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Abstract. When solving linear systems with nonsymmetric Toeplitz or multilevel Toeplitz
matrices using Krylov subspace methods, the coefficient matrix may be symmetrized. The precondi-
tioned MINRES method can then be applied to this symmetrized system, which allows rigorous upper
bounds on the number of MINRES iterations to be obtained. However, effective preconditioners for
symmetrized (multilevel) Toeplitz matrices are lacking. Here, we propose novel ideal preconditioners
and investigate the spectra of the preconditioned matrices. We show how these preconditioners can
be approximated and demonstrate their effectiveness via numerical experiments.
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1. Introduction. Linear systems

(1.1) Anx = b,

where An \in \BbbR n\times n is a Toeplitz or multilevel Toeplitz matrix, and b \in \BbbR n arise
in a range of applications. These include the discretization of partial differential
and integral equations, time series analysis, and signal and image processing [7, 27].
Additionally, demand for fast numerical methods for fractional diffusion problems---
which have recently received significant attention---has renewed interest in the solution
of Toeplitz and Toeplitz-like systems [10, 26, 31, 32, 46].

Preconditioned iterative methods are often used to solve systems of the form (1.1).
When An is Hermitian, the conjugate gradient method (CG) [18] and MINRES [29]
can be applied, and their descriptive convergence rate bounds guide the construction
of effective preconditioners [7, 27]. On the other hand, convergence rates of precondi-
tioned iterative methods for nonsymmetric Toeplitz matrices are difficult to describe.
Consequently, preconditioners for nonsymmetric problems are typically motivated by
heuristics.

As described in [35] for Toeplitz matrices, and discussed in subsection 2.2 for the
multilevel case, An is symmetrized by the exchange matrix

(1.2) Yn =

\left[   1

. .
.

1

\right]   ,

so that (1.1) can be replaced by

(1.3) YnAnx = Ynb,
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with the symmetric coefficient matrix YnAn. Although we can view Yn as a precon-
ditioner, its role is not to accelerate convergence, and there is no guarantee that (1.3)
is easier to solve than (1.1) [12, 23]. Instead, the presence of Yn allows us to use
preconditioned MINRES, with its nice properties and convergence rate bounds, to
solve (1.3). We can then apply a secondary preconditioner Pn \in \BbbR n\times n to improve
the spectral properties of YnAn and therefore accelerate convergence. An additional
benefit is that MINRES may be faster than GMRES [37] even when iteration numbers
are comparable, since it requires only short-term recurrences.

Preconditioned MINRES requires a symmetric positive definite preconditioner Pn,
but it is not immediately clear how to choose this matrix when An is nonsymmetric.
In [35] it was shown that absolute value circulant preconditioners, which we describe in
the next section, give fast convergence for many Toeplitz problems. However, for some
problems there may be more effective alternatives based on Toeplitz matrices (see,
e.g., [4, 17]). Moreover, multilevel circulant preconditioners generally are not effective
for multilevel Toeplitz problems [40, 41, 42]. Thus, alternative preconditioners for
(1.3) are needed.

In this paper, we describe ideal preconditioners for symmetrized (multilevel)
Toeplitz matrices and show how these can be effectively approximated. To set the
scene, we present background material in section 2. Sections 3 and 4 describe the ideal
preconditioners for Toeplitz and multilevel Toeplitz problems, respectively. Numeri-
cal experiments in section 5 verify our results and show how the ideal preconditioners
can be efficiently approximated by circulant matrices or multilevel methods. Our
conclusions can be found in section 6.

2. Background. In this section we collect pertinent results on Toeplitz and
multilevel Toeplitz matrices.

2.1. Toeplitz and Hankel matrices. Let An \in \BbbR n\times n be the nonsingular
Toeplitz matrix

(2.1) An =

\left[        

a0 a - 1 . . . a - n+2 a - n+1

a1 a0 a - 1 a - n+2

... a1 a0
. . .

...

an - 2
. . .

. . . a - 1

an - 1 an - 2 . . . a1 a0

\right]        .

In many applications, the matrix An is associated with a generating function
f \in L1([ - \pi , \pi ]) via its Fourier coefficients

(2.2) ak =
1

2\pi 

\int \pi 

 - \pi 

f(\theta )e - ik\theta d\theta , k \in \BbbZ .

We use the notation An(f) when we wish to stress that a Toeplitz matrix An is
associated with the generating function f . An important class of generating functions
is the Wiener class, which is the set of functions satisfying

f(\theta ) =

\infty \sum 
k= - \infty 

ake
 - ik\theta ,

\infty \sum 
k= - \infty 

| ak| < \infty .

Many properties of An(f) can be determined from f . For example, if f is real,
then An(f) is Hermitian and its eigenvalues are characterized by f [16, pp. 64--65].
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On the other hand, if f is complex-valued, then An(f) is non-Hermitian for at least
some n, and its singular values are characterized by | f | [2, 33, 47].

Circulant matrices are Toeplitz matrices of the form

Cn =

\left[        

c0 cn - 1 . . . c2 c1
c1 c0 cn - 1 c2
... c1 c0

. . .
...

cn - 2
. . .

. . . cn - 1

cn - 1 cn - 2 . . . c1 c0

\right]        .

They are diagonalized by the Fourier matrix, i.e., Cn = F \ast 
n\Lambda nFn, where

(Fn)j,k =
1\surd 
n
e

2\pi ijk
n , j, k = 0, . . . , n - 1,

and \Lambda n = diag(\lambda 0, . . . , \lambda n - 1), with

(2.3) \lambda k =

n - 1\sum 
j=0

cje
2\pi ijk

n .

We denote by Cn(f) the circulant with eigenvalues \lambda j = f(2\pi j/n), j = 0, . . . , n  - 1.
The absolute value circulant [5, 28, 35] derived from a circulant Cn is the matrix

(2.4) | Cn| = F \ast 
n | \Lambda n| Fn.

Closely related to Toeplitz matrices are Hankel matrices Hn \in \BbbR n\times n,

Hn =

\left[         

a1 a2 a3 . . . an

a2 a3 . .
.

an+1

a3 . .
.

. .
. ...

... . .
.

. .
.

a2n - 2

an an+1 . . . a2n - 2 a2n - 1

\right]         
,

which have constant antidiagonals. It is well known that a Toeplitz matrix can be
converted into a Hankel matrix, or vice versa, by flipping the rows (or columns), i.e.,
via Yn in (1.2). Since Hankel matrices are necessarily symmetric, this means that any
nonsymmetric Toeplitz matrix An can be symmetrized by applying Yn, so that

(2.5) YnAn = AT
nYn.

Alternatively, we may think of An as being self-adjoint with respect to the bilinear
form induced by Yn [14, 34].

