ‖2Êe−α(t−τ), for ∀t ≥ τ. (3.8)

Letting T = τ(9 + b4 log(2K)/(τα)c) gives 2Ke−α(T−2τ) ≤ e−3/4αT . Then, by the elementary inequality, we have

Ê|y(t)|2 ≤ 2Ê|x(t) − y(t)|2 + 2Ê|x(t)|2. (3.9)

By (3.7), we have

sup
T−τ≤t≤2T−τ

Ê|y(t)|2 ≤ 2C(2T − 2τ)∆‖ξ‖2Ê + 2K‖yτ‖2Êe−α(T−2τ) ≤ R(∆) sup
−τ≤t≤τ

Ê|y(t)|2, (3.10)

where R(∆) = 2(C(2T − 2τ)∆ + Ke−α(T−2τ)). Note that R(∆) is increasing with ∆ and R(0) = 2Ke−α(T−2τ) ≤ e−3/4αT .
We can choose a ∆̄ > 0 satisfying R(∆) ≤ e−0.5αT for all ∆ ≤ ∆̄. Hence,

sup
T−τ≤t≤2T−τ

Ê|y(t)|2 ≤ e−0.5αT sup
−τ≤t≤τ

Ê|y(t)|2. (3.11)

Similarly, using the flow property of the EM solutions, for y(t) = y(t; jT, y jT ), j = 0, 1, 2, · · · , we repeat the
procedure that (3.11) was obtained. Then, we also get that

sup
( j+1)T−τ≤t≤( j+2)T−τ

Ê|y(t)|2 ≤ e−0.5αT sup
jT−τ≤t≤ jT+τ

Ê|y(t)|2 ≤ e−0.5αT sup
jT−τ≤t≤( j+1)T−τ

Ê|y(t)|2, (3.12)

which implies

sup
( j+1)T−τ≤t≤( j+2)T−τ

Ê|y(t)|2 ≤ e−0.5α( j+1)T sup
−τ≤t≤T−τ

Ê|y(t)|2. (3.13)

By (3.7) and (3.8), we get that

sup
τ≤t≤T−τ

Ê|y(t)|2 ≤ 2 sup
τ≤t≤T−τ

Ê|x(t) − y(t)|2 + 2 sup
τ≤t≤T−τ

Ê|x(t)|2

≤ 2C(T − τ)∆‖ξ‖2Ê + 2K‖yτ‖2Ê ≤ (2C(T − τ)∆ + 2K) sup
−τ≤t≤τ

Ê|y(t)|2.

If we choose a ∆̄ such that (2C(T − τ)∆ + 2K) ≤ 3K for all ∆ ≤ ∆̄, then supτ≤t≤T−τ Ê|y(t)|2 ≤ 3K sup−τ≤t≤τ Ê|y(t)|2.
Inserting this into (3.13) and noting that sup−τ≤t≤T−τ Ê|y(t)|2 = sup−τ≤t≤τ Ê|y(t)|2 ∨ supτ≤t≤T−τ Ê|y(t)|2, we have

sup
( j+1)T−τ≤t≤( j+2)T−τ

Ê|y(t)|2 ≤ 3Ke−0.5α( j+1)T sup
−τ≤t≤τ

Ê|y(t)|2. (3.14)

By (3.3), we get

sup
( j+1)T−τ≤t≤( j+2)T−τ

Ê|y(t)|2 ≤ 3KC1e−0.5α( j+1)T ‖ξ‖2Ê, ∀ j ≥ 0.

Recalling that M ≥ 1 and using Lemma 3.4, we obtain

sup
0≤t≤T−τ

Ê|y(t)|2 = sup
0≤t≤τ

Ê|y(t)|2 ∨ sup
τ≤t≤T−τ

Ê|y(t)|2 ≤ C1‖ξ‖
2
Ê ∨ 3K sup

−τ≤t≤τ
Ê|y(t)|2 ≤ 3KC1‖ξ‖

2
Ê.

Hence, Ê|y(t)|2 ≤ 3KC1e0.5αT ‖ξ‖2
Ê

e−0.5αt, which means that the EM method is exponentially stable in mean square
sense with β = 0.5α and H = 3KC1e0.5αT . Thus, we complete the proof. 270

In the similar way as Lemmas 3.4 and 3.7 were proved, we also have the following lemma.

Lemma 3.8. Let (H1) hold, then

sup
0≤t≤τ

Ê|x(t; 0, ξ)|2 ≤ C1‖ξ‖
2
Ê, (3.15)

where C1 is the same as before. Write x(t; 0, ξ) = x(t) and set y(t) = y(t; τ, xτ) which is the EM solution to the
G-SDDE (2.2) with initial data xτ at t = τ. Then,

sup
τ≤t≤τ+T

Ê|x(t) − y(t)|2 ≤ C(T )‖ξ‖2Ê∆, for ∀T > 0, (3.16)

where C(T ) was defined in Lemma 3.7.
5



Proof of Theorem 3.2 Write x(t; 0, ξ) = x(t) for simplicity and set y(t) = y(t; τ, xτ). If EM method is
exponentially stable in mean square with rate constant β and growth constant H, namely,

Ê|y(t)|2 ≤ H‖yτ‖2Êe−β(t−τ) for ∀t ≥ τ.

