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Abstract 

The heat transfer performance of a 5 mm internal diameter (I.D.) mesoscale continuous 

oscillatory flow crystalliser with smooth periodic constrictions (herein called SPC meso-tube) 

is herein reported for the first time for both steady flow and unsteady oscillatory flow 

conditions. Experimental values of the tube-side Nusselt number, 𝑁𝑢𝑡 , accompanied by an 

estimability analysis, emphasized the key role played by smooth constrictions and bulk flow 

velocity in controlling tube-side heat transfer in the SPC meso-tube, while revealing a weaker 

influence of oscillatory flow on heat transfer enhancement in the tube. Although the presence 

of smooth constrictions provided an increased surface area to volume (SAV) ratio, and 

recirculation zones which promoted heat transfer rates, a maximum 1.7-fold heat transfer 

augmentation was obtained when fluid oscillations were combined with smooth constrictions. 

The behaviour of the SPC meso-tube was such that increasing the net flow Reynolds number, 

𝑅𝑒𝑛 , from 11 up to 54 with the combination of smooth constrictions and oscillatory flow 

resulted in the attainment of higher rates of heat transfer up to a maximum 𝑁𝑢𝑡 of 3.09. The 

Strouhal number, 𝑆𝑡, was also found to have a more significant effect on the heat transfer 

performance than oscillatory frequency, 𝑓 . An empirical correlation was for the first time 

developed to describe the heat transfer characteristics of the SPC meso-tube, and predict 𝑁𝑢𝑡 
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based on experimental data for the range of net flow and oscillatory flow conditions 

investigated. A parameter estimability approach was also implemented to enhance the 

prediction capability of the correlation. The approach was based on a sequential 

orthogonalisation, thanks to which the most influential factors affecting the tube-side heat 

transfer were identified given the available experimental data. Overall, the results accentuate 

the efficient heat transfer capabilities of the SPC meso-tube in low laminar flow regimes, and 

its suitability for performing cooling crystallisations where tight temperature control of 

supersaturation is essential.  

 

Keywords: mesoscale, oscillatory flow, heat transfer, smooth periodic constrictions, empirical 

correlation, flow crystallization 

 

1. Introduction 

Oscillatory flow mixing has existed for many years as a method of achieving efficient 

and controlled mixing in various process operations (Van Dijck, 1934; Karr, 1959; Bellhouse 

et al., 1973; Sobey, 1980; Stephanoff et al., 1980). Recently, within the pharmaceutical industry, 

there have been significant drives to accelerate more widespread adoption of continuous 

processing, due to its many potential advantages over traditional batch processes such as lower 

costs, and reduced environmental footprint (Benyahia et al. 2012; Mascia et al. 2013; Zhao et 

al., 2014). Their ability to achieve plug flow residence time distributions, scale up much more 

easily than stirred tank reactors, and provide efficient mixing and particle suspension 

characteristics has made oscillatory baffled reactors (OBRs) an attractive state-of-the-art 

technology for converting existing batch crystallisation processes to continuous mode; a 

specific purpose for which they are known as continuous oscillatory baffled crystallisers 

(COBCs). In their basic form, conventional scale (typically >10 mm I.D.) OBRs are tubular 
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devices containing periodically spaced “sharp-edged” orifices or constrictions (SEPC) with 

oscillatory flow superimposed on a net flow (Dickens et al., 1989; Stonestreet and Van der 

Veeken, 1999; Harvey et al., 2001; Ni et al., 2002; Harvey et al., 2003a). The scaled-down, 

mesoscale (typically 4.4 – 5.0 mm I.D.) oscillatory flow reactors (meso-OFRs) pioneered by 

Reis et al. (2005) offer attractive advantages of reduced material inventory and consumption, 

and the achievement of near plug flow at very low net flow rates (low Reynolds numbers in 

the laminar regime) (Phan et al., 2011). As such, they are well suited for developing lab-scale 

continuous crystallisation processes as continuous oscillatory flow crystallisers (mesoscale 

crystallisers), with minimal use of process materials, or for continuous manufacturing of kg-

per-day of added-value chemicals such as crystallisation of APIs. 

Mixing and heat transfer are critical process parameters (CPP) for cooling crystallisation, 

as they control the spatial distribution of supersaturation which impacts on various properties 

of the crystal product obtained (Zhao et al., 2014). Efficient mixing required for controlling 

local crystallisation kinetics is readily achieved in COBCs by superimposing an oscillatory 

flow component which provides vigorous eddy mixing inside each baffle or constriction cavity 

(Mackley et al., 1990). The heat transfer on the other hand is dependent on the fluid mixing 

conditions inside the tube and is promoted by chaotic flow that results in a high degree of radial 

mixing. COBCs can achieve superior heat transfer properties for crystallisation than stirred 

tank reactors due to their higher surface area to volume (SAV) ratios (Zhao et al., 2014). The 

SAV is a ratio of the outside area of the tube to the volume within the tube and represents the 

amount of surface area per unit volume of fluid inside the tube. Three well-known studies of a 

conventional sharp-edged OBR (Mackley et al., 1990; Mackley and Stonestreet, 1995; 

Stephens and Mackley, 2002) have confirmed that significant heat transfer enhancement is 

obtained when both flow oscillation and baffles are present. Mackley and Stonestreet (1995) 

examined the heat transfer performance of a 12 mm I.D. sharp-edged OBR with baffle inserts, 
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in a 1 m long stainless-steel shell-and-tube heat exchanger configuration. A 5-fold increase in 

𝑁𝑢𝑡 was observed when only baffles were inserted in the tube, and a 30-fold increase was 

achieved when oscillations were superimposed.  

Overall, the heat transfer characteristics of conventional SEPC OBRs are well 

established and predicted by the Mackley and Stonestreet (1995) correlation. For meso-OFRs, 

which have a variation of baffle configurations (Reis et al., 2005; Phan and Harvey, 2010), 

their heat transfer characteristics have not been properly investigated, and are still largely 

speculative (McDonough, 2015). When compared to conventional-sized tubes, the much 

higher SAV provided by meso-tubes favours enhanced heat transfer for better controlled 

crystallisation of APIs. So far, no heat transfer investigations have been reported for any of the 

different geometric designs of mesoscale OFRs, although simulations carried out for non-

oscillatory flow in a helical coil meso-tube by Solano et al. (2012) revealed that helical coils, 

when inserted into a plain meso-tube, would yield a 1.1-fold heat transfer augmentation. 