A matrix Gn \in \BbbR n\times n is centrosymmetric if

(2.6) GnYn = YnGn

and is skew-centrosymmetric if GnYn =  - YnGn. Thus, (2.5) shows that symmetric
Toeplitz matrices are centrosymmetric. It is clear from (2.6) that the inverse of a non-
singular centrosymmetric matrix is again centrosymmetric. Furthermore, nonsingular
centrosymmetric matrices have a centrosymmetric square root [22, Corollary 1].1

1In [22] the proof is given only for a centrosymmetric matrix of even dimension. However, the
extension to matrices of odd dimension is straightforward.
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2.2. Multilevel Toeplitz and Hankel matrices. Multilevel Toeplitz matri-
ces are generalizations of Toeplitz matrices. To define a generating function for a
multilevel Toeplitz matrix, let j = (j1, . . . , jp) \in \BbbZ p be a multi-index, and consider a
p-variate function f \in L1([ - \pi , \pi ]p), f : [ - \pi , \pi ]p \rightarrow \BbbC . The Fourier coefficients of f
are defined as

aj = a(j1,...,jp) =
1

(2\pi )p

\int 
[ - \pi ,\pi ]p

f(\theta )e - i\langle \theta ,j\rangle d\theta , j \in \BbbZ p,

where \langle \theta , j\rangle =
\sum p

k=1 \theta kjk, and d\theta = d\theta 1 \cdot \cdot \cdot d\theta p is the volume element with respect to
the p-dimensional Lebesgue measure.

If n = (n1, . . . , np) \in \BbbN p, with ni > 1, i = 1, . . . , p, and \pi (n) = n1 \cdot \cdot \cdot np, then f is
the generating function of the multilevel Toeplitz matrix An(f) \in \BbbR \pi (n)\times \pi (n), where

An(f) =

n1 - 1\sum 
j1= - n1+1

\cdot \cdot \cdot 
np - 1\sum 

jp= - np+1

J (j1)
n1

\otimes \cdot \cdot \cdot \otimes J (jp)
np

a(j1,...,jp).

Here, J
(k)
r \in \BbbR r\times r is the matrix whose (i, j)th entry is one if i  - j = k and zero

otherwise.
Similarly, we can define a multilevel Hankel matrix as

Hn(f) =

2n1 - 1\sum 
j1=1

\cdot \cdot \cdot 
2np - 1\sum 
jp=1

K(j1)
n1

\otimes \cdot \cdot \cdot \otimes K(jp)
np

a(j1,...,jp),

where K
(k)
r \in \BbbR r\times r is the matrix whose (i, j)th entry is one if i+ j = k + 1 and zero

otherwise. Although a multilevel Hankel matrix does not necessarily have constant
antidiagonals, it is symmetric.

Multilevel Toeplitz matrices can also be symmetrized by the exchange matrix
Yn \in \BbbR \pi (n)\times \pi (n), Yn = Yn1 \otimes \cdot \cdot \cdot \otimes Ynp . To see this, we use an approach analogous to

that in the proof of [11, Lemma 5]. The key point is that YrJ
(k)
r = K

(r - k)
r , so that

YnAn(f) =

n1 - 1\sum 
j1= - n1+1

\cdot \cdot \cdot 
np - 1\sum 

jp= - np+1

\Bigl( 
(Yn1

J (j1)
n1

)\otimes \cdot \cdot \cdot \otimes (Ynp
J (jp)
np

)
\Bigr) 
a(j1,...,jp)

=

n1 - 1\sum 
j1= - n1+1

\cdot \cdot \cdot 
np - 1\sum 

jp= - np+1

\Bigl( 
K(n1 - j1)

n1
\otimes \cdot \cdot \cdot \otimes K(np - jp)

np

\Bigr) 
a(j1,...,jp)

=

2n1 - 1\sum 
j1=1

\cdot \cdot \cdot 
2np - 1\sum 
jp=1

K(j1)
n1

\otimes \cdot \cdot \cdot \otimes K(jp)
np

b(j1,...,jp),

where b(j1,...,jp) = a(n1 - j1,...,np - jp). Thus, YnAn(f) is a multilevel Hankel matrix and
hence is symmetric.

2.3. Assumptions and notation. Throughout, we assume that all Toeplitz or
multilevel Toeplitz matrices An are real and are associated with generating functions
in L1([ - \pi , \pi ]p). We denote the real and imaginary parts of f by fR and fI , respec-
tively, so that f = fR + ifI . We assume that the symmetric part of An, given by
AR = (An + AT

n )/2, is positive definite, which is equivalent to requiring that fR is
essentially positive. Similarly, we assume that | f | \geq \delta > 0 for some constant \delta , so
that An(| f | ) is positive definite with \lambda min(An(| f | ) \geq \delta . Moreover, \lambda min(An(| f | ) > \delta 
if esssup | f | > \delta = essinf | f | (see Lemma 3.1).
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3. Preconditioning Toeplitz matrices. In this section we introduce our ideal
preconditioners for (1.3) when An is a Toeplitz matrix, and we analyze the spectrum
of the preconditioned matrices. Although these preconditioners may be too expensive
to apply exactly, they can be approximated by, e.g., a circulant matrix or multigrid
solver.

3.1. The preconditioner \bfitA \bfitR . The first preconditioner we consider is the sym-
metric part of An, namely AR = (An + AT

n )/2, which was previously used to pre-
condition the nonsymmetric problem (1.1) (see [21]). When the preconditioner AR is
applied to the symmetrized system (1.3), spectral information can be used to bound
the convergence rate of preconditioned MINRES. Accordingly, in this section we

characterize the eigenvalues of A
 - 1

2

R YnAnA
 - 1

2

R .
We begin by stating a powerful result that characterizes the spectra of precondi-

tioned Hermitian Toeplitz matrices in terms of generating functions.

Lemma 3.1 (see [39, Theorem 3.1]). Let f, g \in L1([ - \pi , \pi ]) be real-valued func-
tions with g essentially positive. Let An(f) and An(g) be the Hermitian Toeplitz
matrices with generating functions f and g, respectively. Then, An(g) is positive
definite, and the eigenvalues of A - 1

n (g)An(f) lie in (r,R), where r < R and

r = essinf
x\in [ - \pi ,\pi ]

f(\theta )

g(\theta )
, R = esssup

\theta \in [ - \pi ,\pi ]

f(\theta )

g(\theta )
.

If r = R, then A - 1
n (g)An(f) = In, the identity matrix of dimension n.

