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ABSTRACT The efficacy of data decoding in contemporary ultrafast fiber transmission systems is greatly
determined by the capabilities of the signal processing tools that are used. The received signal must
not exceed a certain level of complexity, beyond which the applied signal processing solutions become
insufficient or slow. Moreover, the required signal-to-noise ratio (SNR) of the received signal can be chal-
lenging, especially when adopting modulation formats with multi-level encoding. Lately, photonic reservoir
computing (RC)–a hardware machine learning technique with recurrent connectivity–has been proposed as
a post-processing tool that deals with deterministic distortions from fiber transmission. Here, we show that
RC post-processing is remarkably efficient for multilevel encoding and for the use of very high launched
optical peak power for fiber transmission up to 14 dBm. Higher power levels provide the desired high SNR
values at the receiver end, at the expense of a complex nonlinear transformation of the transmission signal.
Our demonstration evaluates a direct fiber communication link with 4-level pulse amplitude modulation
(PAM-4) encoding and direct detection, without including optical amplification, dispersion compensation,
pulse shaping or other digital signal processing (DSP) techniques. By applying RC post-processing on the
distorted signal, we numerically estimate fiber transmission distances of 27 km at 56 Gb/s and of 5.5 km at
112 Gb/s data encoding rates, while fulfilling the hard-decision forward error correction (HD-FEC) bit-error-
rate (BER) limit for data recovery. In an experimental equivalent demonstration of our photonic reservoir,
the achieved distances are 21 and 4.6 km, respectively.

INDEX TERMS Machine learning, nonlinear dynamics, optical signal processing, reservoir computing,
semiconductor lasers.

I. INTRODUCTION
Building cost-efficient and low-complexity systems using
intensity modulation / direct detection (IM/DD) schemes at
1550nm for data center, access, and metro communications
is subject to severe limitations [1], [2]. Data recovery at the
communicating end must be capable of dealing with chro-
matic dispersion, the square-law photodetection nonlinearity,
as well as with Kerr-induced nonlinearity in the presence
of high-power optical signals [3]. In all implementations of
this type of communication, the use of digital signal process-
ing (DSP) – offline or real-time – has been essential to miti-
gate transmission and detection impairments and to perform
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equalization tasks [4]–[8]. Even in the absence of physical
dispersion compensation, standard single mode fiber (SSMF)
transmission lengths up to 300km, using PAM-4 encoding at
1550nm, have been reported with the use of optical ampli-
fication [9]–[11]. Configurations without introducing opti-
cal amplification also perform remarkably well in a short
transmission range, by using DSP techniques such as pre-
compensation dispersion at the transmitter, decision feedback
equalizers and maximum likelihood sequence estimations.
For example, a transmission distance of 26.4km has been
reported at 56Gb/s in a single 1550nm SSMF channel [12].
Pushing such systems to operate at the limit by optimiz-
ing the bandwidth-distance product increases the demands
for technologically advanced signal processing. The afore-
mentioned works optimize DSP, by considering the signal
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properties after SSMF fiber transmission. Yet, this is not
the only strategy to optimize the performance of the fiber
transmission system. Machine learning (ML) and neural net-
work (NN) techniques start to show their potential in address-
ing problems related to fiber-based transmission systems
[13]–[16]. Lately, transmission impairments have also been
mitigated using various ML and NN approaches [17]–[20].
The latter may achieve similar performance to DSP solu-
tions which have been specifically designed to address a
given transmission topology. Hardware-friendly ML tech-
niques, such as RC [21], represent attractive alternatives to
the conventional ML approaches. Implementations based on
photonic RC have set a new framework for solving diverse
classification and equalization tasks [22]–[30]. Very recently,
RC based on a semiconductor laser with optical feedback has
been proposed by the authors to address signal recovery in
optical communication systems [31], [32], while later other
RC topologies have also been tested for signal equalization
from optical transmission systems [33], [34].

While in [31] the evaluated transmission systems had not
so strict SNR requirements for signal detection, due to a
2-level encoding at lower bit rates, here we demonstrate the
potential of photonic RC in a parameter spacewell beyond the
one used in classical implementations of optical communica-
tion systems. We focus on a specific communication system
that currently applies to short-reach passive networks. This
is the 4-level amplitude modulation encoding (PAM-4) at bit
rates of 56Gb/s and 112Gb/s. The deployment of this system
has specific requirements for high optical SNR (OSNR) sig-
nal detection. Thus, in order to obtain high OSNR and trans-
mit at the longest distance possible without any amplification,
we propose to increase the launched optical power for trans-
mission at levels that are not conventional. Such high power
induces strong nonlinear signal distortion that is not easy to
cope with using conventional digital signal processing. In this
workwe demonstrate that the highly nonlinear transformation
that the signal undergoes after transmission at launched opti-
cal peak power levels up to 14dBm is remarkably equalized
by the photonic RC.

