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Abstract 

In this work, a vacuum-driven intermittent transfer technique has been implemented to solve 

transfer line blockage issues and facilitate steady-state cooling crystallization studies of 𝛼-glycine 

in a single- and 2-stage MSMPR crystallizer. Experimental residence time distribution (RTD) 

analysis of the stirred tank MSMPR cascade is performed using an imperfect pulse method of the 

axial dispersion model to benchmark the mixing performance against that of tubular crystallizers 

and determine the influence of RTD on steady-state size distribution of 𝛼-glycine product. Process 

analytical technology (PAT) is used to monitor and understand crystallization process dynamics, 

and the effect of MSMPR operating temperature, mean residence time, and number of MSMPR 

stages on mean particle size, crystal size distribution, and yield is studied. Results show the 

significance of nucleation and growth mechanisms alongside RTD in determining steady-state size 

distribution, and the need for optimum control of supersaturation to benefit from improved RTDs 

provided by multistage MSMPR crystallizers. 
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1. Introduction 

Continuous crystallization of small molecule active pharmaceutical ingredients (APIs) is 

currently an area of strong interest in pharmaceutical manufacturing due its potential for delivering 

consistent particle attributes,1 – 3 reducing manufacturing costs through process intensification,4,5 

shortening process development times,6,7 and providing flexibility in supply.8 The most common 

continuous crystallization technologies are the conventional tubular plug flow crystallizer (PFC),9 

– 12 the tubular continuous oscillatory baffled crystallizer (COBC),13,14 and the stirred tank MSMPR 

crystallizer.15,16 The selection of a suitable crystallization platform is usually guided by system-

dependent factors such as crystallization kinetics and fouling/agglomeration propensity,17 but also 

the ability of the platform to consistently control a desired critical quality attribute (CQA) while 

satisfying yield constraints. Additional factors such as solid-liquid density difference, viscosity, 

and solids loading are important, since they can affect crystallization process performance.13  

The material residence time distribution (RTD) is an important parameter that describes 

the time histories of crystals, and as such, the supersaturation histories of all crystals within a 

continuous crystallizer. Therefore, RTD can affect drug substance CQAs such as the crystal size 

distribution (CSD), which determines filterability, drying times, and final drug product 

performance. The control of the full CSD is not possible in practice; however, some of its attributes 

such as mean size, span, coefficient of variation, and fines fraction can be controlled.18 A typically 

large and narrowly distributed crystal product is usually desired from a crystallization process to 

aid downstream processability.19 The conventional PFC aims to provide a uniform environment 

for consistent particles by providing a narrow RTD. This ensures all crystals experience similar 

histories of supersaturation and hence similar crystal nucleation, growth, and agglomeration rates. 

The high flow rates required to achieve this, however, means that impractical tube lengths required 



4 

 

for sufficient residence times limit application of the PFC. The COBC overcomes the challenges 

of the conventional PFC by decoupling mixing from net flow through oscillatory flow. Therefore, 

longer mean residence times for crystal growth and yield are possible in greatly reduced length to 

diameter ratios without settling issues. In addition, a range of RTDs is possible by finely 

controlling the net flow, frequency and amplitude of oscillations. The MSMPR at the opposite end 

of the mixing spectrum offers an RTD for both solution and crystals that is much broader than 

usually obtained in tubular crystallizers. The conventional PFC and COBC have been shown to 

give narrow CSDs1,9,16,20,21 owing largely to their near-plug flow RTDs, but also tighter control of 

spatial supersaturation achievable in these platforms. A broad RTD from the backmixed MSMPR 

therefore suggests that broader CSDs are to be expected in MSMPR crystallization.  

Previous works16,22 have shown that increasing mean residence time in a single-stage 

MSMPR can improve steady-state CSDs. However, attaining longer mean residence times in an 

MSMPR usually requires operation at much lower flow rates, which can be a challenge to 

implement in pump operation due to non-representative withdrawal, and crystal settling during 

transfer. Su et al.23 addressed this issue for glycine crystallization using a pump-operated periodic 

flow MSMPR crystallizer. The technique involved a series of rapid addition and withdrawal cycles 

and a tuneable holding period between, which allowed the manipulation of material RTD in the 

MSMPR crystallizer. High flow rates were applied during additions and withdrawals to prevent 

sedimentation in transfer lines and enable a more representative slurry withdrawal. Interestingly, the 

periodic flow operation was able to extend mean residence time without overly broadening the material 

RTD, and larger crystal mean sizes were obtained for the glycine product compared to the continuous 

flow operation. The periodic flow operation, however, can be described as a hybrid of batch and 

continuous crystallization, as the MSMPR crystallizer responds to periodic but controlled disturbances 
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and achieves a “state of controlled operation” rather than the conventional “steady-state” operation 

described by Randolph and Larson.15 

Here we investigate the continuous flow crystallization of glycine in an MSMPR 

crystallizer. Steady-state operation is made possible through the implementation of a vacuum-

operated rapid intermittent transfer method,16 to overcome the limitation of transfer line blockage 

encountered during pump operation and permit longer mean residence times without 

compromising continuous operation. This transfer method also ensures isokinetic withdrawal from 

a well-mixed MSMPR and avoidance of crystal breakage during transfer. Rapid intermittent 

withdrawal is considered a form of continuous operation since changes in steady-state conditions 

are negligible when slurry slug size withdrawn is less than 10% of the crystallizer volume.22,24 

Specifically, we study the impact of process parameters including MSMPR temperature and mean 

residence time on the steady-state product CSD, mean crystal size, and yield. To address the 

backmixed nature of the MSMPR, different configurations have been employed with the chief aim 

of obtaining better CSD quality alongside process yield.25 – 28 Attempts to control product CSD 

using multistage MSMPR crystallizers have been reported in literature;29,30 and these studies have 

suggested that the single-stage MSMPR crystallizer is inefficient, because it produces a product 

with a broader CSD than the multistage MSMPR crystallizer. Also, in terms of process operability, 

the single-stage MSMPR crystallizer has limited temperature controllability because of its small 

heat transfer area.31 With the inclusion of multiple stages in cascade configuration, RTD can be 

significantly improved, and the MSMPR system can operate closer to batch equilibrium conditions. 

For this reason, a 2-stage MSMPR crystallization is also investigated in this work.  

