Kinematics of Motor Control in Autism Spectrum Disorder: An Exploratory Analysis of Goal-Directed Finger Movements during Smart-tablet Gameplay

Yu Wei Chua, Szu-Ching Lu, Christos Tachtatzis, Ivan Andonovic, Philip Rowe, Anna Anzulewicz, Krzysiek Sobota, Jonathan Delafield-Butt

The motor system optimises movements to achieve goals

Fitts Law

Further and smaller targets require greater movement time

Motor control of goal directed movements

EARLY PHASE

• Feedforward control:

pre-specified command to produce the desired output (eg. Distance, force)

$\circ~$ Forward model:

predicted new state after the motor command

LATE PHASE

\circ Sensory feedback control:

Commands based on delayed sensory information of the new motor state

Duration of movement

(Woodworth, 1899) (Meyer et al., 1988) (Elliott et al., 2010)

Dissociable effects of target distance and target size

(MacKenzie, 1987) (Bootsma et al., 2004)

Movement kinematics can reflect feedforward and feedback control processes

EARLY PHASE

Feedforward + Forward model

- Peak velocity
- Time to peak velocity
- Peak velocity 1MU
 (First Movement Unit)

LATE PHASE Sensory Feedback

- o Movement units
- % deceleration phase

EARLY and LATE

Movement time

Is the kinematics of motor control different in autism spectrum disorder?

EARLY PHASE

Feedforward + Forward model

- Lower peak velocity?
- Longer time to peak velocity?
- Peak velocity 1MU

LATE PHASE Sensory Feedback

• Greater Movement units?

• % deceleration phase

EARLY and LATELonger movement time?

(Campione et al., 2016, Cook et al., 2013; Dowd et al., 2012; Forti et al., 2011; Glazebrook et al., 2006; Mari et al., 2003; Stoit et al., 2013; Yang et al., 2014)

Data

Data: from Anzulewicz et al (2016)

Participants:

- Typically developing (TD) and children with autism (ASD)
- Age 3-6 years old

Task:

"Sharing" game on the ipad

Inclusion criteria

- Goal directed, point-to-point movements: Food-target swipes shorter than 2s
- Participants who followed task demand:

at least 10% swipes consisting of foodtarget swipes

Multilevel Regression Analysis

Model accounted for "clustering" of swipes:

Random intercept
 Individual differences in swipe
 kinematic (mean)

Random slope
 Individual differences in the effect of distance on swipe kinematic

Results: Effect of Distance

Positive relationship with distance (p<0.001)

for all kinematic variables except % deceleration phase.

% deceleration phase *No relationship*

Peak velocity Time to Peak velocity **14% /cm**

Peak velocity (1MU) 5% /cm

Results: Effect of ASD ASD x Distance

ASD showed 2% larger increase in Peak Velocity and 3% smaller increase in movement units with every cm

Movement units

* p<0.05 ** p<0.01 *** p<0.001

Results: Effect of ASD ASD x Age

Movement Time

Longer in ASD, for older children

* p<0.05 ** p<0.01 *** p<0.001

Results: Effect of ASD Early phase: feedforward and forward model

Peak Velocity

Time to Peak Velocity

22% Longer in ASD

Peak Velocity (1MU)

Higher in ASD for younger children *Lower in ASD,* for older children

Results: Effect of ASD Late phase, feedback

Movement units

70 deceleration phase

Greater in ASD, for older children

Motor kinematics are different between ASD and TD for both early and late motor control processes

EARLY PHASE

Feedforward + Forward model

- Peak velocity
- Time to peak velocity
- Peak velocity 1MU

LATE PHASE Sensory Feedback

- Movement units
- % deceleration phase

EARLY and LATE

Movement time

Age is an important consideration

Children

Age 3-4 (Forti et al., 2011) Age 4-6 (Campione et al., 2016) Age 3-8 (Dowd et al., 2012) Age 6-9 (Yang et al., 2014) Age 8-12 (Mari et al., 2003)

Young adults and adults (Glazebrook et al., 2006;

Cook et al., 2013)

Intact feedforward control:

Children with ASD are able to specify motor commands to achieve different goal distances

Intact but later recruitment of feedback control:

No difference in % deceleration phase for older children with ASD

70 deceleration phase

Impairment in forward models?

Peak Velocity 1MU is **18% lower** in ASD Movement units is **higher in ASD** in older children

LATE PHASE Sensory Feedback

 Without an accurate forward model, delayed sensory feedback is needed

Duration of movement

Movement

Movement

Actual Movement

> Forward Model

Prospective control

Eg. Different intentions possible, to give or to drink

MOVEMENT Prediction COGNITION

Motor anticipation

Eg. Anticipating and correcting self-induced force changes

> (Sinha et al., 2014) (Fournier et al., 2010) (Trevarthen and Delafield-butt., 2013)

Social cognition

Intention

understanding

Eg. Inferring false beliefs in the Sally-Ann task

Szu-Ching Lu

Jonathan Delafield-Butt

Christos Tachtatzis

Phil Rowe Iv

Thank you!

🈏 @Yuwei_Chua

https://www.strath.ac.uk/research/innovationinautism/

Anna Anzulewicz

Krzysiek Sobota

Francesca Solmi

Anzulewicz, A., Sobota, K., & Delafield-Butt, J. T. (2016). Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. *Scientific reports*, *6*, 31107.

Bootsma, R. J., Fernandez, L., & Mottet, D. (2004). Behind Fitts' law: kinematic patterns in goal-directed movements. *International Journal of Human-Computer Studies*, *61*(6), 811-821.

Campione, G. C., Piazza, C., Villa, L., & Molteni, M. (2016). Three-dimensional kinematic analysis of prehension movements in young children with autism spectrum disorder: new insights on motor impairment. *Journal of autism and developmental disorders*, 46(6), 1985-1999.