In the next section we describe the transmission sys-
tem configuration that provides the nonlinearly distorted
signals and the subsequent RC post-processing technique.
In section III, we evaluate the data recovery performance
versus the reservoir operating point, the properties of the
transmission signal in terms of OSNR and launched optical
peak power and the RC training conditions. In section IV,
we validate the numerical findings in an experiment, feeding
the detected transmission signals into a fiber-based, photonic
reservoir. The operating conditions of the implemented reser-
voir are determined by the optimization mapping presented
in [32]. Finally, section V summarizes the findings of this
study.

II. SYSTEM CONFIGURATION
The proposed methodology is illustrated in a flow chart
in Fig. 1. A communication channel is simulated, while the

FIGURE 1. Flow chart of the proposed topology for post-processing the
received signals from the communication channel using a photonic
reservoir. Black (straight) lines show physical system connectivity.
Red (dashed) lines show computational connectivity.

decoding process is assisted by a photonic reservoir that
performs a physical nonlinear transformation with memory
properties. The output reservoir signal – along with the initial
encoded data-stream information – is used to train a linear
regression algorithm. This allows us to evaluate independent
data sets of the communication channel. Finally, a comparator
between the encoded and the decoded data sets evaluates the
error rate level of the communication channel.

A. FIBER TRANSMISSION
We numerically simulate a simple physical transmission
SSMF channel (Fig. 2a) of length L via the coupled nonlin-
ear Schrödinger equations (CNLSE). We consider a PAM-4
IM/DD transmission system designed for 1550nm at data
rates of R1 = 56Gb/s and R2 = 112Gb/s and we examine
the simplest possible structure for point-to-point transmis-
sion. Thus, we do not consider any optical amplification,
dispersion compensation, filtering for pulse shaping or tra-
ditional DSP techniques for equalization and nonlinear mit-
igation that require a prior knowledge of the transmission
channel. The model considers two orthogonal polarization
modes and stimulated Brillouin and Raman scattering, while
inter-channel nonlinear effects (such as cross-phase modu-
lation and four-wave mixing) do not apply for our single-
channel consideration [35]. A distributed feedback (DFB)
semiconductor laser (SL) emits at 1550nm with a relative
intensity noise (RIN) set to -150dB/Hz, while an equidistant
4-level amplitude encoding of the data stream is applied
through a Mach-Zehnder modulator (MZM) operating in the
linear regime. Bandwidth-limited photodetection is assumed
through a PIN receiver with transimpedance gain (TIA) that
includes thermal and shot noise effects, with a frequency
cutoff at 0.7 of the data encoding bit rate. Thus, optical noise
in our system originates entirely from the laser source. The
rest of parameters used for the transmission simulation are
shown in table 1. A critical parameter in our study is the high
launched peak optical power for transmission, which also
results in a received signal with high OSNR. For the different
cases of the system data rates {R1, R2} we consider such
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transmission lengths {L1, L2} = {27km, 5.5km} that lead to a
performance below the BER HD-FEC limit (3.8 · 10−3) [36]
after the proposed RC processing. In absence of any post-
processing, signal recovery exhibits a BER value as high as
0.2 for both bit rates.

B. RESERVOIR COMPUTING POST-PROCESSING
In the adopted reservoir topology, the optical signal from
transmission is photodetected – s(t) – before being intro-
duced to the photonic reservoir. This optoelectronic conver-
sion stage abolishes the polarization and phase properties
of the optical signal before entering the reservoir, allowing
only the intensity information to be processed. The photonic
reservoir, as an independent optical system, operates in its
own polarization state and, therefore, is robust to any polar-
ization changes in the transmission channel. An attractive
consideration for future investigations is an all-optical reser-
voir input stage, where the optical signal from transmission
is fed directly into the photonic reservoir. However, such an
approach imposes additional challenges for the implementa-
tion, such as continuously preserving the same polarization
state between the received optical signal from transmission
and the operating photonic reservoir. A coherent implemen-
tation of the reservoir, extending the concept for coherent
encoding and detection schemes is beyond the scope of this
manuscript.