Real-time monitoring of crystallization process dynamics, and determination of steady-

state operation is achieved by monitoring the particle counts and chord length distribution (CLD) 

with the aid of an in situ focused beam reflectance measurement (FBRM) probe. The counts 1 – 5 
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µm (#/s) and total counts 1 – 1000 µm (#/s) are related to the total number of crystals in these size 

bins. The CLD is proportional to the CSD in the crystallizer, and the mean particle size is 

represented by the square-weighted mean chord length (SWMCL) which is defined as:  

 

SWMCL =
∑ 𝑛𝑖

𝑘
𝑖=1 𝐿𝑖

3

∑ 𝑛𝑖
𝑘
𝑖=1 𝐿𝑖

2        (1) 

 

where 𝐿𝑖 is the chord length of 𝑖th size bin, 𝑛𝑖 is the number of counts corresponding to the 𝑖th bin, 

and 𝑘 is the upper size bin. FBRM has been demonstrated in multiple studies as a sufficient tool 

for qualitative monitoring of steady-state operation,27,32 – 34 hence the decision to utilise it here. A 

characterisation of RTD in the single- and 2-stage MSMPR is performed to assess the role of RTD 

in controlling glycine steady-state CSD, but also to benchmark the RTD performance of an 

MSMPR system against tubular crystallizers, since this is seldom visited in literature. Attention is 

paid to ensuring representative withdrawal by characterising the solids suspension performance of 

the MSMPR for dense glycine crystals. In addition, the energy constraint on process performance 

and attainable CSD is practically demonstrated. In all experiments, start-up from equilibrium batch 

suspension is utilised, with the MSMPR system operated in product recycle mode to minimise 

material consumption and waste generation.  

2. Experimental Section 

2.1 Materials 

Glycine with ≥99% purity, purchased from Sigma Aldrich UK, was used in preparing feed 

solution for all experiments. Deionised (DI) water was used as the solvent.  
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2.2 Experimental setup 

Figure 1 and Figure 2 show the schematic of the product recycle single- and 2-stage MSMPR 

configurations respectively. Two identical 100 ml jacketed glass vessels (model ADAV 

manufactured by HWS-Labortechnik Mainz) were used as MSMPR 1 and MSMPR 2. Both vessels 

were unbaffled, had an internal diameter of 60 mm (DN60), and were each fitted with a 3-bladed 

retreat curve impeller (RCI) of 30 mm diameter. A 500 ml DN100 jacketed glass vessel served as 

the feed/dissolution vessel. Independent heating and cooling of all vessel jackets was provided by 

three Julabo recirculating oil baths. The circulating fluid used was Swansil 10 cSt (25 °C) silicone 

oil with a working range of –40 – 140 °C. Programming of vessel temperature profiles and 

temperature data logging were achieved via a Labgear software (version 1.2) connected to the oil 

baths. Rapid intermittent withdrawal was implemented using a high vacuum source controlled via 

two-way valves (V1, V2, V3) to transfer slurry in the sequence MSMPR 1 → feed/dissolution 

vessel in the single-stage configuration, and MSMPR 1 → MSMPR 2 → feed/dissolution vessel in 

the 2-stage configuration. This technique enabled isokinetic withdrawal of suspension in under 2 

s from the MSMPR crystallizers.  
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Figure 1 Vacuum connections (dashed) and transfer lines (solid) for the single-stage MSMPR configuration. 

 

A calibrated Masterflex® L/S® peristaltic pump was used to continuously transfer clear feed 

solution from the feed/dissolution vessel to MSMPR 1 in all experiments. The temperature in the 

feed/dissolution vessel was maintained at 20 °C above saturation temperature for all experiments, 

with a condenser attached to minimize solvent loss by evaporation. This ensured fines were absent 

from the hot feed solution, so that the likelihood of crystal build-up and blockage in the feed line 

to MSMPR 1 was negligible for the duration of experimental runs. A Mettler Toledo S400 FBRM 

probe (connected to Mettler Toledo FBRM software version 6.7.0) was placed in MSMPR 1 for 

the single-stage configuration and moved to MSMPR 2 for the 2-stage MSMPR experiments. 
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Figure 2 Vacuum connections (dashed) and transfer lines (solid) for the 2-stage MSMPR configuration. 

 

2.3 Liquid RTD characterisation  

The effect of volumetric flow rate, mixing intensity (impeller agitation speed), and number 

of stages on the RTD of the MSMPR system was investigated under continuous steady flow 

operation. RTD was determined using intrusive pulse tracer measurements, whereby a salt (NaCl) 

tracer was used, and a pair of conductivity probes (Mettler Toledo InLab® 751-4mm) were 

positioned as indicated in Figure 3 and Figure 4. This was to enable characterisation by imperfect 

pulse method which has been shown to be a more accurate way of determining axial dispersion in 

continuous systems35 (see section 2.3.1). In all RTD experiments MSMPR 1 and MSMPR 2 were 

operated at 100 ml of DI water, while the feed/dissolution vessel was operated at 250 ml of DI 

water (operating below 250 ml was not possible due to impeller clearance limitations).  

The RTD performance of a single-stage MSMPR (Figure 3) was determined for different 

conditions from a test section consisting of MSMPR 1 and MSMPR 2 connected in series by 

silicone tubing (Masterflex® L/S® platinum-cured) and peristaltic pumps (Masterflex® L/S® 

Standard Digital Pump). A conductivity probe placed in MSMPR 1 measured the pulse input to 
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the test section, while a second probe placed in MSMPR 2 measured the output tracer concentration 

from MSMPR 1 (i.e. the output from MSMPR 1 was sampled at MSMPR 2 for dispersion).  

 

 

Figure 3 Experimental setup for liquid RTD characterisation of the single-stage MSMPR system. 

 

Subsequently, the RTD of a 2-stage MSMPR system was measured from a test section consisting 

of the feed/dissolution vessel, MSMPR 1, and MSMPR 2 connected in series according to Figure 

4. A conductivity probe was placed in the feed/dissolution vessel to measure the pulse input to the 

section, and the second conductivity probe in MSMPR 2 measured the tracer exit concentration 

from MSMPR 1. An interpretation of fitted RTD curves from the measurement points was 

performed to provide information on the overall extent of axial dispersion in the test section, based 

on the dimensionless dispersion number, 𝐷𝑎𝑥/𝑢𝐿 (see section 2.3.1).  

At time zero for all experiments, a pulse of 0.5 ml of a 1 M NaCl tracer was injected 

subsurface close to the impeller in the first vessel in under 1 s using a 1 ml syringe fitted with a 

flexible capillary tube. Both conductivity probes were started simultaneously via the conductivity 

meter to record the upstream and downstream response curves (concentration-time curves) at a 1 

s interval respectively. Data logging was stopped once readings from both conductivity probes had 

returned to zero, indicating that the entire tracer had exited the test section. Experiments were 
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conducted at volumetric flowrates of 25, 50, and 70 ml min-1 to vary the mean residence time, 𝜏𝐿, 

in the test section (i.e. distance between the measurement points). Impeller speeds were set to 200 

and 400 rpm to vary the mixing time in the MSMPR vessels; however, the feed/dissolution vessel 

could only be operated at 250 rpm due to vortex formation at higher rpm.  

 

 

Figure 4 Experimental setup for liquid RTD characterisation of the 2-stage MSMPR system. 

 

The impeller Reynolds number for the MSMPR was calculated using Equation (2): 

 

 𝑁𝑅𝑒 =
𝜌𝑙𝑁𝐷2

𝜇
         (2) 

 

where 𝑁 is the impeller rotation speed (rps), and 𝐷 is the impeller diameter (m), 𝜇 is the bulk fluid 

viscosity (Pa s),  𝜌𝑙 is the bulk fluid density (kg m-3).  