Lemma 3.1 shows that in the Hermitian case, we can bound the extreme eigen-
values of preconditioned Toeplitz matrices using scalar quantities. If bounds on the
eigenvalues nearest the origin are also available, it is possible to estimate the conver-
gence rate of preconditioned MINRES applied to the Toeplitz system. Unfortunately,
this result neither carries over to nonsymmetric matrices nor is an eigenvalue inclusion
region alone sufficient to bound the convergence rate of a Krylov subspace method for
nonsymmetric problems [1, 15]. However, in the following we show that by symmetriz-
ing the Toeplitz matrix An, we can obtain results analogous to Lemma 3.1---even for
nonsymmetric An. As a first step, we quantify the perturbation of the (nonsymmetric)

preconditioned matrix A
 - 1

2

R AnA
 - 1

2

R from the identity.

Lemma 3.2. Let f \in L1([ - \pi , \pi ]), and let f = fR + ifI , where fR and fI are real-
valued functions with fR essentially positive. Additionally, let An := An(f) \in \BbbR n\times n

be the Toeplitz matrix associated with f . Then AR = An(fR) = (An + AT
n )/2 is

symmetric positive definite and

A
 - 1

2

R AnA
 - 1

2

R = In + En,

where

\| En\| 2 = \epsilon < esssup
\theta \in [ - \pi ,\pi ]

\bigm| \bigm| \bigm| \bigm| fI(\theta )fR(\theta )

\bigm| \bigm| \bigm| \bigm| .
Proof. It is easily seen from (2.2) that An(f) = An(fR) + iAn(fI). Moreover,

from Lemma 3.1 we also know that AR = An(fR) is symmetric positive definite and
An(fI) is Hermitian. It follows that

A
 - 1

2

R AnA
 - 1

2

R = A
 - 1

2

R (AR + iAn(fI))A
 - 1

2

R = In + En,

where En = i \widehat En = iA
 - 1

2

R An(fI)A
 - 1

2

R .
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To bound \epsilon := \| En\| 2 = \| \widehat En\| 2, note that since \widehat En is Hermitian, \| \widehat En\| 2 is equal

to the spectral radius of \widehat En. Applying Lemma 3.1 thus gives that

\epsilon < esssup
\theta \in [ - \pi ,\pi ]

\bigm| \bigm| \bigm| \bigm| fI(\theta )fR(\theta )

\bigm| \bigm| \bigm| \bigm| ,
which completes the proof.

The above result tells us that the nonsymmetric preconditioned matrix will be
close to the identity when the skew-Hermitian part of An is small, as expected. Al-

though this enables us to bound the singular values of A
 - 1

2

R AnA
 - 1

2

R , these cannot be
directly related to the convergence of, e.g., GMRES. In contrast, the following result
will enable us to characterize the convergence rate of MINRES applied to (1.3).

Lemma 3.3. Let f \in L1([ - \pi , \pi ]), and let f = fR + ifI , where fR and fI are real-
valued functions with fR essentially positive. Additionally, let An := An(f) \in \BbbR n\times n

be the Toeplitz matrix associated with f . Then the symmetric positive definite matrix
AR = An(fR) = (An +AT

n )/2 is such that

(3.1) A
 - 1

2

R (YnAn)A
 - 1

2

R = Yn + YnEn,

where Yn is the exchange matrix in (1.2) and

\| YnEn\| 2 = \epsilon < esssup
\theta \in [ - \pi ,\pi ]

\bigm| \bigm| \bigm| \bigm| fI(\theta )fR(\theta )

\bigm| \bigm| \bigm| \bigm| .
Proof. Since AR is a symmetric Toeplitz matrix, it is centrosymmetric. Hence,

A
 - 1

2

R is centrosymmetric (see (2.6) and [22]), so that YnA
 - 1

2

R = A
 - 1

2

R Yn. Combining
this with Lemma 3.2 shows that

A
 - 1

2

R (YnAn)A
 - 1

2

R = Yn(A
 - 1

2

R AnA
 - 1

2

R ) = Yn(In + En) = Yn + YnEn.

Since Yn is orthogonal, \| YnEn\| 2 = \| En\| 2, and the result follows from Lemma 3.2.

Applying Weyl's theorem [20, Theorem 4.3.1] to (3.1) shows that the eigenvalues

of A
 - 1

2

R (YnAn)A
 - 1

2

R lie in [ - 1 - \epsilon , - 1+\epsilon ]\cup [1 - \epsilon , 1+\epsilon ]. However, as \epsilon grows, eigenvalues
could move close to the origin and hamper MINRES convergence. In the following
result, we show that this cannot happen.

Theorem 3.4. Let f \in L1([ - \pi , \pi ]), and let f = fR + ifI , where fR and fI are
real-valued functions with fR essentially positive. Additionally, let An := An(f) \in 
\BbbR n\times n be the Toeplitz matrix associated with f, and let AR = An(fR) = (An +AT

n )/2.

Then, the eigenvalues of A
 - 1

2

R (YnAn)A
 - 1

2

R lie in [ - 1 - \epsilon , - 1] \cup [1, 1 + \epsilon ], where

(3.2) \epsilon < esssup
\theta \in [ - \pi ,\pi ]

\bigm| \bigm| \bigm| \bigm| fI(\theta )fR(\theta )

\bigm| \bigm| \bigm| \bigm| .
Proof. We know from Lemma 3.3 that

A
 - 1

2

R (YnAn)A
 - 1

2

R = Yn + YnEn,

where \| YnEn\| 2 < \epsilon and Yn has eigenvalues \pm 1. Thus, as discussed above, the eigen-

values of A
 - 1

2

R (YnAn)A
 - 1

2

R lie in [ - 1 - \epsilon , - 1+\epsilon ]\cup [1 - \epsilon , 1+\epsilon ]. Hence, all that remains is
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to improve the bounds on the eigenvalues nearest the origin. Our strategy for doing so
will be to apply successive similarity transformations to Yn + YnEn; as a by-product,

we will characterize the eigenvalues of A
 - 1

2

R (YnAn)A
 - 1

2

R in terms of the eigenvalues of
YnEn.

Before applying our first similarity transform, we recall from the proofs of Lem-

mas 3.2 and 3.3 that iAn(fI) is skew-symmetric and Toeplitz, while A
 - 1

2

R is symmetric
and centrosymmetric. It follows that YnEn is symmetric but skew-centrosymmetric.
Skew-centrosymmetry implies that whenever (\lambda , x), \lambda \not = 0 is an eigenpair of YnEn,
then so is ( - \lambda , Ynx) [19, 36, 44]. Additionally, any eigenvectors of YnEn correspond-
ing to a zero eigenvalue can be expressed as a linear combination of vectors of the
form x \pm Ynx, x \in \BbbR n [44, Theorem 17]. Therefore, YnEn has eigendecomposition
YnEn = Un\Lambda nU

T
n , where

(3.3) \Lambda n =

m1 m1 m2\Biggl[ \Biggr] m1 \Lambda pos

m1  - \Lambda pos

m2 0

and

(3.4) Un =
m1 m1 m3 m4

[ ]Upos YnUpos Usym + YnUsym Uskew  - YnUskew ,

where n = 2m1 +m2 and m2 = m3 +m4. Since YnEn is symmetric, we may assume
that Un is orthogonal. We can now apply the first similarity transform, namely,

(3.5) UT
n (Yn + YnE)Un = UT

n YnUn + \Lambda n.