Before processing the detected signal s(t) from transmis-
sion, it is normalized – snorm(t) ∈ [0, 1] – and multiplied by
a random mask sequence of random values m(t) ∈ [0, 1].
The masking is applied to every single baud pattern. Its
role in this approach is to increase the dimensionality of
the state-space representation of the signal to be processed.
The masked signal m(t) · snorm(t) is then introduced into the
photonic reservoir as an optical signal via a MZM operating
near the linear regime. The photonic reservoir represents a
time-multiplexed photonic network, as originally introduced
in [22]. In the proposed implementation, the input signal
m(t) · snorm(t) is nonlinearly transformed and collected at the
output of the reservoir (src(t)). From this output one can
extract ultra-fast transient states in order to train a linear
classifier and obtain the reconstructed initial transmitted data
stream.

The considered implementation of the photonic reservoir is
shown in Fig. 2b. It is formed by a reservoir SL and an optical
delay line of τ that introduces recurrent connectivity between
the virtual nodes defined in the optical delay path. We define
N = 32 equidistant virtual nodes and thus N transient states
with spacing θ = τ/N along the optical delay. The number
of virtual nodes dictates also the scale of oversampling we
apply on s(t), as well as the dimension of m(t), so that every
transient state emerges from a masked input value. Every
baud pattern in the transmission simulation is described by
8 samples. Thus, an oversampling of 4 is applied to this
signal, while the mask vector consists of 32 random values.
Consequently, the dimensionality of the processed signal is
increased due to the reservoir transformation. The number of

FIGURE 2. (a) Configuration of a PAM-4 IM/DD transmission system
without dispersion compensation, optical amplification or DSP. The
eye-diagrams refer to the detected signal after back-to-back operation
and after SSMF transmission of 27km, at 56Gb/s. (b) Photonic reservoir
concept for signal post-processing based on a SL and a single feedback
delay line. OS: optical splitter, CIR: optical circulator.

samples as well as the number of virtual nodes used in this
demonstration is less than the ones presented in the exper-
imental RC topology of [31], where the dimensionality of
the input was preserved during the reservoir transformation.
From the two distinct time scales defined in the processing
methodology – the duration of one pattern (baud) and the
duration of time delay of the reservoir – one can easily deduct
the induced speed penalty. Since each baud pattern (2 bits of
information in one time-frame unit) is assigned to the N vir-
tual nodes of the reservoir’s time delay, this time-multiplexing
reservoir implementation is an offline process. The speed
penalty (SP) of the processing step is: SP = (R/2) · τ , where
R is the encoding bit rate and τ is the time delay of the
reservoir’s optical feedback loop. For example, in the case
of R1 and τ = 0.8ns, SP is equal to 22.4.
The optical feedback received by the reservoir is controlled

by tuning the internal attenuation (ATT). Thus, the nonlinear
transformation originates from both reservoir SL and time-
delayed feedback. The numerical model follows the Lang-
Kobayashi rate equations of a SL with time-delayed feed-
back, with an additional optical injection dynamical termwith
frequency detuning 1f = finj–fr . An analytical description
of the model with optical feedback and optical injection of
frequency detuned signals can be found in [37]. The slowly
varying electrical field amplitude Er (t) corresponding to the
optical emission of the response SL is calculated using the
following equations:
dEr (t)
dt
=

1
2
(1+ ja)

[
Gr (t)− t

−1
ph

]
· Er (t)+

kf
tin

·Er (t − τ )ejω0τ +
kinj
tin
· Einj(t)e−j1ωt +

√
D · ξ (t)

(1)
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dNr (t)
dt
=

I
q
−
Nr (t)
ts
− Gr (t) · |Er (t)|2 (2)

Gr (t) = gn · [1+ s|Er (t)|2]−1 · [Nr (t)− N0] (3)

Einj(t) = Einj,0 ·
[
1
2
+ m(t) · a(t)

]
(4)

The signal to be processed by the reservoir is inserted bymod-
ulating an independent optical carrier (injection SL) through
the linear operation of a MZM and its optical output is
injected into the reservoir SL. The injected electrical field to
the reservoir is of the form of (4), with an average amplitude
of Einj,0. A Gaussian white noise term ξ (t) is included for
the electrical field with amplitude D = 3ns−1. q is the
electron charge. The rest of parameters used for simulating
the reservoir are summarized in table 1.