 

2.3.1 Determination of axial dispersion from imperfect pulse method 

The axial dispersion model describes the mixing behaviour within a test section by 

superimposing one-dimensional axial dispersion onto convective flow. In the imperfect pulse 

method of the axial dispersion model,36 a pair of measurement devices (i.e. conductivity probes in 
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this case) detect the upstream and downstream concentration-time history of a tracer, since the 

input tracer pulse may be far from a perfect Dirac delta function37 which is very difficult to achieve 

experimentally. For a fixed distance between the upstream and downstream measurement point, 

the amount of spreading depends on the intensity of dispersion in the system, and this spread can 

be used to characterise quantitatively the dispersion phenomenon. The imperfect pulse method 

effectively convolutes the input function from the upstream probe with an axial dispersion model 

and fits the response to the downstream output function by adjusting the model parameters. The 

benefit of this method is that the input signal initial shape is arbitrary. In this analysis it is assumed 

that the axial dispersion model may be applied to any section of a flow to estimate the local liquid 

dispersion coefficient. The estimates of the degree of backmixing are so described by the 

dimensionless axial dispersion number, 𝐷𝑎𝑥/𝑢𝐿, and a convective time scale: 

 

𝜏𝐿 = 𝐿/𝑢         (3) 

 

where 𝐿 is the fixed distance or length of tubing between the measuring conductivity probes (m) 

in this case, and 𝑢 is the mean axial velocity (m s-1). The dispersion number characterises axial 

dispersion as the liquid circulates once through the section in terms of an effective dispersion 

coefficient, 𝐷𝑎𝑥 (m2 s-1). If the dispersion number approaches zero, the region’s mixing behaviour 

is close to plug flow, whereas, for large dispersion numbers, the zone is well-mixed. According to 

Levenspiel37, a 𝐷𝑎𝑥/𝑢𝐿 > 0.01 indicates a large deviation from plug flow, while 𝐷𝑎𝑥/𝑢𝐿 < 0.01 

indicates a small deviation from plug flow. 

 The axial dispersion model employed for an open-open boundary condition is given in 

Equation (4)38: 
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𝐶(𝜃) =
1

√4𝜋(𝐷𝑎𝑥/𝑢𝐿)
𝑒𝑥𝑝 [−

(1−𝜃)2

4𝜃(𝐷𝑎𝑥/𝑢𝐿)
]     (4) 

 

where 𝐶 =
(𝑐−𝑐𝑖)

∫ (𝑐−𝑐𝑖)𝑑𝑡
∞

0

 = dimensionless concentration for tracer   (5) 

 

𝜃 =
𝑡

𝜏𝐿
= dimensionless time       (6) 

 

For a linear system, the output response, 𝐶1(𝜃), can be determined from the convolution integral 

of the inlet, 𝐶0(𝜃), and the system transfer function, 𝑀(𝜃): 

 

𝐶1(𝜃) = ∫ 𝑀(𝜃)𝐶0
∗(𝜃 − 𝜃′)𝑑𝜃 

∞

0
       (7) 

 

Using 𝑀(𝜃), an output signal can be predicted for any arbitrary continuous input signal. 𝑀(𝜃) is 

the response to a Dirac pulse, and is given by Equation (4). The results of the convolution integral 

can then be fitted to the measured output concentration time history, by adjusting the two model 

parameters 𝜏𝐿 and 𝐷𝑎𝑥/𝑢𝐿. Once the best-fit parameters have been found, 𝐷𝑎𝑥 may be calculated 

using Equation (8) and Equation (9): 

 

𝑢 =
𝐿

𝜏𝐿
          (8) 

 

𝐷𝑎𝑥 = (
𝐷𝑎𝑥

𝑢𝐿
)

𝐿2

𝜏𝐿
        (9) 
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The number of tanks-in-series, 𝑛, that best fits the RTD data was calculated from 𝐷𝑎𝑥 𝑢𝐿⁄  

using Equation (10)39: 

 

𝑛 = 𝑢𝐿
2𝐷𝑎𝑥

⁄ + 1        (10) 

 

The tanks-in-series model describes the test section as a series of 𝑛  equal-sized tanks, thus 

assuming all tank volumes are identical, and therefore space times are identical.  

2.3.2 Parameter estimation method 

A series of MATLAB® scripts were written to determine automatically the model parameter 

giving the best fit between the measured and modelled output signals. An unconstrained 

optimization function fminunc was used to perform the fitting of the two model parameters with 

bounds for the parameter searching and starting guesses based on the space time between the 

measurement points. The estimation of the model parameters was carried out by convoluting in 

the frequency domain and fitting in the time domain.40,41 After the tracer input signal had been 

normalized to give 𝐶0(𝜃), its Fourier transform was calculated using the fast Fourier transform 

(FFT) method which is a form of discrete Fourier transform (DFT). The model output 

concentration was then obtained by multiplying, in the frequency domain, the model transfer 

function and the experimental input concentration. 

2.4 Estimation of just-suspended speed for solids suspension 

The just-suspended speed, 𝑁𝑗𝑠 , is the impeller speed at which particles are completely 

suspended, and no particles remain stationary at the bottom of the vessel for more than 1 – 2 
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seconds.42 Complete suspension of solids is important for crystallization as it ensures the maximum 

crystal surface area is presented to the bulk solution for mass transfer and crystal growth.43,44 

Operating at 𝑁𝑗𝑠 provides near optimal mass transfer between solid and liquid phases; above this 

speed little mass transfer enhancement is gained despite much higher energy input.45,46 Ensuring 

all particles are suspended is a first step towards achieving uniform solids distribution throughout 

the crystallizer and avoiding size classification through isokinetic slurry withdrawal. This is 

important because the idealised MSMPR assumes well-mixed contents, which undergo 

representative withdrawal. In practice, while it is relatively straightforward to achieve 

homogeneity of the liquid phase, it is usually difficult to suspend the solid phase homogeneously 

at economic power inputs.47 The quality of suspension generally increases with impeller speed, 

and sufficient mixing is necessary to ensure that crystals as much as possible experience similar 

hydrodynamics and RTD with the bulk solution i.e. no settling or accumulation of solids.  

To facilitate rapid process development, 𝑁𝑗𝑠  was estimated using the Dynochem® solid-

liquid mixing utility (Scale-up Systems Ltd.), which is a process development and modelling tool 

for evaluating vessel mixing performance and scale-up. Results of the estimation were confirmed 

by visual observation at the start of crystallization experiments. Determining 𝑁𝑗𝑠  involved 

selecting the appropriate vessel and impeller geometry from the utility database and specifying the 

solid-liquid properties and solids concentration. Based on this information, the utility estimated 

the impeller speed required for complete suspension of solid particles in the MSMPR. The 

Dynochem® solid-liquid mixing utility calculates 𝑁𝑗𝑠 based on Zwietering’s correlation for solids 

suspension in stirred tanks42:  

 

𝑁𝑗𝑠 = 𝑆𝜈0.1 (
𝑔(𝜌𝑝−𝜌𝑙)

𝜌𝑙
)

0.45

X0.13𝑑𝑝
0.2𝐷−0.85     (11) 



16 

 

 

where 𝑆 is the impeller geometrical constant dependent on impeller type, diameter, and clearance, 

𝜈 is the liquid kinematic viscosity (m2 s), 𝑔 is the acceleration due to gravity (m s-2), 𝜌𝑝 is the 

particle density (kg m-3), X is the mass ratio of solid to liquid, 𝑑𝑝  is the diameter of spherical 

particles (m), and 𝐷 is the impeller diameter (m). While the Zwietering correlation has been tested 

for a wide range of impeller types and solid-liquid properties in vessels of differing scales,48 it is 

known to have a number of limitations which can affect the accuracy of its predictions.43,49,50 A 

mean particle size of 100 µm was specified for the calculations, as this was the approximate mean 

size of crystals in the equilibrated start-up batch suspension. The total GLY mass added to the 

MSMPR for the preparation of the equilibrium batch suspension (saturated at 40 °C) was taken to 

calculate a weight fraction, 𝑋, of 24.8%. 