Using the orthogonality of the columns of Un, it is straightforward to show that

UT
n YnUn =

\left[    
Im1

Im1

Im3

 - Im4

\right]    .

Thus, UT
n YnUn = Qn\Gamma nQ

T
n , where

\Gamma n =

\left[  \widehat \Gamma 2m1

Im3

 - Im4

\right]  and Qn =

\left[  \widehat Q Im3

 - Im4

\right]  .

Here, \widehat \Gamma 2m1
= diag(1, - 1, . . . , 1, - 1), and the kth column of \widehat Q \in \BbbR n\times 2m1 is given by

\widehat qk =

\Biggl\{ 
1\surd 
2
(ek + em1+k), k odd,

1\surd 
2
(ek  - em1+k), k even,

with ej \in \BbbR n the jth unit vector. Consequently, our second similarity transform gives

(3.6) QT
nU

T
n (Yn + YnEn)UnQn = \Gamma n +QT

n\Lambda nQn,
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with

QT
n\Lambda nQn =

\left[         

\Sigma 1

\Sigma 2

. . .

\Sigma m1

0
0

\right]         
,

where if \Lambda pos = diag(\lambda 1, \lambda 2, . . . , \lambda m1
), then

\Sigma k =

\biggl[ 
0 \lambda k

\lambda k 0

\biggr] 
.

Hence, letting

Z =

\biggl[ 
1

 - 1

\biggr] 
,

we find that

\Gamma +QT
n\Lambda nQn =

\left[         

Z +\Sigma 1

Z +\Sigma 2

. . .

Z +\Sigma m1

Im3

 - Im4

\right]         
.

Since the eigenvalues of Z+\Sigma k are \pm 
\sqrt{} 
1 + \lambda 2

k, we see from (3.6) that the eigenvalues

of A
 - 1

2

R (YnAn)A
 - 1

2

R are \pm 
\sqrt{} 

1 + \lambda 2
k, k = 1, . . . ,m1, and possibly 1 or both 1 and  - 1.

Hence, the eigenvalues are at least 1 in magnitude. This completes the proof.

Theorem 3.4 characterizes the eigenvalues of A
 - 1

2

R (YnAn)A
 - 1

2

R , and hence the
convergence rate of preconditioned MINRES, in terms of the scalar quantity in (3.2).
Thus, we expect that the preconditioner AR will perform best when An is nearly
symmetric, and we investigate this in section 5. However, irrespective of the degree
of nonsymmetry of An, Theorem 3.4 shows that the eigenvalues of the preconditioned
matrix are at least bounded away from the origin.

3.2. The preconditioner \bfitA \bfitM . We saw in subsection 3.1 that AR is an ef-
fective preconditioner when the degree of nonsymmetry of An is not too large. For
problems that are highly nonsymmetric, however, a different preconditioner may be
more effective. Here, motivated by the success of absolute value preconditioning, we
consider the preconditioner AM = An(| f | ) instead. The following result describes the
asymptotic eigenvalue distribution of A - 1

M YnAn.

Theorem 3.5. Assume that f \in L\infty ([ - \pi , \pi ]) with 0 < \delta \leq | f(\theta )| for all \theta \in 
[ - \pi , \pi ]. Then, if AM = An(| f | ),

(AM ) - 1YnAn(f) = YnAn( \widetilde f) + En,

where \widetilde f = f/| f | and \| En\| 2 = o(n) as n \rightarrow \infty . Moreover, the eigenvalues of YnAn( \widetilde f)
lie in [ - 1, 1].
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Proof. The conditions on | f | guarantee that An(| f | ) is invertible and that its
eigenvalues (singular values) are bounded away from 0. Thus, by Proposition 5 in [9],

An(| f | ) - 1An(f) - An( \widetilde f) = \widetilde En,

where \| \widetilde En\| 2 = o(n) as n \rightarrow \infty . Since AM is Hermitian and Toeplitz, both AM and
its inverse are centrosymmetric. It follows that

(AM ) - 1(YnAn(f)) = Yn

\bigl( 
(AM ) - 1An(f)

\bigr) 
= YnAn( \widetilde f) + En,

where En = Yn
\widetilde En and \| En\| 2 = \| Y \widetilde En\| 2 = \| \widetilde En\| 2. Hence, \| En\| 2 = o(n) as n \rightarrow \infty .

Since Yn is unitary and YnAn( \widetilde f) is symmetric, the absolute values of the eigenvalues

of YnAn( \widetilde f) coincide with the singular values of An( \widetilde f), which in turn are bounded
above by one [47]. This proves the result.

A consequence of Theorem 3.5 is that the eigenvalues of An(| f | ) - 1YnAn lie in
[ - 1 - \epsilon , 1+\epsilon ], where for large enough n the parameter \epsilon is small. Although eigenvalues
may be close to the origin, most cluster at  - 1 and 1, in line with Theorem 3.4 in [23].

To conclude this section, we show how AM can be approximated by circulant
preconditioners. First, recall from subsection 2.1 that Cn(f) is the preconditioner
with eigenvalues \lambda j = f(2\pi j/n), j = 0, . . . , n - 1. For large enough dimension n, we
have that AM = Cn(| f | ) + En + Rn, where En has small norm and Rn has small
rank [13, pp. 108--110], so that Cn(| f | ) is a good approximation to AM for large n.

The matrix Cn(| f | ) can in turn be approximated by the Strang absolute value

circulant preconditioner | C(S)
n | [5, 28, 35], where if C

(S)
n is the Strang circulant pre-

conditioner [43] for An, with eigenvalues \lambda j , j = 1, . . . , n, then the corresponding

absolute value circulant preconditioner | C(S)
n | has eigenvalues | \lambda j | , j = 1, . . . , n. For

this preconditioner, we obtain the following result.

Theorem 3.6. Let f : [ - \pi , \pi ] \rightarrow \BbbC be in the Wiener class, and let An = An(f) \in 
\BbbR n\times n. Then the Strang preconditioner C

(S)
n is such that | C(S)

n | \rightarrow Cn(| f | ) as n \rightarrow \infty .