TABLE 1. Parameters for the numerical analysis.

At the final readout stage, a weighted summation of all vir-
tual nodes’ responses src(t) is performed to predict each baud
value. We determine the weights (predictor variables) via an
offline linear (ridge) regression (LR) algorithm. We consider
streams of 217 baud patterns (218 bits) in all studied cases,
75% of which are used for training and 25% for cross-
validation tomonitor the training efficiency. Independent data
streams of equal length are then used as test sets in order to
evaluate the system’s performance. The time-varying signals,
along with their spectral profiles, are shown in Fig. 3, at dif-
ferent stages when passing through the system: the launched
optical signal in the fiber transmission link (upper, black line),
the detected signal after fiber transmission (middle, red line)
and the randomlymasked signal from detection that is fed into
the reservoir, after offline time stretching (lower, blue line).

FIGURE 3. (a) Segment of a PAM-4 time-series at R1 and
(b) corresponding power spectra of the: 10dBm launched optical signal in
the fiber transmission link (upper, black), detected signal after L1 SSMF
transmission (middle, red) and randomly masked detected signal that is
fed into the reservoir, after offline time stretching (lower, blue).
Time-series are normalized with standard deviation σ = 1 for
visualization.

III. RESULTS AND DISCUSSION
Semiconductor lasers with optical feedback, which are in
addition subject to an external continuous optical injection,
are systems of great interest due to the complex dynam-
ics they exhibit [37]. When the injection is dynamical,
the response of the system becomes even more complex and
potentially high-dimensional and significantly affected by
the properties of the injected optical signal. The reservoir
system that we are exploring here exhibits such attributes.
Therefore, for a given parameter set, the reservoir will exhibit
various dynamical responses. A systematic dynamical analy-
sis of such systems has not yet been provided in literature.
Nevertheless, there are other – statistical – features of the
responses that can provide some useful information regarding
the system operation. One of them is the signal-to-noise ratio
(SNR) of the reservoir output. By combining the attributes of
the SNR and the final BER performance of the reservoir clas-
sifier, one can categorize the reservoir’s behavior into three
different classes, depending on the frequency detuning of the
injected light into the reservoir and its feedback strength:
(a) a fully injection-locked operation, where the reservoir
applies a rather small signal transformation, (b) a partially
injection-locked operation where the reservoir response is a
stronger nonlinear transformation of the injected signal, and
(c) and an unlocked operation where the reservoir response is
less consistent to the injected signal [38]. In the presence of
strong optical feedback, the chaotic operation of the reservoir
becomes dominant. The latter operating regime shows incon-
sistent responses to a given input and is not appropriate for
computation tasks.

In Fig. 4a, we show the SNR of the reservoir output signal
versus the frequency detuning 1f and the feedback ratio kf ,
for {R1, L1} and θ = 50ps. In the full injection locked regime
a very high SNR of the reservoir’s response is recorded. Espe-
cially around the region of1f = −10GHz, the SNR exceeds
40dB. This is observed for low andmoderate feedback values.
For high feedback conditions, chaotic emission dominates
and SNR becomes independent of the frequency detuning of
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FIGURE 4. (a) SNR of the reservoir response signal and (b) BER
evaluation of a PAM-4 56Gb/s test time-series after reservoir computing
post-processing, versus the frequency detuning 1f between the reservoir
laser and the injection laser and the optical feedback parameter kf . The
reservoir delay is τ = 1.6ns (θ = 50ps). BERLR = 0.037 and
BERHD−FEC = 3.8 · 10−3. (c), (d): Same as (a), (b) but for τ = 0.8ns
(θ = 25ps).