Furthermore, the authors showed that an increase in oscillatory Reynolds number, 𝑅𝑒𝑜 from 10 

to 320 caused a 4-fold increase in the mean 𝑁𝑢𝑡. Although simulation results for the helical 

coil meso-tube correspond to general heat transfer behaviour in conventional SEPC OBRs, 

experimental validations of these predictions are yet to be presented. 

The aim of this study is to provide an insight into the heat transfer characteristics of the 

SPC meso-tube, whereby findings may be applicable to other meso-tubes of similar SPC design 

(Ejim et al., 2017). The SPC meso-tube is well-suited for bioengineering and pharmaceutical 

applications due to its smooth constrictions that greatly reduce high shear regions and crystal 

attrition (Reis et al., 2005), provide superior solids suspension at low flow rates (Reis et al., 

2004; Phan et al., 2011), and facilitate gas bubble removal from the meso-tube; hence it is a 

very important design for crystallisation processes.  
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2. Theory  

2.1 Oscillatory flow 

The fluid mechanics in the SPC meso-tube can be characterised by three dimensionless 

groups, these are well described elsewhere (Fitch and Ni, 2003; Reis et al., 2005). At low 𝑅𝑒𝑛, 

where laminar flow occurs, the introduction of a small oscillatory flow in a baffled or 

constricted tube provides 2D axi-symmetrical flow where eddy propagation significantly 

improves radial mixing and plug flow is attainable (Mackley and Ni, 1991; McDonough et al., 

2015). At high values of 𝑅𝑒𝑜 , the mixing becomes very intense, and flow becomes non-

axisymmetric and approaches complete mixed flow conditions (McDonough et al., 2015). For 

cases where 𝑆𝑡  is very low (high amplitudes), excessive eddy generation causes vortex 

propagation into adjacent baffle cavities and the quality of radial mixing decreases (Phan and 

Harvey, 2012). When 𝑆𝑡 = ∞, the absence of eddy generation to effectively mix the baffle 

cavity results in flows that are dominated by viscosity and density effects, with high axial 

dispersion along the length of the tube (Mackley and Ni, 1991). 

 

2.2 SPC meso-tube 

The SPC meso-tube has an internal diameter, 𝐷 of ca. 5.0 mm and a constriction diameter, 

𝑑𝑜, of ca. 2.0 mm (Figure 1) which gives an open cross-sectional area, 𝑆, of 16%. The mean 

spacing between smooth constrictions, 𝐿, is 13 mm, giving a length-to-diameter ratio, 𝐿 𝐷⁄ , of 

2.6, which is significantly higher than the ratios of 1.5 – 2 for conventional sharp-edged COBCs 

(Brown and Ni, 2012; Callaghan and Ni, 2012; Zhao et al., 2014). The geometry of the SPC 

meso-tube differs drastically from the sharp-edged baffled tube for which Mackley and 

Stonestreet (1995) derived a general 𝑁𝑢𝑡 correlation. The contrasting baffle type and scale of 

these tubes are chiefly responsible for limiting applicability of the Mackley-Stonestreet 
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correlation to the SPC meso-tube. The sharp-edged baffled tube investigated by the authors 

had a 𝐷 of 12.0 mm, a 𝑑0 of 7 mm (𝑆 = 0.34), and an 𝐿 𝐷⁄  of 1.5.  

 

 

 

Figure 1 (a) Section of jacketed SPC meso-tube and (b) Internal CFD visualisation of the SPC meso-

tube with labelled dimensions. 

 

A tube of its scale requires much stronger oscillations than the SPC meso-tube to 

provide efficient mixing and near-plug-flow behaviour. The Mackley-Stonestreet correlation 

was derived from experiments in the range 𝑅𝑒𝑛 = 100 – 1200 and 𝑅𝑒𝑜 =  300 – 800, an 

operating range deemed as impractical for the SPC meso-tube, since most of its advantages for 

crystallisation would be lost. When applied to predict steady non-oscillatory flow heat transfer 

performance in the SPC meso-tube for the range 𝑅𝑒𝑛 = 11 – 54, the Mackley-Stonestreet 

correlation was found to significantly under-predict 𝑁𝑢𝑡  values by an average of 58% (see 

Figure 4). For unsteady oscillatory flow heat transfer in the range 𝑅𝑒𝑜 =  39 – 197, the 
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correlation under-predicted 𝑁𝑢𝑡 by as much as 65% at the lowest 𝑅𝑒𝑜, and over-predicted 𝑁𝑢𝑡 

by as much as 1974% at the highest 𝑅𝑒𝑜 . This suggested the SPC meso-tube displayed a 

different relationship to that described by the Mackley-Stonestreet correlation. 

 

2.3 Tube-side Nusselt number determination 

The Nusselt number describes the magnitude of convective heat transfer occurring 

parallel to the surface normal of the boundary layer, and perpendicular to the mean fluid flow 

within a tube. In other words, it is the ratio of convective heat transfer to conductive heat 

transfer. Heat transfer performance can be determined by evaluating the dimensionless 𝑁𝑢𝑡 as 

follows: 

 

𝑁𝑢𝑡 =
ℎ𝑡𝐷1𝑖

𝑘
         (1) 

 

where 𝐷1𝑖 is the inside diameter of the largest part of the cell (m), 𝑘 is the thermal conductivity 

of the process fluid (W m-1 K-1), and ℎ𝑡 is the tube-side heat transfer coefficient (W m-2 K-1). 

Note that 𝐷1𝑖 is herein taken as the mean tube diameter, 𝐷1𝑖𝑚 = 2√
𝑉

𝜋𝐿1
, where 𝐿1 is the active 

tube length (m), and  𝑉 is the measured volume in the active tube length (m3). The mean tube 

diameter was used in calculations for 𝑅𝑒𝑛 , 𝑅𝑒𝑜 , 𝑆𝑡 , and mean velocity 𝑢𝑚 . 𝑁𝑢𝑡  can be 

determined from measured overall heat transfer coefficient (referred to the outside area of the 

inner tube), given by the following equation (Stephens and Mackley, 2002):  

 

 
1

𝑈21
=

1

ℎ𝑡
+

𝐷1𝑖 ln(𝐷1𝑜/𝐷1𝑖)

2𝑘𝑔
+

𝐷1𝑖

𝐷1𝑜ℎ𝑎
      (2) 
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where 𝑘𝑔 is the thermal conductivity for the inner tube wall material (glass) (W m-1 K-1), 𝐷1𝑜 

is the outer diameter of the inner tube (m), ℎ𝑎 is the heat transfer coefficient in the annulus (W 

m-2 K-1), and 𝑈21 is the overall heat transfer coefficient (W m-2 K-1) between the cooling and 

process fluids. 𝑈21 is related to heat flux as follows: 

 