2.5 Critical mean residence time for heat transfer 

The critical mean residence time, 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, is the minimum time required to cool an incoming 

feed stream to the desired operating temperature of the MSMPR crystallizer and indicates the 

cooling capacity of the crystallizer. When operating at a mean residence time, 𝜏 <  𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the 

MSMPR crystallizer may attain a steady-state at undesired supersaturation levels, resulting in 

unexpected product specification; and the time to attain steady-state may be prolonged. The critical 

mean residence time for both MSMPR crystallizers was determined using Equation (12) below: 

 

𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑉𝑐𝑟𝜌𝑠𝐶𝑝(𝑇𝑓−𝑇𝑗)

𝑈𝐴(𝑇𝑐𝑟−𝑇𝑗) 
       (12) 
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where 𝑉𝑐𝑟 is the crystallizer operating volume, 𝜌𝑠 is the solution density, 𝐶𝑝 is the specific heat 

capacity of the solution at the incoming feed temperature, 𝑇𝑓 is the feed temperature, 𝑇𝑗  is the 

MSMPR jacket temperature, 𝑇𝑐𝑟 is the desired operating temperature of the MSMPR. 

2.6 Single-stage MSMPR crystallization  

Prior to start-up, 260 ml of a 0.275 g/g solution (saturated at 40 °C) was held at 60 °C in the 

feed/dissolution vessel. In MSMPR 1, 90 ml of a 0.275 g/g suspension was heated to 50 °C (10 °C 

above saturation temperature) and held for 30 min to ensure complete dissolution as indicated by 

FBRM total counts. The clear solution was cooled to an operating temperature of 20 °C to create 

a batch suspension, and the impeller speed was set to the required rpm to meet hydrodynamic 

suspension conditions (see section 3.2). Once the batch suspension had equilibrated and FBRM 

total counts were steady, a start-up sequence was initiated. At start-up, hot feed solution (at 60 °C) 

was continuously pumped into MSMPR 1 until 10 ml of solution was transferred, filling it to a 

volume of 100 ml. Immediately, an intermittent withdrawal of slurry from MSMPR 1 was initiated 

through a vacuum operation in which ~10% of the crystallizer volume was transferred via a dip 

pipe to the feed/dissolution vessel every 1/10th of 𝜏. The average working volume in MSMPR 1 

and the feed/dissolution vessel was 90 ml and 250 ml respectively, with ~10 ml transferred 

between both vessels. On attainment of steady-state, a sample was isolated by means of an 

integrated sampling and filtration arrangement which rapidly separated product crystals from 

mother liquor. The CSD of the product crystals was measured in a Malvern Mastersizer® 2000 

using a wet dispersion unit with isopropanol as dispersant. The final steady-state concentration of 

the mother liquor was determined gravimetrically, and the process yield was calculated for each 
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experiment as the amount of product obtained from the crystallizer relative to the amount of 

available supersaturation using Equation (13): 

 

𝑌𝑖𝑒𝑙𝑑 =  
𝐶𝑓−𝐶𝑠𝑠

𝑖

𝐶𝑓−𝐶∗ × 100        (13) 

 

where 𝐶𝑓  is the feed concentration to MSMPR 1, 𝐶∗  is the equilibrium concentration at the 

specified operating temperature, and 𝐶𝑠𝑠
𝑖  is the steady-state concentration in the 𝑖th crystallizer. 

The supersaturation is defined as 𝐶𝑠𝑠
𝑖 𝐶∗⁄ . Steady-state operation was attained when the total counts 

and SWMCL showed no significant increasing or decreasing trend. This signified that the rate of 

generation of crystal mass due to secondary nucleation and/or attrition equalled the removal rate 

of crystals from the MSMPR crystallizer.  

2.7 2-stage MSMPR crystallization 

For the cascade study, feed solution and batch suspension preparation were similar to those 

employed in the single-stage MSMPR crystallization. Each MSMPR crystallizer contained a 90 

ml suspension of 0.275 g/g (saturated at 40 °C) which was heated to 50 °C and held for 30 min for 

complete dissolution. The clear solutions in MSMPR 1 and 2 were cooled to 20 °C and 10 °C 

respectively to create the starting batch suspensions. The impeller speed in each MSMPR 

crystallizer was set to the required rpm for effective mixing, and real-time monitoring of the 

crystallization process was via an FBRM probe positioned in MSMPR 2. At steady-state operation, 

samples were taken from both MSMPR stages for final concentration determination, CSD analysis, 

and microscope imaging. 
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3. Results and discussion 

3.1 Liquid RTD characterisation 

Figure 5 shows the normalized input and output response curves ( 𝐶 -curves) for an 

experiment performed at a flow rate of 70 ml min-1 and 400 rpm. The tracer input to MSMPR 2 

was taken as the output concentration from MSMPR 1 (red curve) according to Figure 3. This 

represents the RTD of material going into the next stage. Figure 5 shows a good fit with 

experimental data using the transfer function of the imperfect method. The green curve is the model 

predicted response fitted to the output response from MSMPR 1 to determine the number of equal-

sized tanks, 𝑛, that give approximately the same RTD as the test section considered. In this case, 

𝑛 was determined as 1.4. 

 

 

Figure 5 Normalized input and output curves for the single-stage MSMPR configuration with dispersion model fitting 

for imperfect pulse method. Volumetric flow rate of 70 ml min-1 and agitation speed of 400 rpm. 𝑛 = 1.4. 
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 Figure 6 shows the different pulse input shapes and corresponding output curves measured 

at different flow rates for an impeller speed of 200 rpm. From the analysis of these experimental 

𝐶-curves and corresponding 𝐷𝑎𝑥 𝑢𝐿⁄  values in Figure 7, it was concluded that increasing impeller 

speed beyond 200 rpm had negligible effect on RTD performance. This suggests that short mixing 

times are already achieved at 200 rpm, whereby the salt tracer is quickly mixed with the bulk liquid 

in the MSMPR. This is observable from the input curves in Figure 5 and Figure 6 where a rapid 

rise in tracer concentration is followed by a gradual decay expected of a continuous stirred tank. 