the injected signal. In Fig. 4b we contrast the classification
efficiency of the RC in terms of BER in an equivalent map.
For full injection locking operation (1f = −10GHz), even
though SNR is high, RC underperforms. Reservoir emission
with high SNR can also be obtained for strong feedback
conditions (kf > 0.15), where chaotic dynamics is dominat-
ing. Also under these conditions, the decoding performance
of the reservoir is poor. Feedback-induced chaotic dynamics
prevails over the properties of the injected signal that is to be
processed. In contrast, completely unlocked operation of the
reservoir is obtained for large |1f | values. Such conditions
result in much smaller dynamical transients being induced in
the reservoir. Consequently, the low SNR reservoir responses
deteriorate the classification performance. For partial dynam-
ical injection locking, however, we observe that RC signif-
icantly outperforms our benchmark, which is obtained by
applying the linear regression directly to the transmission out-
put signal (Fig. 4b, BERLR = 0.037, blue dashed line). For
1f = 0GHz and kf = 0.05 the trained RC provides a signal
recovery with BERRC,min = 2 ·10−3, lower than the required
hard-decision forward error correction threshold for error free
decoding. In fact, there is a finite parameter region in the
presented map where the obtained BER values are below the
HD-FEC threshold (Fig. 4b, BERHD−FEC, white dashed line).
For the partial locking conditions, the SNR of the reservoir
output signal is sufficient for the classification task, while the
reservoir memory is maximized, as found in [38].

The temporal characteristics of the transient responses
used for the reservoir computation affect the training perfor-
mance. After endorsing a sufficient number of virtual nodes
per baud pattern – in our case N = 32 – shorter reservoir
delays can also be considered by reducing the virtual node
separation.We reduce θ to 25ps and repeat the previous inves-
tigation (Fig. 4c,d). The mapping of the SNR (Fig. 4c) and
the RC BER (Fig. 4d) performance is comparable. However,
the HD-FEC limit is now achieved in a narrower regime
of operating conditions, with a BERRC,min = 2.5 · 10−3,
slightly higher than for θ = 50ps. This virtual node spacing
is rather at the edge of the bandwidth limitations for such
systems, establishing also a minimum speed penalty for the
time-multiplexed reservoir processing.

FIGURE 5. (a) Sample of timeseries of the normalized masked input that
enters the photonic reservoir and the corresponding output of the
reservoir, for different operating conditions and dynamical regimes:
(b) 1f = −10GHz and kf = 0.05, for full injection-locking, (c) 1f = 0GHz
and kf = 0.2, for chaotic emission, and (d) 1f = 0GHz and kf = 0.05, for
partial injection-locking. τ = 1.6ns (θ = 50ps).

As discussed in this section, a systematic stability and
dynamical analysis of this nonlinear system with dynamical
external injection is lacking and hard to obtain. Moreover,
an easy mapping of the reservoir’s nonlinear transformation
is not possible, since it is not static and high-dimensional.
However, we can visualize the signal transformation in time-
domain, for various dynamical operating regimes of the reser-
voir. For a given reservoir input m(t) · snorm(t) (Fig. 5a),
we record the corresponding output of the reservoir src(t) for
different operating conditions and corresponding dynamical
regimes. When operating the reservoir in a full injection-
locking regime (i.e. for 1f = −10GHz and kf = 0.05)
the signal is only weakly transformed (Fig. 5b). The output is
highly correlated with the input (Pearson correlation of 0.92)
and thus the reservoir decoding performance is limited.When
operating the reservoir with high optical feedback (i.e. for
1f = 0GHz and kf = 0.2), chaotic emission is induced.
The reservoir is dominated by its internal dynamics and less
by the input information (Fig. 5c), resulting in an incon-
sistent transformation. In this case, the Pearson correlation
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between the input and the output of the reservoir is dropping
to 0.08. Consequently, no efficient decoding processing can
be obtained. According to Fig. 4b, the operating regimewhere
the optimal decoding is found lies on the boundaries of the
injection-locking regime, in presence of moderate optical
feedback. For 1f = 0GHz and kf = 0.05, the reservoir out-
put becomes less correlated with the applied input (Fig. 5d),
compared to the full-locking condition, with a Pearson corre-
lation of 0.87. In this operating regime, the photonic reservoir
response remains sufficiently consistent, while still providing
a pronounced nonlinear transformation.

By evaluating the results of Fig. 4 and Fig. 5, we con-
clude that a substantial BER performance improvement has
only been obtained in the dynamical regime of partial injec-
tion locking. The reasoning is that only in this regime we
fulfill fundamental attributes of reservoir computing, such
as transformation consistency and internal fading memory.
Regarding transformation consistency, similar inputs should
be transformed – even nonlinearly – to similar outputs. This
condition is not fulfilled when the optical feedback is too
strong (chaotic operation). Fading memory is also important
to the specific processing task that we study. Extended mem-
ory is also aligned with the dynamical regime of partial injec-
tion locking [38]. In a nonlinear transmission channel, previ-
ous bit responses affect the shape of the bit pattern on the cur-
rent timeframe. These responses are preserved in the reservoir
for several roundtrips τ in the optical cavity before they fade
away, affecting the nonlinear transformation of the current
bit pattern. Some bit error rate improvements have also been
found in small islands of the parameter space {1f, kf } that
appear to be beyond the partial injection locking condition.
Even though we cannot provide a strict boundary definition
of the dynamical regimes for this system, we assume that
in these islands the counterbalance effects among the input
nonlinear transformation, its transformation consistency and
the fading memory result in a slight improvement compared
to a trained system with just the input.