𝑄1 = 𝐴𝑈21∆𝑇𝑙𝑚 = 𝑚1̇ 𝐶𝑝1∆𝑇1      (3) 

 

where ∆𝑇𝑙𝑚 is the log mean temperature difference (LMTD) of the heat exchanger, ∆𝑇1 is the 

temperature difference of the process fluid over the length of the heat exchanger, 𝑚̇1 is the 

mass flow rate of the process fluid, and 𝐴 is the outside heat transfer area of the inner tube. The 

LMTD is calculated using: 

 

∆𝑇𝑙𝑚 =
∆𝑇2−∆𝑇1

ln[∆𝑇2/∆𝑇1]
=

(𝑇1𝑜𝑢𝑡−𝑇2𝑖𝑛)−(𝑇1𝑖𝑛−𝑇2𝑜𝑢𝑡)

ln[(𝑇1𝑜𝑢𝑡−𝑇2𝑖𝑛)/(𝑇1𝑖𝑛−𝑇2𝑜𝑢𝑡)]
   (4) 

 

where 𝑇1𝑖𝑛, 𝑇1𝑜𝑢𝑡 are the process fluid inlet and outlet temperatures, and 𝑇2𝑖𝑛, 𝑇2𝑜𝑢𝑡 are the 

cooling fluid inlet and outlet temperatures respectively. The high flow rate maintained in the 

annulus provides a much larger heat capacity rate and heat transfer coefficient than that of the 

process fluid, enabling the cooling fluid to absorb a large quantity of heat with negligible 

change in its temperature along the tube. This results in a special case where the temperature 

of the cooling fluid remains approximately constant throughout the heat exchanger length, and 

𝑇2𝑖𝑛 = 𝑇2𝑜𝑢𝑡 = 𝑇𝑤. Substituting into Equation (3) gives an equation for 𝑈21: 

 

𝑈21 =
𝑚1̇ 𝐶𝑝1∆𝑇1

𝐴

ln[(𝑇1𝑜𝑢𝑡−𝑇2𝑖𝑛)/(𝑇1𝑖𝑛−𝑇2𝑜𝑢𝑡)]

∆𝑇1+∆𝑇2
    (5) 
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𝑈21 is obtained from experimental data and 𝑁𝑢𝑡  is calculated using Equation (6) (Mackley 

and Stonestreet, 1995): 

 

1

𝑁𝑢𝑡
=

𝑘1

𝐷1𝑖
[

1

𝑈21
−

𝐷1𝑖

𝐷1𝑜ℎ𝑎
−

𝐷1𝑖 ln(
𝐷1𝑜
𝐷1𝑖

)

2𝜅𝑔
]     (6) 

 

3. Experimental methods 

3.1 Experimental apparatus 

An SPC mesoscale crystalliser was modified for heat transfer experiments to determine 

𝑁𝑢𝑡  in the SPC meso-tube. The setup consisted of 2 identical jacketed SPC meso-tubes 

connected as concentric tube heat exchangers by an unjacketed U-bend and operated in 

counter-current mode (see Figure 2). The thickness of the glass wall was ca. 1 mm and 𝐿1 was 

0.657 m. The process and annulus fluid chosen was deionized water with temperature-

dependent thermal properties. The annulus fluid was pumped at a constant flow rate of ~6 l 

min-1, and the process fluid was pumped continuously by a Labhut Series 1500 Dual Piston 

Pump from a de-gassed reservoir. A constant temperature, 𝑇𝑤, was maintained in the annulus 

by a Huber Ministat 230 temperature control bath. Table 1 summarises the specifications of 

the heat exchanger. 
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Figure 2 Schematic representation of the heat transfer apparatus. 

 

Fluid oscillations were achieved by a piston-driven diaphragm connected with an 

electromagnetic oscillator (LDS, UK, V406). A signal generator (LDS, UK, PO100) was used 

to adjust the frequency of oscillation, 𝑓 (Hz), and an amplifier (LDS, UK, PA100E) controlled 

the centre-to-peak amplitude of oscillation, 𝑥0  (mm). Manipulating 𝑥0  and 𝑓  controlled the 

intensity of mixing applied in the tube, otherwise known as the oscillatory Reynold’s number, 

𝑅𝑒𝑜  (Reis et al., 2005). The resultant time-dependent displacement was measured by a 

calibrated displacement transducer attached to the piston yoke. 

 

Table 1 Heat exchanger specifications 

Specifications  

Tube outside diameter, 𝐷1𝑜 (mm) 7.0 

Tube internal diameter, 𝐷1𝑖  (mm) 5.0 

Jacket external diameter, 𝐷2𝑜 (mm) 11.0 

Jacket internal diameter, 𝐷2𝑖 (mm) 9.0 

Active tube length, 𝐿1 (mm) 657 

Total heat transfer area, 𝐴 (m2) 0.011 

Heat transfer area per unit length, 𝐴𝐿1, (m2 m-1) 0.02 

Hydraulic diameter, 𝐷ℎ = 𝐷2𝑖 − 𝐷1𝑜 (mm) 2.0 

Material of construction Glass 

Wall thermal conductivity, 𝑘𝑔 (W m-1 K-1) 1.1 
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𝑇1𝑖𝑛, 𝑇1𝑜𝑢𝑡, and 𝑇𝑤 were measured using 3 K-type thermocouples with mineral insulated 

sensors (Thermosense) inserted into the U-bend, tube exit, and the temperature control bath 

respectively. The entire section connecting the heat exchangers was sufficiently lagged such 

that heat loss to the surrounding was negligible and the temperature measured at the U-bend 

could be taken as the inlet temperature 𝑇1𝑖𝑛
. Each thermocouple was calibrated for linearity 

before installation. The thermocouples were connected to a computer via an Advantech USB-

4718 data acquisition module. 

 

3.2 Heat transfer experiment 

At the start of the experiment, deionized water was pumped at a steady net flow rate into 

section 1 where it was heated up to a desired inlet temperature, 𝑇1𝑖𝑛
 of 55 °C. The resulting hot 

water was then cooled to a final temperature, 𝑇1𝑜𝑢𝑡
 measured at the exit of the heat exchanger. 

The annulus of the heat exchanger was maintained at a constant temperature, 𝑇𝑤 of ~3.5 °C by 

a constant turbulent flow of water (3.9 m s-1) with a much greater heat capacity rate (𝐶1 = 416 

J K-1 s-1) than that of the process fluid (𝐶2 = 0.14 – 0.8 J K-1 s-1). The Nusselt number in the 

annulus was estimated using the Dittus Boelter turbulent flow expression (Equation (7)). The 

heat transfer coefficient ℎ𝑎, was estimated at 13,041 W m-2 K-1 and assumed constant for all 

experiments conducted. At such high values, minor changes in the heat transfer coefficient 

were found to have very little effect on the tube side Nusselt number calculated.  The resistance 

from the glass wall was found to be 0.164 m K W-1.  