Previous work by Choi et al.51 and Patwardhan52 has shown that vessel RTD performance increases 

with increasing impeller speed from 0 rpm until a constant value at ~100 rpm. Effective mixing is 

essential in the MSMPR to ensure that incoming feed solution is well-mixed with vessel contents 

for uniform distribution of temperature and supersaturation throughout the vessel volume.  

Increasing volumetric flow rate was found to have little effect on the RTD performance of 

a single-stage MSMPR. For flow rates of 25, 50, and 70 ml min-1 (𝜏 =  4, 2, and 1.4 min 

respectively), 𝐷𝑎𝑥 𝑢𝐿⁄  was in the range 0.86 – 1.24 (𝑛 = 1.59 – 1.48).  Choi et al.51 showed that 

similar RTDs were obtained in an unbaffled 1.4-litre stirred tank regardless of volumetric flowrate; 

thus, confirming impeller speed as the controlling parameter for vessel RTD performance. This 

implies that changing the mean residence time in an MSMPR would cause no significant change 

to the RTD of vessel contents. This outcome supports simulation results obtained by Su et al. (2017) 

for a continuously operated 500 ml MSMPR crystallizer, whereby doubling the mean residence 

time did not significantly change the RTD coefficient of variation (c.v. = 𝜎 𝜏⁄ ). For the single-

stage MSMPR system, 𝐷𝑎𝑥 𝑢𝐿⁄  was determined as 1.07 ± 0.13, with 𝑛 of 1.5 ± 0.05. 
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Figure 6 Normalized input and output curves measured for the single-stage MSMPR configuration at 200 rpm. 

 

 

 

Figure 7 Effect of volumetric flow rate and impeller speed on RTD performance of the MSMPR system. 
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Adding a second stage significantly improved RTD performance by lowering 𝐷𝑎𝑥 𝑢𝐿⁄  to 

0.292 ± 0.04, with a corresponding 𝑛 of 2.75 due to the feed/dissolution vessel operating at a 

higher volume of 250 ml. The improved RTD of the 2-stage MSMPR is still far off from the 

performance of a tubular COBC such as the SPC mesoscale crystallizer35,53 (see Table 1) which 

easily approximates to plug flow (𝐷𝑎𝑥 𝑢𝐿⁄ = 0.002; 𝑛 = 251) at optimal oscillatory conditions and 

much lower mixing intensity, regardless of volumetric flow rate. This highlights the intrinsically 

broad RTDs of MSMPRs, indicating that broader product CSDs are to be expected from MSMPR 

crystallizers in comparison to tubular crystallizers. The outcome of the RTD study suggests that 

crystallizations performed in the single-stage MSMPR crystallizer at different mean residence 

times should essentially have the same material residence time distributions. Results also signify 

that operating in a 2-stage MSMPR system could potentially decrease CSD span compared to a 

single-stage MSMPR crystallizer, while increasing total mean residence time for improved yield.  

 

Table 1 Comparison of axial dispersion performance between the MSMPR crystallizer and SPC mesoscale crystallizer 

Crystallizer 
Stages/ 

length (m) 

Flow rate  

(ml min-1) 

Mixing 

intensity,  

𝑁𝑅𝑒/𝑅𝑒𝑜
 

𝜏𝐿 

(sec) 

𝐷𝑎𝑥 𝑢𝐿⁄  

(-) 

𝐷𝑎𝑥   

(m2 s-1) 

Calculated  

tanks, 𝑛 (-) 

MSMPR 1 25 3364 40.1 0.966 8.5×10-3 1.52 

 1 25 6728 74.4 1.044 4.7×10-3 1.48 

 1 50 3364 22.7 1.243 1.7×10-2 1.48 

 1 50 6728 29.7 0.863 1.2×10-2 1.59 

 1 70 3364 23.2 1.197 1.6×10-2 1.42 

 1 70 6728 20.5 1.086 1.8×10-2 1.47 

 2 25 6728 193.3 0.292 1.1×10-3 2.75 

SPC mesoscale  9 5 371 - 2.0×10-3 6.3×10-5 251 

 

3.2 Just-suspended speed 

With RTD performance of the MSMPR configurations now understood, good solid-liquid 

mixing in the MSMPR is necessary to ensure crystals experience similar RTD with the bulk 

solution. For the conditions specified in Table 2, 𝑁𝑗𝑠  was computed as 554 rpm ± 20%. This 
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corresponded to a total specific power input of 0.079 W kg-1, and a vessel Reynolds number of 

8310. A visual inspection of the start-up suspension found that an impeller speed of 500 rpm was 

sufficient for complete suspension of particles, and the suspension in the crystallizer appeared 

uniform (i.e. no axial settling or suspension gradients). The impeller speed was therefore 

maintained at this condition to minimise crystal attrition during crystallization. To check for 

representative withdrawal at steady-state, the CSD of a sample obtained via intermittent 

withdrawal was compared with a sample taken from the bottom of MSMPR 2 at the end of the 2-

stage MSMPR crystallization. The results are discussed in section 3.5. 

 

Table 2 Specified conditions for calculating just-suspended speed, 𝑁𝑗𝑠  

 

 

 

 

ǂ
Solids mass based on GLY solution concentration at 40 °C. 

 

3.3 Critical mean residence time 

AspenONE® engineering suite was used in estimating 𝐶𝑝 as 3823 J kg-1 K-1 for the GLY-

water solution with density of 1090 kg m-3 and the 𝑈𝐴 for MSMPR 1 and 2 was estimated at 2.39 

 Specification Values 

Vessel geometry Base shape DIN Torispherical 

 Inner diameter (mm) 60 

 Total height to tan (mm) 55 

Impeller Impeller type 3-bladed retreat curve impeller 

 Tip diameter (mm) 30 

 Clearance from base (mm) 10 

 Impeller S number (-) 3.5 

Mixing duty Liquid volume (l) 0.1 

 Liquid fill height (mm) 39 

 Mass of solids (kg) 0.025
ǂ
 

 Mass ratio of solid to liquid, 𝑋 (%) 24.78 

Physical properties Liquid density, 𝜌𝑙 (kg m-3) 1000 

 Liquid dynamic viscosity (cP) 1.0 

 Particle density, 𝜌𝑝 (kg m-3) 1610 

 Mean particle size (μm) 100 

Performance at 𝑁𝑗𝑠 Specific power input (W kg-1) 0.079 

 Vessel Reynolds number (-) 8310 

 Tip speed (m s-1) 0.87 
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W K-1 using the Dynochem® 𝑈𝐴 utility. The critical mean residence time, 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , was calculated 

as 9.06 min for a desired operating temperature of 20 °C and an incoming feed temperature of 

60 °C, with the MSMPR jacket temperature set to 0 °C. Table 3 summarises the specifications and 

results. 