Proof. Assume that n, the dimension of An, is n = 2m + 1. (This idea can be

extended to the case of even n, as in [6, p. 37].) Then, C
(S)
n = Cn(\scrD m  \star f), where

(\scrD m  \star f)(\theta ) =
1

2\pi 

\int \pi 

 - \pi 

\scrD m(\phi )f(\theta  - y) d\phi =

m\sum 
 - m

ake
2\pi ijk

n

is the convolution of f with the Dirichlet kernel \scrD [6], and ak is as in (2.2).

Since both | C(S)
n | = | Cn(\scrD m  \star f)| and Cn(| f | ) are diagonalized by the Fourier

matrix, they will be identical if all their eigenvalues, defined by (2.3), match. The
eigenvalues of Cn(\scrD m  \star f) are (\scrD m \ast f)(2\pi j/n), j = 0, . . . , n  - 1. Hence, the jth
eigenvalue of | Cn(\scrD m  \star f)| is

\lambda j(| Cn(\scrD m  \star f)| ) =

\Biggl( 
(\scrD m  \star f)

\biggl( 
2\pi j

n

\biggr) 
(\scrD m  \star f)

\biggl( 
2\pi j

n

\biggr) \Biggr) 1
2

.

Since f is in the Wiener class, (\scrD m  \star f)(\theta ) converges absolutely and hence uniformly
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to f(\theta ). Thus,

lim
n\rightarrow \infty 

\lambda j(| Cn(\scrD m  \star f)| ) = lim
n\rightarrow \infty 

\Biggl( 
(\scrD m  \star f)

\biggl( 
2\pi j

n

\biggr) 
(\scrD m  \star f)

\biggl( 
2\pi j

n

\biggr) \Biggr) 1
2

=

\Biggl( 
f

\biggl( 
2\pi j

n

\biggr) 
f

\biggl( 
2\pi j

n

\biggr) \Biggr) 1
2

=

\bigm| \bigm| \bigm| \bigm| f \biggl( 2\pi j

n

\biggr) \bigm| \bigm| \bigm| \bigm| = \lambda j(Cn(| f | )).

Since the eigenvalues of | Cn(\scrD m  \star f)| approach those of Cn(| f | ) as n \rightarrow \infty , we obtain
the result.

4. Multilevel Toeplitz problems. We now extend the results of section 3 to
multilevel Toeplitz matrices.

4.1. The preconditioner \bfitA \bfitR . The results of subsection 3.1 carry over straight-
forwardly to the multilevel case. They depend on the following generalization of
Lemma 3.1. This result essentially appeared in Theorem 2.42 in [38].

Lemma 4.1 (see [38]). Let f, g \in L1([ - \pi , \pi ]p) with g essentially positive. Let

r := essinf
\theta \in [ - \pi ,\pi ]p

f(\theta )

g(\theta )
, R := esssup

\theta \in [ - \pi ,\pi ]p

f(\theta )

g(\theta )
.

Then the eigenvalues of A - 1
n (g)An(f) lie in (r,R) if r<R. If r=R, then A - 1

n (g)An(f)=
In, where In is the identity matrix of dimension \pi (n) = n1 \cdot \cdot \cdot np.

With this result, Lemmas 3.2 and 3.3 and Theorem 3.4 carry over directly to the
multilevel case. In particular, we have the following characterization of the eigenvalues

of A
 - 1

2

R (YnAn)A
 - 1

2

R .

Theorem 4.2. Let f \in L1([ - \pi , \pi ]p), and let f = fR + ifI , where fR and fI
are real-valued functions with fR essentially positive. Additionally, let An := An(f) \in 
\BbbR \pi (n)\times \pi (n) be the multilevel Toeplitz matrix associated with f, and let AR = An(fR) =

(An+AT
n )/2. Then, the eigenvalues of A

 - 1
2

R (YnAn)A
 - 1

2

R lie in [ - 1 - \epsilon , - 1]\cup [1, 1+ \epsilon ],
where

(4.1) \epsilon < esssup
\theta \in [ - \pi ,\pi ]p

\biggl( \bigm| \bigm| \bigm| \bigm| fI(\theta )fR(\theta )

\bigm| \bigm| \bigm| \bigm| \biggr) .

Theorem 4.2 characterizes the eigenvalues of A
 - 1

2

R (YnAn)A
 - 1

2

R , which are bounded
away from the origin. In turn, this allows us to bound the convergence rate of pre-
conditioned MINRES in terms of the easily computed quantity in (4.1).

4.2. The preconditioner \bfitA \bfitM . We can also extend the results in subsection 3.2
to the multilevel case. However, for multilevel problems this preconditioner is more
challenging to approximate. Matrix algebra, e.g., block circulant, preconditioners
will generally result in iteration counts that increase as the dimension increases, as
previously discussed. On the other hand, constructing effective banded Toeplitz, or
efficient multilevel, algorithms is challenging since it is generally necessary to compute
elements of AM . Nonetheless, we present the following result for completeness. It
directly generalizes the result for Toeplitz matrices, so it is presented without proof.

2Although the result is stated for f, g nonnegative, the proof also holds for indefinite f .
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Theorem 4.3. Let f : L\infty ([ - \pi , \pi ]p), with 0 < \delta < | f(\theta )| for all \theta \in [ - \pi , \pi ]p.
Then, if AM = An(| f | ) is the multilevel Toeplitz matrix generated by | f | ,

(AM ) - 1YnAn(f) = YnAn( \~f) + En,

where \~f = f/| f | and \| En\| 2 = o(n) as n \rightarrow \infty . Moreover, the eigenvalues of YnAn( \~f)
lie in [ - 1, 1].

5. Numerical experiments. In this section we investigate the effectiveness
of the preconditioners described above, and approximations to them, for the sym-
metrized system (1.3). We also compare the proposed approach to using nonsymmet-
ric preconditioners for (1.1) within preconditioned GMRES and LSQR [30]. All code
is written in MATLAB (version 9.4.0) and run on a quad-core, 62 GB RAM, Intel i7-
6700 CPU with 3.20 GHz.3 We apply MATLAB versions of LSQR and MINRES, and
a version of GMRES that performs right preconditioning. (Note that LSQR requires
two matrix-vector products with the coefficient matrix and two preconditioner solves
per iteration.) We take as our initial guess x0 = (1, 1, . . . , 1)T /

\surd 
n, and we stop all

methods when \| rk\| 2/\| r0\| 2 < 10 - 8. When more than 200 iterations are required, we
denote this by ``---"" in the tables.