 

𝑁𝑢𝑎 =  0.023𝑅𝑒𝑛
0.8𝑃𝑟0.3       (7) 
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A set of non-oscillatory experiments were first conducted in a plain meso-tube, and then 

in the SPC meso-tube. The oscillatory 𝑥0  and 𝑓  were varied for different unsteady flow 

experiments subsequently carried out in the SPC meso-tube. For every oscillatory and net flow 

condition, the mean 𝑁𝑢𝑡  was calculated from recorded data corresponding to steady-state 

operation i.e. when temperature values had become steady. Experiments were performed in the 

range 𝑅𝑒𝑛 = 11 – 54 (2 – 10 ml min-1).  

Table 2 shows the physical properties of the cooling and process fluids based on the 

mean bulk temperature (
𝑇𝑖𝑛+ 𝑇𝑜𝑢𝑡

2
) in the active length of the heat exchanger. 

 

Table 2 Temperature-dependent thermophysical properties of cooling and process fluids (Perry et al., 

1999)  

Physical properties  Process fluid at 32.5 °C   Cooling fluid at 3.5°C   

Density, 𝜌 (kg m-3) 992.80 1005 

Viscosity, 𝜇 (Pa s) 7.87 ×10-4 1.5 ×10-3 

Thermal conductivity, 𝑘 (W m-1 K-1) 0.614 0.579 

Specific heat capacity, 𝐶𝑝 (J Kg-1 K-1) 4188 4185 

Prandlt number, 𝑃𝑟  5.37 10.67 

 
 

3.3 Heat transfer model based on concentric tube heat exchanger 

Figure 3 shows a cross-section of the jacketed SPC meso-tube as a concentric tube heat 

exchanger, in which heat is exchanged across the boundary between a process fluid contained 

within an inner tube, and cooling fluid contained in the annulus. The process and cooling fluids 

flow counter-currently to each other with mass flow rates 𝑚1̇  and 𝑚2̇  (kg s-1) respectively. 

𝑇1(𝑥) and 𝑇2(𝑥) are the temperatures at a distance 𝑥 in the inner tube and annulus respectively. 

𝑇1𝑖𝑛
 and 𝑇1𝑜𝑢𝑡

 are the entry and exit temperatures of the process fluid, while 𝑇2𝑖𝑛
 and 𝑇2𝑜𝑢𝑡

 

are the entry and exit temperatures of the cooling fluid in the annulus.  
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Figure 3 Heat transfer process occurring between process and cooling fluids. 

 

Taking a differential length, 𝑑𝑥 , of this concentric tube heat exchanger, an energy 

balance can be carried out for the process and cooling fluids that yields Equations (8 – 9) 

respectively. 

 

𝑚1̇ 𝐶𝑝1
𝑑𝑇1

𝑑𝑥
= 𝐴𝐿1𝑈21(𝑇2 − 𝑇1)      (8) 

 

𝑚2̇ 𝐶𝑝2
𝑑𝑇2

𝑑𝑥
= −𝐴𝐿1𝑈21(𝑇1 − 𝑇2)      (9) 

 

where 𝐶𝑝1 and 𝐶𝑝2 are the specific heat capacities (J kg-1 K-1) of the process and cooling fluids 

respectively, and 𝐴𝐿1 is the outside heat transfer area per unit axial length of the inner tube (m2 

m-1).   

From Figure 3 above, 
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𝑇1 = (𝑇1)𝑖𝑛  at 𝑥 =  0        (10) 

      

𝑇2 = (𝑇2)𝑖𝑛  at 𝑥 =  𝐿1       (11) 

 

Equations (8 – 9) are ordinary differential equations (ODEs) that can be solved analytically 

subject to the initial and boundary conditions in Equations (10 – 11) respectively to give 

Equations (12 – 13). 

 

 

𝑇1 = −𝐶 + (𝑇1)𝑖𝑛 + 𝐶exp (𝐷𝑥)      (12) 

 

(𝑇2)𝑖𝑛 = (𝑇1)𝑖𝑛 + 𝐶((𝑋1𝐷 + 1) exp(𝐷𝐿1) − 1)    (13) 

 

where 𝐶 is an integration constant, 𝐷 = −
(𝑋1+𝑋21)

𝑋1𝑋21
, 𝑋1 =

𝑚1̇ 𝐶𝑝1

𝐴𝐿1𝑈21
, and 𝑋21 =

𝑚1̇ 𝐶𝑝1

𝐴𝐿1𝑈21
. 

 

4. Results and discussion 

4.1 Heat transfer at steady flow conditions 

Heat transfer experiments were performed in a plain meso-tube and the SPC meso-tube 

to evaluate the effect of smooth periodic constrictions on the heat transfer performance for the 

case of steady non-oscillatory flow conditions. Both tubes had an internal diameter of 5 mm. 

Figure 4 shows the tube-side Nusselt number as a function of 𝑅𝑒𝑛 for steady non-oscillatory 

flow. For the plain meso-tube, an increase in 𝑁𝑢𝑡 was observed as 𝑅𝑒𝑛 increased, confirming 
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a contribution to heat transfer that is expected from an increase in forced convection within the 

tube.  

 

 

Figure 4 Comparison of 𝑁𝑢𝑡 obtained for a plain meso-tube and the SPC meso-tube for steady flow. 

𝑅𝑒𝑛 = 10.79 – 53.97. 

 

Comparisons could not be made between 𝑁𝑢𝑡  values for the plain meso-tube and 

standard literature correlations for laminar flow in circular smooth-walled tubes. For instance, 

the experimental range of applicability of the empirical Sieder-Tate correlation for smooth 

tubes (Sieder and Tate, 1936) does not extend to such low 𝑅𝑒𝑛 ranges for which 𝑁𝑢𝑡 values 

were determined in the plain meso-tube. Hausen’s correlation (Hausen, 1959) for a broad range 

of Graetz numbers, 𝐺𝑟 = (𝑅𝑒𝑛𝑃𝑟
𝐷

𝐿
), was equally not applicable since fully developed flow 

had not been achieved in the plain meso-tube, a condition for which 𝑁𝑢𝑡 ≈ 3.66.  