 

Table 3 Specified conditions for estimating 𝑈𝐴 

 

 

 

 

 

3.4 Single-stage MSMPR crystallization 

Table 4 summarises the operating conditions and results for Experiment 1 – 5 in the single-

stage MSMPR crystallizer. In all experiments performed, 𝛼-GLY was consistently produced, as 

confirmed by offline Raman spectroscopy (Figure 8). Figure 9 shows the process time diagram for 

Experiment 1 which was operated with a mean residence time of 5 min. From the evolution of the 

FBRM statistics, four distinct phases were identified in the MSMPR crystallizer. In the start-up 

phase, MSMPR 1 was cooled to trigger spontaneous nucleation and create an initial batch 

suspension. Steadily decreasing total counts 1 – 1000 µm and counts 1 – 5 µm indicated a loss of 

crystal mass during the washout phase. This was driven primarily by the simultaneous withdrawal 

of start-up suspension and addition of feed solution to the crystallizer. In addition, the rapid 

addition of hot feed solution elevated the MSMPR temperature by ~10 °C, causing a decrease in 

 Specification Values 

Vessel geometry Liquid volume (l) 0.1 

 Heat transfer area, 𝐴 (m2) 0.01 

Process side Impeller speed (rpm) 500 

 Process heat transfer coefficient, ℎ𝑖 (W m-2 K-1) 3557 

 Overall heat transfer coefficient, 𝑈 (W m-2 K-1) 239 

Wall and lining Wall thickness (mm) 2.5 

 Wall thermal conductivity (W m-1 K-1) 1.09 

 Material of construction Borosilicate 

 Wall heat transfer coefficient, ℎ𝑤 (W m-2 K-1) 301 

Jacket side Heat transfer medium SYLTHERM 8002 

 Jacket type Annular unbaffled 

 Jacket heat transfer coefficient, ℎ𝑜 1739 
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supersaturation and further loss of crystals by dissolution. An accompanying increase in SWMCL 

indicated a predominantly bigger crystal population in MSMPR 1 from fines dissolution and 

crystal growth.  

 

 

Figure 8 Offline Raman spectra for 𝛼-GLY and product crystals obtained. 

 

A response phase was initiated at ~23 min when a low enough MSMPR temperature 

generated sufficient supersaturation to trigger secondary nucleation. The response phase signified 

a transition to a secondary nucleation-controlled crystallization, as indicated by rising total counts 

and a decreasing mean chord length. Generally, the magnitude of a response phase depends on the 

maximum supersaturation generated in the MSMPR, which is dictated by the feed addition rate, 

heat removal rate of the MSMPR, and suspension density. In Experiment 1, a short mean residence 

time of 5 min allowed for rapid build-up of supersaturation, which caused faster nucleation rates 

and an observable response phase. For longer mean residence times in Experiment 2 and 3, the 

response phase was much less pronounced.  
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Table 4 Summary of operating conditions and experimental results for single-stage MSMPR crystallization 

 Experiment  

1 2 3 4 5 

Mean residence time, 𝜏 (min) 5 10 15 20 10 

Feed/dissolution vessel temperature (°C) 60 60 60 60 60 

MSMPR 1 operating temperature (°C) 27 20 20 20 10 

Pump flow rate (ml min-1) 20 10 9.33 5 10 

Avg. operating volume (ml) 90 90 90 90 90 

Residence times to steady-state (-) 5 3.2 5 n/a n/a 

Feed concentration, 𝐶𝑓 (g/g) 0.275 0.275 0.275 0.275 0.275 

Exit from MSMPR 1, 𝐶𝑠𝑠
1  (g/g) 0.2543 0.2225 0.2146 n/a n/a 

MSMPR 1 supersaturation (-) 1.206 1.234 1.190 n/a n/a 

Steady-state FBRM total counts (#/s) 2,741 3,334 1,645 n/a n/a 

Steady-state mean crystal size, 𝑑4,3 (µm) 444 768 833 n/a n/a 

Span (-) 3.33 1.59 1.39 n/a n/a 

Yield (%) 33 56 64 n/a n/a 

 

Unsurprisingly, MSMPR 1 did not attain the desired operating temperature of 20 °C 

following the addition of the hot feed solution, and instead the MSMPR temperature oscillated 

around ~27 °C (see Figure 9), causing fluctuations in local supersaturation. This was a result of 

the inadequate cooling capacity of the MSMPR for operation below 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 as earlier determined 

in section 3.3. Temperature profiles in Figure 10 demonstrate the inability of MSMPR 1 to achieve 

the setpoint even at a minimum jacket temperature of –4.5 °C. The oil bath was unable to cool 

beyond this temperature, and subsequently entered cooling and heating cycles. For a mean 

residence time of 5 min, attaining the desired operating temperature would require cooling the 

jacket to –42 °C, a temperature beyond the working range of silicone oil. The result of a higher 

MSMPR operating temperature, and insufficient time for crystal growth was a heavily saturated 

steady-state suspension in MSMPR 1 with a poor yield of 33% (see Table 4).  
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Figure 9 Process time diagram for Experiment 1 in the single-stage MSMPR crystallizer showing temperature, total 

counts, and square-weighted mean. 𝜏 = 5 min. 

 

Experiment 1 highlighted the heat transfer limitation imposed on the degree of 

supersaturation achievable in MSMPR 1, and therefore, the minimum obtainable product mean 

size. Previous work by Power et al.54 has shown the impact of energy balance constraints on 

minimum particle sizes attainable in MSMPR crystallizers. When compared to tubular crystallizers, 

stirred tank crystallizers have smaller surface area to volume (SAV) ratios, which essentially is the 

available heat transfer area per unit volume within the crystallizer. In this instance, MSMPR 1 has 

an SAV of 100 m-1, which is much smaller than the SAV of the SPC mesoscale crystallizer (1190 

m-1).53 As a result, the excellent heat transfer performance of tubular crystallizers enables the 

attainment of high degrees of supersaturation during cooling crystallizations for faster nucleation 

rates. However, challenges with encrustation currently limit the use of primary and secondary 

nucleation for achieving small crystal mean sizes in these devices.13,17 
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Figure 10 Temperature profile in MSMPR 1 for Experiment 1. 

 

Experiment 2 and 3 (Figure 11 and Figure 12) showed no detectable response phase as total 

counts 1 – 1000 µm steadily decreased and levelled off into a steady-state. The supersaturation 

generated by feed addition was consumed mainly by growth of crystals in the initial batch 

suspension. This was indicated by a steady rise in mean chord length throughout the washout phase. 

The presence of crystals in the 1 – 5 µm size range indicated that secondary nucleation necessary 

to sustain crystal mass was occurring on a much smaller magnitude. Both mean residence times 

(𝜏 > 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) permitted operation of MSMPR 1 at the desired temperature, and promoted crystal 

growth as indicated by steady-state mean crystal sizes (𝑑4,3) obtained (see Table 4).  It follows 

therefore, that increasing mean residence time will lower supersaturation in the MSMPR 

crystallizer and cause less secondary nucleation than growth to occur; thereby giving rise to bigger 

crystals, improved yield, and a narrower CSD. It is evident from Figure 13, that as mean residence 

time was increased, a reduction in the fine end of the steady-state distribution occurred, however 

no notable change in the coarse end of the CSD was observed. This is because as mean residence 
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time increases, crystals on average spend more time in the crystallizer, and smaller crystals grow 

towards larger sizes, in this way a narrowing of the distribution occurs. It was also observed that 

longer mean residence times in MSMPR 1 produced a lower steady-state crystal population as 

indicated by total counts 1 – 1000 µm in Table 4. Experiment 1, however, had relatively lower 

total counts at steady-state than expected, due to operation at a much lower steady-state 

supersaturation than had been targeted.  