When AR or AM are too expensive to apply directly, we use either a circulant
or multigrid approximation. The multigrid preconditioner consists of a single V-cycle
with damped Jacobi smoothing and Galerkin projections, namely linear or bilinear
interpolation and restriction by full-weighting. The coarse matrices are also built by
projection. The number of smoothing steps and the damping factor \omega are stated
below for each problem. The damping parameter is chosen by trial and error to min-
imize the number of iterations needed for small problems. When applying circulant
preconditioners to (1.3), we use the absolute value preconditioner in (2.4) based on
the Strang [43], optimal [8], or superoptimal [45] circulant preconditioner.

Example 5.1. Our first example is from [21, Example 2], where numerical exper-
iments indicated that AR is an effective preconditioner for the nonsymmetric system
(1.1) when GMRES is applied. The Toeplitz coefficient matrix An = An(f) is formed
from the generating function f(\theta ) = (2  - 2 cos(\theta ))(1 + i\theta ). Since computing the
Fourier coefficients for larger problems is time-consuming, smaller problems are ex-
amined here. The right-hand side is a random vector (computed using the MATLAB
function randn).

The preconditioner AR := An(fR) is positive definite since fR(\theta ) = 2  - 2 cos(\theta )
is essentially positive. Indeed, AR is the second-order finite difference matrix, namely
the tridiagonal matrix with 2 on the diagonal and  - 1 on the sub- and superdiagonals.
Accordingly, AR can be applied directly with O(n) cost. For comparison we also apply
the optimal circulant preconditioner Cn and its absolute value counterpart | Cn| . (The
optimal circulant outperformed the Strang and superoptimal circulant preconditioners
for this problem.) The absolute value circulant approximates AM .

Table 5.1 shows thatAR requires fewer iterations than Cn for MINRES and LSQR,
and that MINRES with AR is the fastest method overall. The good performance
of AR with MINRES can be explained by the clustered eigenvalues of A - 1

R YnAn.
Theorem 3.4 tells us that these eigenvalues lie in [ - 1 - \pi , - 1]\cup [1, 1+\pi ], and Figure 5.1
(b) shows that these bounds are tight. As discussed in [21], the eigenvalues of A - 1

R An

are also nicely clustered (see Figure 5.1 (a)), with real part equal to 1, and imaginary
part in [ - \pi , \pi ]. Although we cannot rigorously link this eigenvalue characterization

3Code is available from https://github.com/jpestana/fracdiff.
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Table 5.1
Iteration numbers and CPU times (in parentheses) for the optimal circulant preconditioner Cn

and tridiagonal preconditioner AR for Example 5.1.

n GMRES LSQR MINRES
Cn AR Cn AR | Cn| AR

1023 37 (0.058) 67 (0.067) 105 (0.15) 62 (0.05) 82 (0.057) 68 (0.029)
2047 48 (0.13) 68 (0.12) 186 (0.4) 67 (0.081) 111 (0.12) 70 (0.046)
4095 62 (0.25) 69 (0.22) --- --- 73 (0.13) 170 (0.21) 71 (0.065)
8191 --- --- 72 (0.51) --- --- 78 (0.2) --- --- 72 (0.13)

(a) An (b) YnAn

Fig. 5.1. Eigenvalues of A - 1
R An and A - 1

R YnAn for Example 5.1 with n = 2047.

to the rate of GMRES convergence, Table 5.1 indicates that in this case, AR is also a
reasonable preconditioner for GMRES.

We now consider AM , which is dense since | f(\theta )| = (2 - 2 cos(\theta ))
\surd 
1 + \theta 2. Accord-

ingly, as well as applying AM exactly---to confirm our theoretical results---we approx-
imate AM via our V-cycle multigrid method with two pre- and two postsmoothing
steps, the coarsest grid of dimension 15, \omega = 0.1 for GMRES, \omega = 0.4 for LSQR, and
\omega = 0.5 for MINRES. For LSQR, multigrid with AM gave lower timings and iteration
counts than multigrid with An, and so was used instead.

Iteration counts and CPU times (excluding the time to construct AM but includ-
ing the time to set up the multigrid preconditioner) are given in Table 5.2. Both
AM and its multigrid approximation give lower iteration counts than AR, with the
multigrid method especially effective for MINRES applied to the symmetrized system.
However, timings are higher than for AR since the O(n log(n)) multigrid method is
more expensive than the O(n) solve with AR. The eigenvalues of A - 1

M YnAn, when
n = 2047, are as expected from Theorem 3.5 (see Figure 5.2), since all eigenvalues
lie in [ - 1, 1]. Indeed, most cluster at the endpoints of this interval. The eigenvalues
of A - 1

M An are also localized, but not as clustered, indicating that the spectrum of
A - 1

M An may differ significantly from that of A - 1
M YnAn.

Example 5.2. We now examine the linear system obtained by discretizing a frac-
tional diffusion problem from [3], which we alter so as to make it nonsymmetric. The
problem is to find u(x, t) that satisfies

(5.1)
\partial u(x, t)

\partial t
= d+

\partial \alpha 
+u(x, t)

\partial x\alpha 
+ d - 

\partial \alpha 
 - u(x, t)

\partial x\alpha 
+ f(x, t), (x, t) \in (0, 1)\times (0, 1],
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Table 5.2
Iteration numbers and CPU times (in parentheses) for the exact preconditioner AM and its

multigrid approximation MG(AM ) for Example 5.1. The second column shows the time needed to
compute the elements of AM .

n AM time GMRES LSQR MINRES
An MG(An) An MG(AM ) AM MG(AM )

1023 6.4 1 (0.06) 39 (0.15) 1 (0.068) 33 (0.11) 11 (0.11) 24 (0.044)
2047 21 1 (0.28) 41 (0.28) 1 (0.33) 37 (0.24) 11 (0.6) 24 (0.082)
4095 73 1 (1.9) 39 (0.36) 1 (1.9) 39 (0.27) 12 (3.6) 25 (0.096)
8191 2.5\times 102 1 (8.7) 42 (0.88) 1 (11) 43 (0.67) 12 ( 22) 25 (0.21)

(a) An (b) YnAn

Fig. 5.2. Eigenvalues of A - 1
M An and A - 1

M YnAn for Example 5.1 with n = 2047.

where \alpha \in (1, 2), and d+ and d - are nonnegative constants. We impose the absorb-
ing boundary conditions u(x \leq 0, t) = u(x \geq 1, t) = 0, t \in [0, 1], while u(x, 0) =
80 sin(20x) cos(10x), x \in [0, 1]. The Riemann--Liouville derivatives in (5.1) are

\partial \alpha 
+u(x, t)

\partial x\alpha 
=

1

\Gamma (n - \alpha )

\partial n

\partial xn

\int x

L

u(\xi , t)

(x - \xi )\alpha +1 - n
d\xi ,

\partial \alpha 
 - u(x, t)

\partial x\alpha 
=

( - 1)n

\Gamma (n - \alpha )

\partial n

\partial xn

\int R

x

u(\xi , t)

(\xi  - x)\alpha +1 - n
d\xi ,

where n is the integer for which n - 1 < \alpha \leq n.
Discretizing by the shifted Gr\"unwald--Letnikov method in space, and the back-

ward Euler method in time [24, 25], gives the linear system

(\nu I + d+L\alpha + d - L
T
\alpha )\underbrace{}  \underbrace{}  

A

um = \nu um - 1 + h\alpha fm,(5.2)

L\alpha =  - 

\left[        

g\alpha ,1 g\alpha ,0
g\alpha ,2 g\alpha ,1 g\alpha ,0
...