For the SPC meso-tube, a stronger increase in 𝑁𝑢𝑡 was obtained with increasing 𝑅𝑒𝑛; 

this is not only attributed to the increased SAV from the presence of smooth constrictions in 

the tube, but also to a level of secondary mixing resulting from the formation of recirculation 

zones between the constrictions, as reported by Reis et al. (2005). Smooth constrictions restrict 
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fluid flow and promote eddy formation; consequently, fluid velocities are increased at regions 

around the constrictions thus enhancing the heat transfer coefficient. The maximum 𝑁𝑢𝑡 

achieved in the plain meso-tube for non-oscillatory flow was 10 times lower than the value 

obtained by Mackley and Stonestreet (1995) for a 12 mm I.D. plain tube, due to the lower range 

of 𝑅𝑒𝑛 that could be achieved practically. 𝑁𝑢𝑡  values for this range of 𝑅𝑒𝑛 (10.79 – 53.97) 

agree well with literature data for steady flow in circular pipes (Incropera and DeWitt, 2011). 

The maximum 𝑁𝑢𝑡 obtained for steady non-oscillatory flow in the SPC meso-tube was 2.60 at 

𝑅𝑒𝑛 = 53.97, which is 1.4-fold improvement over the 𝑁𝑢𝑡 obtained in the plain meso-tube for 

the same value of 𝑅𝑒𝑛. At the lowest 𝑅𝑒𝑛 investigated, the value for 𝑁𝑢𝑡 obtained in the SPC 

meso-tube was 0.26, a 10% improvement to the heat transfer in the plain meso-tube. Although 

the SPC meso-tube had a smaller overall heat transfer area (𝐴𝑆𝑃𝐶  = 0.011 m2) compared to the 

plain meso-tube (𝐴𝑝𝑙𝑎𝑖𝑛 = 0.014 m2), the resulting SAV was higher at 1190 m-1 compared to 

1138 m-1 for the plain meso-tube. The significant heat transfer enhancement arising from a 

higher SAV and presence of smooth constrictions in the SPC meso-tube is in general agreement 

with behaviour observed in the conventional sharp-edged baffled tube by Mackley and 

Stonestreet (1995). Simulation results obtained by Solano et al. (2012) for similar non-

oscillatory conditions (𝑅𝑒𝑛 = 10, 𝑅𝑒𝑜 = 0, 𝑃𝑟 = 5.5) in a 5 mm I.D. meso-tube, showed a heat 

transfer augmentation of 1.1 when a helical coil inserts were included. 

 

4.2 Heat transfer at unsteady, oscillatory flow conditions 

A second set of experiments was performed to investigate what effect an unsteady 

oscillatory flow would have on the heat transfer performance of the SPC meso-tube relative to 

steady non-oscillatory flow. For each 𝑅𝑒𝑛, 𝑓 was varied from 0 – 10 Hz to give a range of 𝑅𝑒𝑜 

at a fixed 𝑆𝑡 of 0.8 (𝑥0 = 0.5 mm). Figure 5 shows the heat transfer obtained in the SPC meso-
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tube for increasing values of 𝑅𝑒𝑜  at 𝑅𝑒𝑛  = 10.79. The introduction of a small oscillatory 

element (𝑅𝑒𝑜 = 39) caused a 22% improvement in heat transfer performance (𝑁𝑢𝑡 = 0.337) 

from the case with no oscillation (𝑁𝑢𝑡 = 0.276). A maximum 31% improvement was obtained 

at 𝑅𝑒𝑜 = 118, after which 𝑁𝑢𝑡 plateaued off, and no further heat transfer enhancement was 

detected in the system from measured steady-state data.  

 

 

Figure 5 𝑁𝑢𝑡  as a function of 𝑅𝑒𝑜. 𝑅𝑒𝑛= 10.79, 𝑆𝑡 = 0.8.  

 

Subsequent fixed net flow experiments reproduced this limited effect of oscillation on 

heat transfer performance. A stacked plot of these experiments in Figure 6 highlights a weaker 

sensitivity of 𝑁𝑢𝑡 to 𝑅𝑒𝑜, and shows that changing 𝑅𝑒𝑛 has a stronger effect on heat transfer 

performance than changing 𝑅𝑒𝑜 . Higher values of 𝑁𝑢𝑡  were obtained at higher 𝑅𝑒𝑛 , again 

highlighting the steady flow contribution to higher rates of heat transfer. Figure 6 and Figure 7 

signify that adding an oscillatory component onto a steady net flow contributes an 

inappreciable difference to heat transfer performance in the SPC meso-tube. Table 3 

demonstrates the diminishing effect of oscillations that is exhibited when net flow is increased. 
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Figure 6 𝑁𝑢𝑡 as a function of 𝑅𝑒𝑜. 𝑓 = 0 – 10 Hz, 𝑅𝑒𝑛= 10.79 – 53.97, 𝑆𝑡 = 0.8.  

 

Table 3 % improvement in 𝑁𝑢𝑡 versus non-oscillatory case 

𝑅𝑒𝑛 𝑅𝑒𝑜 = 39  𝑅𝑒𝑜 = 79  𝑅𝑒𝑜 = 118  𝑅𝑒𝑜 = 157  𝑅𝑒𝑜 = 197 

 𝜑 % imp  𝜑 % imp  𝜑 % imp  𝜑 % imp  𝜑 % imp 

10.79 3.6 22.2  7.3 29.0  10.9 31.3  14.6 29.9  18.3 29.8 

21.59 1.8 2.9  3.7 5.6  5.5 7.7  7.3 8.5  9.1 8.2 

32.38 1.2 4.0  2.4 4.9  3.6 6.7  4.8 7.4  6.1 7.1 

43.18 0.9 10.2  1.8 12.8  2.7 11.7  3.6 13.3  4.6 13.7 

53.97 0.7 8.2  1.5 15.3  2.2 16.8  2.9 15.8  3.7 15.2 

Velocity ratio, 𝜑 = 𝑅𝑒𝑜 𝑅𝑒𝑛⁄ . 

On inspecting Table 3, three observations are made: 

i. For each set of 𝑅𝑒𝑜 the greatest % improvement to heat transfer occurred at the 

lowest 𝑅𝑒𝑛  (highest 𝜑 ). Interestingly, the % improvement dropped off 

drastically for lower values of 𝜑. 

ii. For almost all sets of 𝑅𝑒𝑛 , the maximum % improvement appeared to be 

attained between 𝑅𝑒𝑜 = 118 – 157. 

iii. It could be argued for all sets of 𝑅𝑒𝑛 that beyond 𝑅𝑒𝑜 of 39 (𝑓 = 2 Hz), the % 

improvement obtained with respect to oscillatory velocity is insignificant (see 
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Figure 6), indicating no further room for heat transfer enhancement in the SPC 

meso-tube. 