In the classification performance shown in Fig. 4b and
Fig. 4d, we considered 20 taps of the reservoir response,
since chromatic dispersion extends the pattern correlations to
neighboring timeframes. 20 taps in our notation means that
besides the reservoir response on a given input baud pattern,
the responses of the 10 previous and the 10 next baud patterns
are considered for the training process as well. Consequently,
21 · N = 672 transient states are used to optimize equal
weights and train the classifier. The dependence of the BER
performance on the number of taps is shown in Fig. 6.We find
that the consideration of more than 20 taps leads to no fur-
ther improvement of the BER performance, introducing only
uncorrelated information from distant baud patterns. For each
tapping condition, the optimal operating conditions for the
reservoir were selected such that the lowest BER value for the
evaluated test sequences was obtained. The latter approach is
followed for all subsequent BER estimations.

We extend the investigation for the two data bit rate
cases R1 and R2, by studying the dependence of the RC

FIGURE 6. BER evaluation of a PAM-4 56Gb/s test time-series, after 27km
of fiber transmission, versus the number of taps used for training the
classifier. The training is performed directly on the detected signal from
transmission output (black rectangles) and on the output of the photonic
reservoir (red circles). Statistics result from 5 independent test sets of 218

bits.

FIGURE 7. BER of the recovered PAM-4 data stream after transmission as
a function of the launched optical peak power, for (a) {R1, L1} and (b) {R2,
L2}. The launched optical peak power defines the signal’s OSNR. LR:
Linear regression on the transmission signal. RC: Linear regression on the
reservoir output.

classification performance on the launched optical power in
the transmission line on. Launched signals with low optical
power, suffer by definition from low OSNR. For both bit
rates, low optical power results in a poor RC post-processing
performance (Fig. 7a and Fig. 7b). Only when the launched
optical peak power is above 4dBm (7dBm), for the 56Gb/s
(112Gb/s) data rate, the RC post-processing achieves the HD-
FEC requirements in BER, for both θ conditions. At these
power levels, Kerr nonlinearities and Brillouin scattering start
to affect the transmitted signal. Nevertheless, by increasing
the launched optical peak power up to 10 or 12dBm, we find
a slight improvement in the decoding performance. RC shows
a remarkable tolerance to these nonlinear effects, supporting a
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FIGURE 8. BER of the recovered PAM-4 data stream after transmission as
a function of the OSNR for {R1, L1} and {R2, L2}. θ = 25ps. Statistics
emerge from 5 independed test sets of 218 bits. LR: Linear regression on
the transmission signal. RC: Linear regression on the reservoir output.

beneficially higher OSNR at the receiver end. This illustrates
that the RC processing compensates not only for the chro-
matic dispersion, but for the introduced nonlinearities as well.
The achievedBER ismore than one order ofmagnitude lower,
compared to our benchmark method (Fig. 7a and Fig. 7b,
dashed lines).

Finally, we analyze the OSNR requirements for the given
conditions and the transmission properties for the two bit
rates. For a selected level of launched peak optical power –
here 12dBm – we introduce different levels of optical noise
from an optical amplifier into the channel to tune the OSNR
of the received signal. The use of RC improves decoding for
OSNR values above 20dB incrementally and saturates only
above 40dB (Fig. 8). The obtained dependence is similar for
both transmission systems. However, the {R1, L1} system
exhibits a ∼3dB gain in OSNR compared to the {R2, L2}
system at the HD-FEC BER threshold.

IV. EXPERIMENTAL PROOF OF CONCEPT
The experimental validation of the performance of our pho-
tonic reservoir uses the configuration in Fig. 2b. The signal
m(t) · snorm(t) to be processed by the photonic reservoir is
applied to the MZM by using a 20GSa/s arbitrary waveform
generator (AWG) with 10-bit resolution. In this investigation
we do not consider pre-compensation of the MZM nonlin-
earity. The reservoir output src(t) is recorded with a 16GHz
80GSa/s real time oscilloscope.