 

 

Figure 11 Process time diagram for Experiment 2 in the single-stage MSMPR crystallizer showing temperature, total 

counts, and square-weighted mean. 𝜏 = 10 min. 
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Figure 12 Process time diagram for Experiment 3 in the single-stage MSMPR crystallizer showing temperature, total 

counts, and square-weighted mean. 𝜏 = 15 min. 

 

Despite all three experiments having similar RTDs (for the same MSMPR), the steady-

state product CSD from Experiment 1 was very different to Experiment 2 and 3. Strongly 

competing secondary nucleation in Experiment 1 created excessive fines and a bimodal 

distribution. The presence of fines and predominantly needle-shaped crystals are clearly visible in 

offline images of the isolated product (see Figure 14(a)). Doubling the mean residence time in 

Experiment 2 narrowed the span of the distribution and increased the mean size of the steady-state 

product. It can be said that Experiment 2 and 3 had similar steady-state CSDs due to weakly 

competing secondary nucleation in both experiments. The steady-state supersaturation of these 

two experiments are also not very different as seen in Figure 15. A marginal improvement to the 

product mean size, CSD span, and yield was however obtained in Experiment 3. Figure 14(b) and 

Figure 14(c) show the more regular prismatic shape of 𝛼 -GLY obtained from the growth-

dominated processes of Experiment 2 and 3 respectively. Extending the mean residence time to 20 

min (Experiment 4) produced enormous crystals (see Figure 14(d)) which clogged the transfer line 
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between MSMPR 1 and the feed/dissolution vessel. This indicated that larger tubing inner 

diameters are required for longer mean residence times to cope with fast-growing 𝛼-GLY crystals. 

 

 

Figure 13 Steady-state α-GLY product CSDs obtained for Experiment 1, 2, and 3. 

 

The results from Experiment 1 – 3 highlight the greater role of crystallization mechanisms 

than RTD in shaping the final product CSD. The mean residence time does not change RTD, but 

it controls the rate of supersaturation generation and consumption in the crystallizer, which 

influences competing mechanisms. Since nucleation and growth rates are determined by available 

supersaturation, it is important to control supersaturation to promote one mechanism over the other, 

since the ratio of both mechanisms significantly affects product CSD. Minimising nucleation 

becomes necessary in this case since it creates substantial fines in the product. For the fast-growing 

𝛼-GLY, Experiment 2 and 3 therefore suggest that extending the mean residence time in the 

MSMPR will promote growth over nucleation and give a better-quality product with improved 

yield.  
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Figure 14 Microscope images of α-GLY product crystals from (a) Experiment 1 (at steady-state); (b) Experiment 2 

(at steady-state); (c) Experiment 3 (at steady-state); (d) Experiment 4 (after blockage). 

 

(a) (b)

(c) (d)
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Figure 15 Steady-state concentrations for single-stage and 2-stage MSMPR experiments. Black dashed line is the 

solubility curve. 

 

The downside of prolonged mean residence times in a single-stage MSMPR is that high throughput 

times of a batch crystallizer will be approached without achieving the equivalent thermodynamic 

yield (i.e. recovered solute fraction), since the MSMPR operates at a fixed point (supersaturation) 

in the phase diagram. To improve thermodynamic yield, operation of the single-stage MSMPR at 

a lower point in the phase diagram (MSMPR temperature of 10 °C) was attempted. This was 

however unsuccessful, as a high degree of supersaturation caused significant encrustation on the 

FBRM probe and crystallizer walls in Experiment 5. Therefore, the 2-stage MSMPR crystallizer 

was explored. 
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Figure 16 Process time diagram for Experiment 4 in the single-stage MSMPR crystallizer showing temperature, total 

counts, and square-weighted mean. 𝜏 = 20 min. 

 

3.5 2-stage MSMPR crystallization 

In Experiment 6, the 2-stage MSMPR crystallizer enabled continuous operation at a lower 

point in the phase diagram without fouling and encrustation issues encountered in Experiment 5 

(see Figure 15). Table 5 summarises the operating conditions and results for Experiment 6. The 

process time diagram in Figure 17 shows a strong response phase in MSMPR 2 driven by 

significant supersaturation. Substantial secondary nucleation was evidenced by steadily increasing 

counts 1 – 5 µm which produced a high crystal number density (total counts) at steady-state. Figure 

18 shows that the steady-state CSD from MSMPR 2 had a fraction of smaller crystals created by 

a secondary nucleation-dominated process. With a high suspension density, crystal-crystal and 

crystal-impeller collisions are promoted; and as glycine crystals approach larger sizes (~798 μm)23 

the propensity for attrition increases. These combined mechanisms produced a smaller product 

mean size. 
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Figure 17 Process time diagram for Experiment 6 in the 2-stage MSMPR system showing MSMPR 2 temperature, 

total counts, and square-weighted mean. 𝜏 = 10 min. 

 

Table 5 Summary of operating conditions and experimental results for 2-stage MSMPR crystallization 

 Experiment 6 

 Feed MSMPR 1 MSMPR 2 

Mean residence time, 𝜏 (min) 25 10 10 

Vessel operating temperature (°C) 60 20 10 

Avg. operating volume (ml) 250 90 90 

Feed concentration, 𝐶𝑓 (g/g) 0.275 n/a n/a 

Exit from MSMPR, 𝐶𝑠𝑠
𝑖  (g/g) n/a n/a 0.180 

MSMPR supersaturation (-) n/a n/a 1.24 

Steady-state FBRM total counts (#/s) n/a n/a 10,111 

Steady-state mean crystal size, 𝑑4,3 (µm) n/a 805 528 

Span (-) n/a 1.58 2.37 

Yield (%) n/a n/a 71 

 

In contrast, the steady-state CSD from MSMPR 1 had a larger mean size and smaller span, 

indicating that crystal growth was dominant in the crystallizer. Offline microscope images in 

Figure 19(a) confirm the absence of significant fines in the isolated product from MSMPR 1. 
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Figure 18 Steady-state α-GLY product CSDs obtained from MSMPR 1 and 2 in Experiment 6. 

 

 

Figure 19 Microscope images of steady-state α-GLY product crystals from MSMPR 1 (a) and MSMPR 2 (b) in 

Experiment 6. 

 

Figure 20 shows the similarity in steady-state CSDs from the single-stage MSMPR in Experiment 

2 and MSMPR 1 in Experiment 6 for the same mean residence time and RTD. Fewer fines in 

MSMPR 1 suggests less secondary nucleation than in the single-stage MSMPR. This is to be 

expected for a complete recycle operation, since an added crystallization stage (MSMPR 2) would 

(a) (b)
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further decrease solution concentration in the feed/dissolution vessel, and consequently the 

supersaturation in MSMPR 1.  