The maximum 𝑁𝑢𝑡  obtained was of the order 2.74 at 𝑅𝑒𝑜 = 118, which was a 1.2-fold 

increase over the non-oscillatory result at the same 𝑅𝑒𝑛 of 53.97. The effect of oscillation 𝑓 on 

the heat transfer performance in the SPC meso-tube contrasts sharply from what has been 

observed in the sharp-edged baffled tube. Experimental results by Mackley and Stonestreet 

(1995) for the baffled tube showed that varying 𝑓 has a strong effect on heat transfer, and that 

𝑁𝑢𝑡 increases almost linearly with 𝑅𝑒𝑜. On the other hand, variations in 𝑆𝑡 had only a small 

effect on the heat transfer performance. This dissimilarity can be attributed to the difference in 

scale of both tubes. The smaller-diameter SPC meso-tube has a greater surface area-to-volume 

ratio (SAV = 1190 m-1) than the baffled tube (SAV ≈ 389 m-1). As the hot process fluid enters 

the SPC meso-tube, the abundant heat transfer surface area facilitates rapid heat transfer across 

the wall to the annulus fluid and a depletion of temperature driving force occurs exponentially 

along the tube. The introduction of an oscillatory element contributes to ℎ𝑡, leading to faster 

temperature decay in a shorter distance. The plateauing of 𝑁𝑢𝑡 observed in the SPC meso-tube 

can be explained as the absence of driving force for further heat transfer due to the process 

fluid temperature closely approaching the wall temperature at the tube outlet. In view of this, a 

significantly shorter SPC meso-tube would be required to obtain any significant heat transfer 

augmentation from oscillatory flow. Due to practical limitations, it was not possible to capture 

temperature readings at intermediate points along the SPC meso-tube. 

Figure 7 reveals the dependency of oscillatory flow heat transfer enhancement on the 

steady flow component. The greatest % improvement from the steady flow component was 

obtained by doubling 𝑅𝑒𝑛 from 10.79 to 21.59. This corresponded to the greatest decline in % 

improvement from the oscillatory flow component. As net flow was increased, the % 
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improvement to 𝑁𝑢𝑡 from the steady flow component quickly passed through a maximum and 

subsequently plateaued owing to further depletion of temperature driving force at higher 𝑅𝑒𝑛 

in the SPC meso-tube. 

 

 

Figure 7 % improvement in 𝑁𝑢𝑡 as a function of 𝑅𝑒𝑛. 

 

The dependency observed is such that a stronger steady flow contribution to heat transfer is 

accompanied by a weaker oscillatory flow contribution and vice versa, as dictated by the 

overall driving force available. Also, since the overall driving force becomes increasingly 

limited as 𝑅𝑒𝑛 is increased, the heat transfer enhancement due to oscillatory flow is effectively 

damped at higher 𝑅𝑒𝑛.  

The effect of 𝑆𝑡 on the heat transfer performance was also studied by varying 𝑥0. Figure 

8 shows 𝑁𝑢𝑡 as a function of the maximum oscillatory velocity, 2𝜋𝑓𝑥0 (m s-1). For this scale, 

it is evident that the heat transfer performance has a limited dependence on oscillatory velocity, 

and is impaired by lower 𝑆𝑡. 



21 

 
 

  

Figure 8 Tube-side heat transfer as a function of 2𝜋𝑓𝑥0 for oscillatory flow. 𝑅𝑒𝑛 = 43.18. 𝑓 = 2 – 10 

Hz, 𝑆𝑡 = 0.2 – 0.8. 

 

Each set of 𝑥0 exhibited an initial sharp increase in 𝑁𝑢𝑡, followed by a plateauing beyond 𝑓 = 

6 Hz. Unsurprisingly, the maximum 𝑁𝑢𝑡 was obtained at 𝑆𝑡 of 0.8, which coincides with the 

optimal 𝑆𝑡 identified in previous work for good plug flow mixing in the SPC meso-tube. For 

such small magnitudes of 𝑁𝑢𝑡, the Strouhal number can be said to have a significant effect on 

heat transfer in the SPC meso-tube.  

 

4.3 Empirical correlation for the tube-side Nusselt number  

4.3.1 Identification of parameters and experimental fitting 

Figure 9 describes the relationship between the tube-side heat transfer, steady flow, and 

unsteady oscillatory flow in the SPC meso-tube. 𝑅𝑒𝑛 was varied from 11 – 54 and the sets of 

𝑅𝑒𝑜 = 39, 79, 118, 157, 197 on the plot correspond to 𝑓 = 2, 4, 6, 8, 10 Hz respectively. Overall, 

in the SPC meso-tube higher rates of heat transfer were achieved at higher Ren values by 

superimposing an oscillatory element on steady net flow. At higher 𝑅𝑒𝑛, the oscillatory curves 

diverge from the steady flow curve. This is in stark contrast to the relationship observed in the 
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conventional sharp-edged baffled tube, where at larger values of 𝑅𝑒𝑛, the best-fitted oscillatory 

curves tend asymptotically towards the best-fitted steady flow curves (Mackley and Stonestreet, 

1995).  

 

 

Figure 9 Experimental and best-fitted tube-side Nusselt number as a function of both 𝑅𝑒𝑜 and 𝑅𝑒𝑛 for 

the SPC meso-tube. 

 

An empirical correlation was developed to describe the dependency of 𝑁𝑢𝑡 on the steady 

flow and oscillatory flow in the SPC meso-tube. Equation (14) shows the structure of this 

correlation with a total of 7 parameters that were considered and represented as 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾, 𝜃. 

 

𝑁𝑢𝑡 = 𝑎𝑅𝑒𝑛
𝛼𝑃𝑟𝛽 + 𝑏 [𝑅𝑒𝑜

𝛾𝑅𝑒𝑛
𝜃 𝑆𝑡

𝑐
]      (14) 

 

 The identification of the complete set of 7 parameters, without distinction, using the 

experimental data available, can lead to poor parameter estimates that degrade the prediction 

capability of the correlation. This is commonly due to the correlation between parameters or 

their effects within the selected experimental space, and/or the weak effect of some parameters 
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on the output prediction, in this case 𝑁𝑢𝑡. To address this issue, it was necessary to determine 

the optimal subset of parameters and their estimates that capture effectively the experimental 

data and maximise the prediction capability of the correlation. One of the effective ways to 

achieve this objective was to implement an estimability analysis (also called practical 

identifiability) (Yao et al., 2003; Benyahia et al., 2013).  

 

4.3.2 Estimability analysis 

Prior to the final parameter identification step, it was necessary to determine the subset 

of parameters with the strongest influence on the measured output based on available data, as 

well as the correlation between the parameter effects using the method of estimability or 

practical identifiability analysis. The result of an estimability analysis is usually a number of 

parameters that are sufficient to represent the information provided by the experimental data. 