. . .
. . .

. . .

g\alpha ,n - 1
. . .

. . . g\alpha ,0
g\alpha ,n g\alpha ,n - 1 . . . g\alpha ,2 g\alpha ,1

\right]        ,(5.3)

where g\alpha ,k = ( - 1)k
\bigl( 
\alpha 
k

\bigr) 
, \nu = \tau 

h\alpha , and h = 1
n+1 . We set \tau = 1/\lceil n\alpha \rceil , which makes \nu 

constant, so that all of the theory in section 3 can be directly applied, but comparable
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results are obtained for \tau = 1/n. Stated CPU times and iteration counts in this
example are for the first time step. (Iteration counts and timings decrease at later
time steps.) CPU times include the preconditioner setup time and solve time.

Entries of A in (5.2) are generated by [10]

\varphi (\theta ) = \nu + d+f\alpha (\theta ) + d - f\alpha ( - \theta ), f\alpha (\theta ) =  - e - i\theta 
\bigl( 
1 - ei\theta 

\bigr) \alpha 
.

The real part of \varphi is essentially positive, so AR = (An + AT
n )/2 is positive definite.

However, since AR is dense, we approximate it by our V-cycle multigrid method (ana-
lyzed in [32]) with the coarsest grid of dimension 127, two pre- and two postsmoothing
steps, and \omega = 0.7 for all Krylov solvers. The matrix AM is also dense and positive
definite, and we approximate it using two different approaches. The first is the abso-
lute value Strang preconditioner discussed at the end of subsection 3.2. The second is
multigrid (with the same parameters as for AR, except that we use one pre- and one
postsmoothing step) applied to a banded Toeplitz approximation of AM . Specifically,
if r and c are the first row and column of AM , respectively, when \alpha = 1.25 we compute
the first 50 elements in r and c, and when \alpha > 1.25 we take the first \lceil \beta (1.1)log2(n+1)\rceil 
elements in r and c, where \beta = 40 when \alpha = 1.5 and \beta = 100 when \alpha = 1.75. This
balances the time to compute these coefficients and the resulting MINRES iteration
count.

We see from Table 5.3 that our approximations to AR and AM are robust with
respect to n, but both require slightly more iterations for larger \alpha . The multigrid
preconditioner forAR requires fewer iterations than the circulant, but the latter results
in a lower CPU time because the preconditioner application is cheap, and indeed the
absolute value preconditioner with MINRES is the fastest method overall. Of the
multigrid methods, the approximation to AR with MINRES is fastest for \alpha \leq 1.5,
while the multigrid approximation of An with GMRES is slightly faster for large \alpha .

Table 5.3
Iteration numbers and CPU times (in parentheses) for the Strang circulant Cn, absolute value

Strang circulant | Cn| , and multigrid preconditioners when d+ = 0.5 and d - = 1 for Example 5.2.

\alpha n GMRES LSQR MINRES
Cn MG(An) Cn MG(An) | Cn| MG(AM ) MG(AR)

1.25

1023 5 (0.01) 4 (0.016) 6 (0.011) 6 (0.02) 10 (0.0084) 12 (0.18) 8 (0.014)
4095 6 (0.017) 4 (0.045) 6 (0.016) 6 (0.053) 10 (0.013) 12 (0.18) 8 (0.043)

16383 6 (0.065) 4 (0.17) 6 (0.066) 7 (0.22) 10 (0.054) 13 (0.32) 8 (0.17)
65535 6 (0.25) 4 (0.66) 6 (0.25) 7 (0.76) 9 (0.19) 13 (0.82) 8 (0.6)

262143 6 (0.99) 4 (4.4) 6 ( 1) 7 ( 5) 9 (0.72) 13 (4.5) 8 (4.3)

1.5

1023 6 (0.0062) 4 (0.021) 6 (0.0062) 7 (0.025) 10 (0.0048) 13 (0.37) 8 (0.013)
4095 6 (0.018) 4 (0.046) 6 (0.018) 7 (0.061) 10 (0.015) 13 (0.5) 8 (0.044)

16383 6 (0.062) 4 (0.17) 6 (0.067) 7 (0.21) 9 (0.05) 13 (0.76) 9 (0.19)
65535 6 (0.24) 5 (0.7) 7 (0.28) 8 (0.8) 9 (0.19) 13 (1.4) 9 (0.66)

262143 6 (0.93) 5 (5.2) 7 (1.1) 8 (5.7) 9 (0.72) 15 (6.1) 9 (4.7)

1.75

1023 6 (0.0085) 5 (0.043) 7 (0.0088) 7 (0.021) 9 (0.0062) 13 (1.6) 9 (0.014)
4095 6 (0.015) 5 (0.046) 7 (0.015) 8 (0.058) 9 (0.01) 15 (2.2) 9 (0.036)

16383 6 (0.062) 5 (0.2) 7 (0.075) 8 (0.24) 9 (0.049) 15 (3.2) 10 (0.21)
65535 6 (0.24) 5 (0.71) 7 (0.28) 8 (0.81) 9 (0.19) 15 (4.8) 11 (0.75)

262143 6 (0.9) 5 (5.2) 7 (1.1) 9 (6.3) 9 (0.72) 16 ( 11) 11 (5.7)

In Table 5.4 we investigate the effect of d+ and d - , i.e., of nonsymmetry, on
the preconditioners. The results are unchanged when d+ and d - are swapped, so we
tabulate results for d+ \leq d - only. As expected, our approximation to AR is best
suited to problems for which d+ and d - do not differ too much. The hardest problem
for AR is when d+ = 0, since in this case An is a Hessenberg matrix and hence highly
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Table 5.4
Iteration numbers and CPU times (in parentheses) for the Strang circulant Cn, absolute value,

Strang circulant | Cn| , and multigrid preconditioners when \alpha = 1.5 for Example 5.2.