 

 

Figure 20 Comparison of steady-state α-GLY product CSDs from the single-stage MSMPR in Experiment 2 and 

MSMPR 1 in Experiment 6. 

 

The 2-stage cascade achieved a higher thermodynamic yield than could be attained in the 

single-stage MSMPR system, by overcoming practical limitations. However, despite its superior 

RTD performance, a broader product CSD was obtained due to a high degree of supersaturation 

in MSMPR 2. This stresses the importance of controlling supersaturation to avoid excessive 

nucleation, as the occurrence of nucleation will result in a wider distribution of residence times, 

and hence widen the steady-state CSD. Since supersaturation is determined by operating 

temperature and mean residence time, independent manipulation of these process variables in each 

MSMPR stage can achieve the desired objective. For the 𝛼-GLY system in this study, an optimal 

operating strategy may be identified based on the dominant crystallization kinetics, whereby the 
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total mean residence time is distributed between each stage in a bid to increase crystal mean size 

and narrow CSD, without compromising thermodynamic yield (i.e. maintaining MSMPR 2 at 

10 °C). A good approach would be to drive moderate nucleation in the first stage to obtain 

sufficient surface area/suspension density and eliminate fines in the second stage through longer 

residence times that favour crystal growth. Controlling crystallization mechanisms through 

decoupled operation is a key advantage of cascade design which has been demonstrated in several 

cascade optimization studies for systems with different crystallization kinetics.54 – 57  

Lastly, to check for representative withdrawal in the 2-stage MSMPR crystallization, a 

steady-state sample was isolated via rapid intermittent withdrawal and compared with a sample 

withdrawn from the bottom of MSMPR 2. From Figure 21, it was concluded that both CSDs are 

comparable; however, it appears that a slightly greater number of coarse crystals are present at the 

bottom of MSMPR 2 than in the isolated sample.   

 

 

Figure 21 CSD comparison of steady-state samples taken by intermittent withdrawal and from the bottom of MSMPR 

2. 
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This suggests that intermittent withdrawal may not be as efficient for suspensions containing 

coarse crystals. Other researchers58 have observed similar behaviour using an intermittent 

pneumatic withdrawal method, whereby the mean particle size of the isolated sample was slightly 

smaller than in the crystallizer. 

4. Conclusions 

In this work, the continuous steady-state crystallization of 𝛼-GLY in a single- and 2-stage 

MSMPR crystallizer was made possible through the application of an intermittent vacuum-transfer 

technique. RTD characterisation confirmed previous simulation results by Su et al.23 that material 

RTD in an MSMPR remains unchanged for different mean residence times. However, cooling 

crystallization experiments revealed the greater influence of secondary nucleation and growth 

mechanisms than RTD in determining steady-state product CSD. Specifically, secondary 

nucleation broadened steady-state CSD regardless of RTD performance; while growth-dominated 

processes improved product quality by narrowing CSD, increasing crystal mean size, and 

improving crystal shape. Operating at longer mean residence times was shown to be an effective 

approach for obtaining narrower steady-state CSDs, despite the characteristic broad RTD of the 

single-stage MSMPR. 

Although the 2-stage MSMPR cascade achieved a better RTD and thermodynamic yield than 

feasible in the single-stage MSMPR system, a poorer product quality was obtained. This stresses 

that controlling supersaturation is key to improving CSD in an MSMPR cascade. CSD control is 

much easier in tubular crystallizers due to tighter control of supersaturation resulting from superior 

RTDs and heat transfer performance. To benefit from improved RTDs provided by multistage 
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MSMPR crystallizers, an optimum operating strategy must be identified that appropriately controls 

crystallization mechanisms in each MSMPR stage. 
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CQA  critical quality attribute 

DFT  discrete Fourier transform 

FBRM  focused beam reflectance measurement 

FFT  fast Fourier transformation 

GLY  glycine 

MSMPR mixed suspension mixed product removal 

PFC  plug flow crystallizer 

RCI  retreat curve impeller 

RTD  residence time distribution 

SAV  surface area to volume 

SPC  smooth periodic constriction 

SWMCL square-weighted mean chord length 

 

Symbols 

𝐴  heat transfer area (m2) 

𝐶  dimensionless concentration for tracer (-) 

𝑐  tracer concentration (g L-1) 

𝑐𝑖  initial tracer concentration (g L-1) 

𝐶∗  equilibrium concentration at the specified operating temperature (g/g) 

𝐶𝑓  feed concentration to MSMPR 1 (g/g) 

𝐶𝑝  specific heat capacity the solution at the incoming feed temperature (J kg-1 K-1) 

𝐶𝑠𝑠
𝑖   steady-state concentration in the 𝑖th MSMPR crystallizer (g/g) 

𝐷𝑎𝑥  axial dispersion coefficient (m2 s-1) 
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𝐷𝑎𝑥/𝑢𝐿 axial dispersion number (-) 

𝐷  impeller diameter (m) 

𝑑𝑝  diameter of spherical particles (m) 

𝑑4,3  steady-state mean crystal size (µm) 

𝑔  acceleration due to gravity (m s-2) 

ℎ𝑖  process heat transfer coefficient (W m-2 K-1) 

ℎ𝑜  jacket heat transfer coefficient (W m-2 K-1) 

ℎ𝑤  wall heat transfer coefficient (W m-2 K-1) 

𝑘  upper size bin (-) 

𝐿  length of test section or distance between measurement points (m) 

𝐿𝑖  chord length in the 𝑖th size bin (μm) 

𝑁  impeller rotation speed (rps) 

𝑁𝑅𝑒  impeller Reynolds number 

𝑁𝑗𝑠  just-suspended speed (rpm) 

𝑛  number of equal-sized tanks-in-series (-) 

𝑛𝑖  number of counts corresponding to the 𝑖th bin (-) 

𝑅𝑒𝑜   oscillatory Reynolds number 

𝑆  impeller geometrical constant 

𝑇𝑐𝑟  desired operating temperature (°C)  

𝑇𝑓  incoming feed temperature (°C) 

𝑇𝑗  MSMPR jacket temperature (°C) 

𝑡  time (s) 

𝑈  overall heat transfer coefficient (W m-2 K-1) 
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𝑢  mean axial velocity (m s-1) 

𝑉𝑐𝑟  crystallizer operating volume  

X  mass ratio of solid to liquid (-) 

 

Greek letters 

𝜌𝑙  liquid density (kg m-3) 

𝜌𝑝  particle density (kg m-3) 

𝜌𝑠  glycine solution density (kg m-3) 

𝜏𝐿  mean residence time in the test section (s) 

𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 critical mean residence time (min) 

𝜏  mean residence time in the MSMPR crystallizer (min) 

𝜃  dimensionless time (-) 

𝜇  bulk fluid viscosity (Pa s) 

𝜈  liquid kinematic viscosity (m2 s) 
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We report the steady-state cooling crystallization of 𝛼-glycine in a single- and 2-stage MSMPR crystallizer. Using 

the residence time distribution analysis and process analytical technology, we demonstrate the need for optimum 

control of supersaturation to benefit from improved residence time distributions provided by multistage MSMPR 

crystallizers. 

 

 

 