The difference of the experimental implementation com-
pared to the numerically simulated reservoir is the much
longer delay of the feedback loop (τ = 66ns) due to the fiber-
based setup. This length allows the definition of 1320 virtual
nodes per delay, when considering θ = 50ps. However, in our
experiment we connect the input signal to only N = 32
nodes – equal to the number of nodes considered in the
simulated system – the responses of which have been used
for the computation process. All remaining virtual nodes
are not used. Moderate feedback conditions of the delayed
reservoir are considered so that an optimal BER performance
is obtained from the classification task. Specifically, this is
achieved when the optical attenuation (ATT) in the feedback
loop (Fig. 2b) is set at 18dB. Frequency detuning 1f is set

FIGURE 9. BER performance of the linear classifier on a PAM-4 data
stream after transmission (dashed line), after electrical output conversion
through an AWG (red dots) and after the photonic reservoir (blue
triangles), versus the SNR of the detection system, for (a) {R1, L1} and
(b) {R2, L2}.

to 0GHz. These conditions are equivalent to the numerically
estimated ones in Fig. 3b that lead to optimal performance.
They also agree with the parameter space identified in the
extensive dynamical study of [32] where optimal decoding
efficiency is achieved.

Nevertheless, a direct comparison between the results
obtained from numerical modelling and experimental mea-
surements is not straightforward. In our experimental config-
uration, several sources of noise, non-ideal spectral response
of individual hardware components and slight temperature
variations affect the final evaluation of the system. Thus,
we evaluate transmission links with slightly shorter distances
in order to reach the HD-FEC limit for BER: L ′1 = 21km for
the R1 and L ′2 = 4.6km for the R2 encoding rate. We consider
a launched power in the transmission link of 10dBm. This
power level leads to optimum BER level of the decoding pro-
cess, according to our numerical results (Fig. 7). For the case
of {L ′1,R1}, a linear classifier trained on the input signal from
transmission s(t) provides a BER level of 5.4 · 10−3 (Fig. 9a,
dashed line). The conversion of this numerical input signal
into an actual electrical signal – via the AWG – has its own
limitations that affect the final performance; the same linear
classifier trained on the electrical input signal results in a
BER performance which is now considerably worse (Fig. 9a,
red dots). Moreover, there is a dependence of the BER on
the detection signal-to-noise ratio (SNR), as shown in Fig. 9.
The different SNR values originate from varying the number
of averages we apply for the same repeatred detection sig-
nals. The averaging, which is performed in the oscilloscope,
allows for an indirect increase of the measurement resolution.
A single-shot measurement results in a SNR of 21dB,
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while performing 256 signal averages, the SNR increases up
to 39dB. But even for the highest obtained SNR, the achieved
BER of the AWG output signal (1.8 ·10−2) does not converge
to the BER level of the initial numerical input. By feeding the
AWG electrical output to the photonic reservoir, we obtain
the reservoir responses src(t) and we train again the same
linear classifier. The RC yields an improved performance
compared to training on the directly detected output of the
AWG (Fig. 9a, blue triangles), regardless of the SNR level.
Moreover, for high SNR values (>35dB), the BER level after
the RC processing is even lower than the one obtained for
the numerically simulated input, and also below the HD-FEC
BER limit. For the case of {L ′2,R2} we find a similar perfor-
mance and dependence on the SNR (Fig. 9b).

V. CONCLUSIONS
Photonic RC is demonstrated to be an efficient and promis-
ing post-processing technique for transmission signals that
have undergone complex nonlinear distortions. It allows
the design of transmission systems that incorporate higher
launched optical power in the fiber than usual and ben-
efit from the higher OSNR. In the investigated scenarios
of 56Gb/s and 112Gb/s encoding rates, the achieved com-
munication distances are well above the ones described in
the newly established IEEE protocol for short-reach fiber
transmission, even though the latter refers to the wavelength
region of 1.3µm where chromatic dispersion is minimized.
The obtained performance can compete with the results using
DSP in equivalent transmission systems [12]. Still, there are
a number of future challenges for this type of hardware
processing when considering ultrafast optical communica-
tion signals. Alternative or complementary approaches to
the time-multiplexing photonic RC presented here need to
be explored in order to establish real-time operation of this
method. Furthermore, photonic realizations of data regression
techniques will enable full photonic RC implementations for
ultrafast signal processing.
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