Dowd, A. M., McGinley, J. L., Taffe, J. R., & Rinehart, N. J. (2012). Do planning and visual integration difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism. *Journal of autism and developmental disorders*, 42(8), 1539-1548.

Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: two components but multiple processes. *Psychological bulletin*, *136*(6), 1023.

Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. *Journal of experimental psychology*, 67(2), 103.

Forti, S., Valli, A., Perego, P., Nobile, M., Crippa, A., & Molteni, M. (2011). Motor planning and control in autism. A kinematic analysis of preschool children. *Research in Autism Spectrum Disorders*, *5*(2), 834-842.

References [1]

Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. *Journal of autism and developmental disorders*, *40*(10), 1227-1240.

Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. *Motor control*, 10(3), 244-264.

Glazebrook, C., Gonzalez, D., Hansen, S., & Elliott, D. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. *Autism*, 13(4), 411-433.

Gottwald, J. M., De Bortoli Vizioli, A., Lindskog, M., Nyström, P., Ekberg, T. L., von Hofsten, C., & Gredebäck, G. (2017). Infants prospectively control reaching based on the difficulty of future actions: To what extent can infants' multiple-step actions be explained by Fitts' law?. *Developmental psychology*, *53*(1), 4.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780.

MacKenzie, C. L., Marteniuk, R. G., Dugas, C., Liske, D., & Eickmeier, B. (1987). Three-dimensional movement trajectories in Fitts' task: Implications for control. *The Quarterly Journal of Experimental Psychology*, *39*(4), 629-647.

Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 358(1430), 393-403.

References [2]

References [3]

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Keith Smith, J. E. (1988). Optimality in human motor performance: ideal control of rapid aimed movements. *Psychological review*, *95*(3), 340.

Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A. L., Pantazis, D., ... & Held, R. M. (2014). Autism as a disorder of prediction. *Proceedings of the National Academy of Sciences*, *111*(42), 15220-15225.

Stoit, A. M., van Schie, H. T., Slaats-Willemse, D. I., & Buitelaar, J. K. (2013). Grasping motor impairments in autism: not action planning but movement execution is deficient. *Journal of autism and developmental disorders*, 43(12), 2793-2806.

Trevarthen, C., & Delafield-Butt, J. T. (2013). Autism as a developmental disorder in intentional movement and affective engagement. *Frontiers in Integrative Neuroscience*, *7*, 49.

von Hofsten, C., & Rösblad, B. (1988). The integration of sensory information in the development of precise manual pointing. *Neuropsychologia*, *26*(6), 805-821.

Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3), i.

Yang, H. C., Lee, I. C., & Lee, I. C. (2014). Visual feedback and target size effects on reach-to-grasp tasks in children with autism. *Journal of autism and developmental disorders*, 44(12), 3129-3139.

Coefficients from regression models

Note: To ensure that the assumption for normality of residuals is met, Regression models were based on Log(variable) for *Peak Velocity (Full), Peak Velocity (1MU), Movement Units and Time To Peak Velocity*. Regression presented here are the exponentiated coefficients of the model output for these variables.

	Peak Velocity Full (cm/s)	Peak Velocity 1MU (cm/s)	Movement Units	Time to Peak Velocity (s)	Decceleration Phase (%)	Movement Time (s)
Predictors	Estimates	Estimates	Estimates	Estimates	Estimates	Estimates
Intercept	128.78 *** (119.44 – 138.85)	66.12 *** (59.75 – 73.18)	4.56 *** (4.04 – 5.15)	0.30 *** (0.27 – 0.33)	53.41 *** (50.94 – 55.87)	0.85 *** (0.76 – 0.94)
Target Distance	1.14 *** (1.12 – 1.16)	1.05 *** (1.03 – 1.07)	1.11 *** (1.09 – 1.13)	1.14 *** (1.11 – 1.16)	-0.38 (-1.15 – 0.39)	0.08^{***} (0.07-0.09)
Age	1.23 *** (1.14 – 1.32)	1.19 *** (1.09 – 1.29)	$0.66 ^{***}$ (0.58 - 0.74)	0.80 *** (0.73 – 0.87)	1.06 (-1.34 – 3.46)	-0.25 *** (-0.340.15)
ASD Diagnosis	0.93 (0.82 – 1.05)	0.82 * (0.70 – 0.96)	1.24 * (1.03 – 1.50)	1.22 * (1.04 – 1.43)	-3.01 (-6.59 – 0.58)	0.13 (-0.01 – 0.27)
Distance X ASD	1.02 (1.00 - 1.05)		0.97 * (0.94 – 1.00)			
Age X ASD	$\begin{array}{c} 0.78 \\ (0.69-0.88) \end{array}$		1.35 ** (1.09 – 1.66)		4.46 * (0.29 - 8.64)	0.16 * (0.00 – 0.32)
Random Effects						
σ^2	0.10	0.35	0.23	0.35	397.62	0.06
$ au_{00}$	0.06 Subject.f	0.11 Subject.f	0.16 Subject.f	0.10 Subject.f	67.47 Subject.f	0.08 Subject.f
τ_{11}	0.00 Subject.f.Displacement.c	0.00 Subject.Displacement.c	0.00Subject.f.Displacement.c	0.00 Subject.f.Displacement.c	7.20 Subject.f.Displacement.c	0.00 Subject.f.Displacement.c
ρ01	-0.59 Subject.f	0.52 Subject.f	-0.39 Subject.f	-0.02 Subject.f	-0.66 Subject.f	-0.04 Subject.f
Observations	4494	4480	4480	4493	4494	4494

*p<0.05 **p<0.01 ***p<0.001