Then, applying Lemma 3.8 and choosing ∆ such that 2[C(2T − 2τ)∆ + He−β(T−2τ)] ≤ e−0.5βT , we have

sup
T−τ≤t≤2T−τ

Ê|x(t)|2 ≤ 2[C(2T − 2τ)∆ + He−β(T−2τ)] sup
−τ≤t≤τ

Ê|x(t)|2≤ e−0.5βT sup
−τ≤t≤τ

Ê|x(t)|2.

Repeating this procedure, we obtain that

sup
( j+1)T−τ≤t≤( j+2)T−τ

Ê|x(t)|2 ≤ e−0.5( j+1)βT sup
−τ≤t≤T−τ

Ê|x(t)|2, ∀ j ≥ 0.

Applying Lemma (3.8) also gives

sup
−τ≤t≤T−τ

Ê|x(t)|2 ≤ 2C1[C(T − τ)∆ + H]‖ξ‖2Ê.

Hence, we get Ê|x(t)|2 ≤ 2C1e0.5βT [C(T − τ)∆ + H]e−0.5βt‖ξ‖2
Ê

, for t ≥ 0, which means that the G-SDDE (2.2) is
exponentially stable in mean square sense with α = 0.5β and K = 2C1e0.5βT [C(T − τ)∆ + H]. Thus, we complete
the proof. 275

4. Numerical example

Example 4.1. Let B(t) be a scalar G-Brownian motion with B(1) ∼ N(0, [1/5, 2/5]), τ = 0.1. Define the initial
data x(t) = 1, for −τ ≤ t ≤ 0. Consider the scalar G-SDDE with the form:

dx(t) = [−3x(t) + x(t − τ)]dt +

√
2

2
x(t)dB(t) + sin x(t)d〈B〉(t), t ≥ 0. (4.1)

One can easily verify that the G-SDDE (4.1) satisfies (H1). Setting Lyapunov function V = |x|2, we compute

Vx f + G(2Vxh + Vxx|g|2) = −6|x(t)|2 + 2x(t)x(t − τ) + G(4x(t) sin x(t) + |x(t)|2) ≤ −4|x(t)|2 + |x(t − τ)|2,

where G(·) was defined in Preliminaries. On one hand, according to Corollary 3.4 in [4], we have that

Ê|x(t)|2 ≤
c2 + τeγτ

c1
‖ξ‖2Êe−γt = 1.1309e−2.6912t,

where c1 = c2 = 1, τ = 0.1, ‖ξ‖Ê = 1, γ1 = 4, γ2 = 1, and γ is the unique root to the equation γc2 + eγτγ2 = γ1.
Hence, the G-SDDE (4.1) is exponentially stable in mean square with growth constant K = 1.1309 and rate
constant α = 2.6912. On the other hand, based on the EM scheme (2.3), we use the algorithm for simulating
G-expectation from reference [12] to estimate Ê|y(t)|2. Let B(t) ∼ N(0, [σ2, σ2]t), we first construct an equidistant
partition σ = σ1 < · · · < σi < · · ·σI = σ. For the i-th (1 ≤ i ≤ I) round random sampling, ξi

j(k) ( j = 1, 2, · · · J; k =

1, 2, · · · ) is from the classical normal distribution N(0, σ2
i ∆). From (2.3), we define yi

j(tk) by

yi
j(tk+1) = yi

j(tk) + (−3yi
j(tk) + yi

j(tk−m))∆ +

√
2

2
yi

j(tk)ξi
j(k) + sin(yi

j(tk))σ2
k∆, k ≥ 0,

yi
j(tk) = 1, −τ/∆ ≤ k ≤ 0,

for 1 ≤ i ≤ I, 1 ≤ j ≤ J. Inspired by the idea of ϕ-max-mean in [13], we use the estimator

Θ|y(tk)|2 := max
1≤i≤I

1
J

J∑
j=1

|yi
j(tk)|2, for k = 0, 1, 2, · · · ,

to approximate Ê|y(tk)|2. The operatorΘ is known as the maximum sample second moment. Now, taking ∆ = 0.005,
J = 500 and I = 20, we give a simulation result plotted in Fig.1 on the evolution of the maximum sample
second moment concerning EM solution y(t) with time t. It seems that Ê|y(t)|2 is decayed exponentially with time.
Therefore, we further assume that an exponent law relation Ê|y(t)|2 = He−βt exists for some constants H and β.80

A nonlinear fitting for H and β in least-squares sense gives that H = 1.0090 and β = 2.8381. We see from Fig.1
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Fig. 1. Simulation results for G-SDDE (4.1)

that the two curves representing Ê|y(t)|2 and He−βt respectively appear to fit well, suggesting that the equation
Ê|y(t)|2 = He−βt is valid and the EM method is exponentially stable in mean square. Hence, by Theorem 3.2, the
G-SDDE (4.1) is also exponentially stable in mean square with rate constant 0.5β. If we are interested only in the
decay rate, then we can prove that for sufficiently small step size ∆ the mean square exponential stability of EM85

method with rate constant β and growth constant H implies that the G-SDDE (4.1) has a rate constant bounded by
β − ε, which is close to the rate constant α obtained by the preceding method, where ε is an arbitrary constant in
(0, β/2). But the price we paid for this was an increase in the growth constant (see [7]). Fig.1 interprets the decay
rate of G-SDDE (4.1). It follows from this example that it is feasible to judge the mean square exponential stability
of the G-SDDE by the careful numerical simulations for EM method under the given conditions.90
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