Usually, the non-estimable parameters are set to nominal values, or the entire correlation is 

redefined to remove these parameters (Yao et al., 2003). Accurate estimation of the model 

parameters is required to obtain reliable predictions of 𝑁𝑢𝑡, and consequently the heat transfer 

performance of the SPC meso-tube.  

The development of an effective solution to the parameter selection problem required 

the quantification of the influence of each parameter on the measured outputs. This approach 

indicates which parameters are the most important and most likely to affect predictions of the 

correlation. The first step of the method is the evaluation of the sensitivity coefficients: 

 

 

𝑆𝑖𝑗 =
𝜕𝑦̂𝑖

𝜕𝑝𝑗
, 𝑗 = 1,2, … 𝑛𝑝       (15) 
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where 𝑛𝑝 is the number of parameters. Because of the different orders of magnitude of the 

various parameters in the correlation, it is necessary to normalize the sensitivity coefficients 

with respect to the nominal values of the parameters and their corresponding output predicted 

by the correlation. This will allow for a reliable comparison between the effects of different 

parameters on the predications of the correlation. 

 

𝑆𝑖𝑗|𝑡=𝑡𝑘
=

𝑝̅𝑗

𝑦̅𝑖|𝑡=𝑡𝑘

𝜕𝑦̂𝑖

𝜕𝑝𝑗
|
𝑡=𝑡𝑘

       (16) 

 

where 𝑝̅𝑗 is the nominal value of the 𝑗th parameter and 𝑦̅𝑖|𝑡=𝑡𝑘 is the correlation prediction of 

the 𝑖th output evaluated at a sampling time 𝑡𝑘 using the nominal vector of the parameters (𝒑̅).  

The overall sensitivities of the different outputs with respect to the full set of parameters 

was summarised in a matrix of sensitivity coefficients (𝒁). Each column of this matrix evaluates 

the global effect of a given parameter on the process outputs at different measurement times, 

whereas each row represents the effect of the full set of parameters on a given output at a fixed 

time of measurement.  

 

𝒁 =

[
 
 
 
 
 
 
 
 
 𝑆11|𝑡=𝑡1 ⋯ 𝑆1𝑛𝑝

|
𝑡=𝑡1

⋮ ⋱ ⋮

𝑆𝑛𝑦1|
𝑡=𝑡1

⋯ 𝑆𝑛𝑦𝑛𝑝
|
𝑡=𝑡1

𝑆11|𝑡=𝑡2 ⋯ 𝑆1𝑛𝑝
|
𝑡=𝑡2

⋮ ⋱ ⋮

𝑆𝑛𝑦1|
𝑡=𝑡𝑛𝑚

⋯ 𝑆𝑛𝑦𝑛𝑝
|
𝑡=𝑡𝑛𝑚]

 
 
 
 
 
 
 
 
 

      (17) 

 

After the selection of the nominal values of the parameters from preliminary parameter 

estimation (Table 4) the sensitivity matrix was computed numerically in MATLAB® 2016, 
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based on a sequential orthogonalisation algorithm (Benyahia, 2010). The resulting correlation 

for the tube-side Nusselt number is shown in Equation (18): 

 

𝑁𝑢𝑡 = 0.01616𝑅𝑒𝑛
1.16𝑃𝑟0.3 + 0.0016 [𝑅𝑒𝑜

0.08𝑅𝑒𝑛
1.42 𝑆𝑡

1.136
]  (18) 

 

The first term of the correlation represents the steady flow contribution to heat transfer, 

while the second term is the augmentation provided when an oscillatory component is 

superimposed on steady net flow. Note the inclusion of the dimensionless Strouhal number in 

the oscillatory term, as this was found to have a separate effect from 𝑅𝑒𝑜 on 𝑁𝑢𝑡. Much of the 

contribution to heat transfer comes from the steady net flow, as is indicated by the higher 

coefficient of the first term. The steady flow term is an analogue of the Dittus Boelter turbulent 

flow equation, as is the first term of the Mackley-Stonestreet correlation in Equation (19). The 

exponent of 𝑅𝑒𝑛 accounts for the presence of smooth periodic constrictions; this value is lower 

than that of the Mackley-Stonestreet correlation and represents the less chaotic conditions 

created by smooth constrictions and steady flow in this range of 𝑅𝑒𝑛 investigated. 

 

𝑁𝑢𝑡 = 0.0035𝑅𝑒𝑛
1.3𝑃𝑟0.3 + 0.3 [

𝑅𝑒𝑜
2.2

(𝑅𝑒𝑛+800)1.25]    (19) 

 

 

The oscillatory term in the correlation suggests that the effect of oscillation is multiplied 

by the steady flow, and that oscillations by themselves have a negligible effect. Thus, for a 

fixed 𝑅𝑒𝑜, higher values of 𝑁𝑢𝑡 are achieved by increasing 𝑅𝑒𝑛. The opposite is observed in 

the Mackley-Stonestreet correlation, where for 𝑅𝑒𝑜 ≫ 𝑅𝑒𝑛 , the effect of oscillation is 

superimposed on steady behaviour. The effect of St is captured by the relationship with its 
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coefficient; such that for smaller St, the heat transfer contribution from the oscillatory term 

diminishes regardless of 𝑅𝑒𝑜, and values of 𝑁𝑢𝑡 fall closer to those for steady non-oscillatory 

flow in the SPC meso-tube. In the absence of oscillations, Equation (18) simplifies to the first 

term only and corresponds to the best-fitted curve for steady flow in Figure 9. It is important 

to state that this correlation was derived for an SPC meso-tube with an active length of 0.65 m 

and fitted for measured 𝑁𝑢𝑡  values within the experimental range of 𝑅𝑒𝑛  and 𝑅𝑒𝑜  defined 

earlier. 

