Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Neural spike train synchronisation indices: definitions, interpretations and applications

Halliday, D.M. and Rosenberg, J.R. and Breeze, P. and Conway, B.A. (2006) Neural spike train synchronisation indices: definitions, interpretations and applications. IEEE Transactions on Biomedical Engineering, 53 (6). pp. 1056-1066. ISSN 0018-9294

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A comparison of previously defined spike train synchronization indices is undertaken within a stochastic point process framework. The second-order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second-order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% to 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1-250 spikes/s). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multielectrode array data is briefly discussed.