 

Table 4 Nominal values of the correlation parameters 

Parameter Value 
𝑎 0.01616 

𝑏 0.0016 

𝑐 1.136 

𝛼 1.16 

𝛽 0.3 

𝛾 0.08 

𝜃 1.42 

  

On implementing the orthogonalisation algorithm, the parameters were ranked 

according to their estimability potential. The most estimable parameters present the highest 

effect (the column of the matrix Z with the highest magnitude or Euclidean norm) and lowest 

pairwise correlation coefficients. Cut-off values were identified to help determine the set of 

parameters that capture more reliably, the information contained in the experimental data and 

consequently, maximise the prediction capability of the correlation. Depending on the selected 

cut-off value, different parameter sets could be obtained. Table 5 shows that the parameter with 

the highest estimability potential in the correlation is 𝛼, which is the exponent of 𝑅𝑒𝑛 in the 

steady term. The second parameter is 𝜃, corresponding to the 𝑅𝑒𝑛 exponent in the oscillatory 

term; and the third most estimable parameter is 𝑎, the coefficient of 𝑅𝑒𝑛 in the steady term. 
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Table 5 Subsets of the most estimable parameters obtained for different cut-off values 

Cut-off value, λ ℙ 

15.4 𝛼 
1.83 𝛼     𝜃 

0.02 𝛼     𝜃     𝑎 

4 ×10-3  𝛼     𝜃     𝑎     𝑏 

17 ×10-4 𝛼     𝜃     𝑎     𝑏     𝑐 

9 × 10-17 𝛼     𝜃     𝑎     𝑏     𝑐     𝛾 

4.2 × 10-18 𝛼     𝜃     𝑎     𝑏     𝑐     𝛾    𝛽 

 

The selection of 𝛼 as the strongest parameter emphasises the paramount importance of 

the smooth constrictions to the heat transfer characteristics of the SPC meso-tube as 

demonstrated by Figure 4. 

 

Table 6 Ranking of the parameters with the highest estimability potential 

Parameter Rank 

𝛼 1 

𝜃 2 

𝑎 3 

𝑏 4 

𝑐 5 

𝛾 6 

𝛽 7 

 

Aside Table 4, the effect of the cut-off value on the optimal number of required parameters is 

depicted in Figure 10. This indicates that three parameters would be sufficient to explain the 

heat transfer behaviour in the SPC meso-tube, given a cut-off value of 1%, as suggested in the 

literature (Yao et al. 2003; Benyahia et al. 2013). To further refine and maximise the outcomes 

of the estimability method, we need to quantify the effect of the number of parameters to be 

identified, or the size of the optimal set of the most estimable parameters, on the model 

prediction performance compared to the experimental data. This effect is depicted in Figure 11 

as the optimal value of the maximum likelihood criterion versus set size of the most estimable 

parameters, starting from one parameter (i.e. the most estimable parameter 𝛼). Again, Figure 

11 shows that 3 parameters provide a sufficient set to build a reliable correlation for the tube-
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side Nusselt number. However, a further improvement of the agreement between the 

predictions and experimental measurements was obtained by selecting more parameters. A 

satisfactory trade-off between a minimum number of parameters and high accuracy of the 

prediction was finally met with 6 parameters selected among the 7 correlation parameters.  

  

 

Figure 10 Number of selected parameters vs. cut-off value in tube-side Nusselt number correlation. 

 

The selection of 𝛾 as the sixth parameter once again highlights the weak influence of 

oscillations on heat transfer augmentation in the SPC meso-tube. The selection of 𝑐 as the fifth 

parameter points out that 𝑆𝑡 plays a more significant role than oscillation 𝑓.  𝜃, an exponent of 

𝑅𝑒𝑛 in the oscillatory term, was ranked as the second strongest parameter; this affirms that the 

total contribution from the oscillatory term is largely provided by the net flow component. This 

also agrees with experimental findings that varying 𝑅𝑒𝑛 has a stronger effect on heat transfer 

than varying 𝑓. Overall, from the ranking of parameters, it is now clear that the control of heat 

transfer in the SPC meso-tube is dictated by the smooth constrictions and net flow velocity.  
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The 6 parameter estimates in Figure 11 were obtained by minimizing the maximum 

likelihood criterion (Walter and Pronzato, 1994), which in this case is the sum of square 

differences between the experimental measurements and the correlation predictions. The 

relationship between the sum of square differences (SSE) and the number of parameters was 

similar to that found in Figure 10. 

 

Figure 11 Effect of minimizing the maximum likelihood criterion on the number of parameters. 

 

The parameter 𝛽, which corresponds to the exponent of the Prandlt number, 𝑃𝑟, was 

found to have an infinitesimal effect on 𝑁𝑢𝑡, and as a result was not selected in the final subset 

of estimable parameters. 𝛽 was kept fixed at its nominal value, and the dependence of 𝑁𝑢𝑡 on 

𝑃𝑟 was not investigated. This means that the correlation may be re-parameterized to exclude 

𝛽, without compromising on the accuracy of predictions of 𝑁𝑢𝑡. 
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5. Conclusions  

Experimental investigations into the heat transfer characteristics of the SPC meso-tube 

showed that smooth constrictions within the SPC meso-tube significantly enhance the tube-

side heat transfer, a behaviour consistent with general observations in conventional SEPC 

OBRs. An estimability analysis revealed the strong dependency of heat transfer rate on the 

smooth constrictions and bulk (net) flow velocity, rather than oscillatory flow as established in 

SEPC OBRs. For the active length of SPC meso-tube investigated, it was found that oscillations 

provided a limited heat transfer augmentation, however oscillatory flow is expected to provide 

further heat transfer enhancement in tubes of much shorter active lengths or higher diameter-

to-length ratio (𝐷 𝐿1 >⁄  0.0076). For the experimental conditions investigated, heat transfer 

rate was found to be weakly dependent on the oscillatory velocity; instead, having a strong 

dependency on the steady net flow. The heat transfer rate was found to show more sensitivity 

to the Strouhal number than oscillation frequency, with the SPC meso-tube showing poorer 

heat transfer performance for 𝑆𝑡 < 0.8; a contrasting behaviour to that observed by Mackley 

and Stonestreet (1995) for the sharp-edged baffled tube. 

The data presented in this work highlights the similarities and differences of the heat 

transfer characteristics in SPC meso-tubes and SEPC OBRs. A correlation to describe the heat 

transfer behaviour of the SPC meso-tube was fitted to experimental data for a range of 𝑅𝑒𝑛 = 

10.79 – 53.97 and 𝑅𝑒𝑜 = 0 – 197, and a systematic and rigorous approach based on parameter 

estimability was used to enhance the prediction capability the correlation. The relationship 

described by the correlation suggests that the effect of oscillation is multiplied by the steady 

flow, and that oscillations by themselves have a negligible effect. The opposite is observed in 

the Mackley-Stonestreet correlation, where for 𝑅𝑒𝑜 ≫ 𝑅𝑒𝑛 , the effect of oscillation is 

superimposed on steady behaviour.  
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While the new correlation can reliably predict the tube-side Nusselt number within this 

range of experimental conditions, its veracity is dependent on the baffle type present in the 

tube, in this case smooth periodic constrictions. Its predictions will also hold true for SPC 

meso-tubes of similar diameter-to-length ratio.  
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