(d+, d - ) n GMRES LSQR MINRES
Cn MG(An) Cn MG(An) | Cn| MG(AM ) MG(AR)

(0,3)

4095 5 (0.031) 5 (0.053) 7 (0.02) 5 (0.059) 10 (0.016) 10 (0.47) 13 (0.049)
16383 4 (0.044) 5 (0.21) 7 (0.078) 5 (0.23) 10 (0.058) 10 (0.83) 13 (0.27)
65535 4 (0.18) 6 (0.84) 7 (0.29) 6 (0.93) 10 (0.22) 10 (1.6) 14 (0.97)

262143 4 (0.75) 6 (6.2) 7 (1.2) 6 (6.7) 11 (0.92) 11 (6.8) 14 (7.1)

(1,3)

4095 7 (0.015) 5 (0.042) 7 (0.014) 5 (0.045) 10 (0.013) 10 (0.4) 9 (0.037)
16383 7 (0.072) 5 (0.21) 7 (0.078) 5 (0.23) 11 (0.06) 10 (0.81) 10 (0.21)
65535 7 (0.29) 5 (0.71) 8 (0.33) 5 (0.77) 11 (0.24) 11 (1.6) 10 (0.7)

262143 7 (1.1) 6 (6.2) 8 (1.3) 6 (6.6) 11 (0.93) 11 (6.6) 10 (5.3)

(1,1)

4095 6 (0.013) 4 (0.031) 6 (0.013) 5 (0.041) 10 (0.01) 9 (0.39) 9 (0.034)
16383 6 (0.064) 4 (0.17) 6 (0.068) 5 (0.23) 10 (0.058) 9 (0.79) 9 (0.19)
65535 6 (0.25) 4 (0.57) 6 (0.26) 5 (0.77) 9 (0.19) 9 (1.4) 9 (0.64)

262143 6 (0.93) 5 (5.2) 7 (1.2) 5 (5.8) 9 (0.79) 9 (5.9) 9 (4.9)

nonsymmetric. However, even here the iteration numbers are fairly low, since the
eigenvalues are bounded away from the origin independently of n. The circulant and
multigrid preconditioners based on AM are not greatly affected by altering d+ and d - .

The low iteration numbers and mesh-size--independent results for AR in Table 5.4
are explained by Theorem 3.4 and the relatively small upper bound (3.2), which
describes how far eigenvalues of A - 1

R YnAn can deviate from 1 in magnitude. This
bound is 0 when d+ = d - or when \alpha = 2, since in both cases An is symmetric.
However, Table 5.5 shows that even when An is nonsymmetric, the bound is quite
small. Additionally, it does not change when the values of d+ and d - are swapped.

Table 5.5
Upper bound in (3.2) for Example 5.2.

\alpha (d+, d - )
(0,3) (1,3) (0.5,1) (1,1)

1 1.13 0.67 0.25 0.00
1.25 0.70 0.39 0.17 0.00
1.5 0.42 0.23 0.11 0.00

1.75 0.20 0.11 0.05 0.00

Example 5.3. We now solve a two-level Toeplitz problem that also arises from
fractional diffusion and is based on the symmetric problem in [3]. We seek u(x, y, t)
in the domain \Omega = (0, 1)2 \times (0, 1] that satisfies

\partial u(x, y, t)

\partial t
=d+

\partial \alpha 
+u(x, y, t)

\partial x\alpha 
+ d - 

\partial \alpha 
 - u(x, y, t)

\partial x\alpha 

+ e+
\partial \beta 
+u(x, y, t)

\partial y\beta 
+ e - 

\partial \beta 
 - u(x, y, t)

\partial y\beta 
+ f(x, y, t),

where \alpha , \beta \in (1, 2), and d+, d - , e+, and e - are nonnegative constants. We impose ab-
sorbing boundary conditions, and the initial condition is u(x, 0) = 100 sin(10x) cos(y)+
sin(10t)xy.

We again discretize by the shifted Gr\"unwald--Letnikov method in space, and the
backward Euler method in time [24, 25], which leads to the following linear system:

(5.4) (Inxny
 - Iny

\otimes Lx  - Ly \otimes Inx
)\underbrace{}  \underbrace{}  

An

um = um - 1 + \tau fm.
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Here nx and ny are the number of spatial degrees of freedom in the x and y directions,
respectively; we choose nx = ny = n. Also,

Lx =
\tau 

h\alpha 
x

(d+L\alpha + d - L
T
\alpha ), Ly =

\tau 

h\beta 
y

(e+L\beta + e - L
T
\beta ),

where L\alpha is given by (5.3), and hx = 1/(nx + 1) and hy = 1/(ny + 1) are the mesh
widths in the x and y directions. Unless \alpha = \beta , both \tau /h\alpha 

x and \tau /h\beta 
y cannot be

independent of n; we choose \tau = 1/\lceil n\alpha 
x\rceil . Note that the theory for AR still applies in

this case. Stated CPU times and iteration counts are again for the first time step.
It is too costly to approximate AM by a banded Toeplitz matrix or a multigrid

method, simply because it is expensive to obtain the Fourier coefficients of | f | , and
so we present results for a multigrid approximation to AR only. We also apply the
nonsymmetric block circulant Cn = Inxny

 - Iny
\otimes Cx  - Cy \otimes Inx

preconditioner and
the symmetric positive definite block circulant | Cn| = Inxny

+ Iny
\otimes | Cx| + | Cy| \otimes Inx

preconditioner, where Cx and Cy are Strang circulant approximations to Lx and Ly,
respectively. Our multigrid method comprises four pre- and four postsmoothing steps
and a damping parameter of 0.9. The coarsest grid has nx = ny = 7.

The results in Table 5.6 show that the multigrid approximation of AR gives mesh-
size-independent iteration counts, and that MINRES with this preconditioner is the
fastest method for larger problems. For the block circulant preconditioners, we see
different behaviors depending on whether \alpha > \beta . Specifically, when \alpha > \beta , \tau /h\beta 

y \rightarrow 0
as n \rightarrow \infty , which makes this problem easier to solve in some sense. On the other
hand, when \alpha < \beta , the problems become harder to solve as n increases, and the block
circulants with LSQR and MINRES suffer from growing iteration counts.

Table 5.6
Iteration numbers and CPU times (in parentheses) for the circulant preconditioners Cn and

| Cn| and for the multigrid preconditioners when d+ = 2, d - = 0.5, e+ = 0.3, and e - = 1 for
Example 5.3.

(\alpha , \beta ) n2 GMRES LSQR MINRES
Cn MG(An) Cn MG(An) | Cn| MG(AR)

(1.5,1.25)
961 16 (0.032) 5 (0.011) 23 (0.033) 5 (0.014) 42 (0.028) 12 (0.013)

16129 15 (0.12) 5 (0.058) 21 (0.11) 6 (0.07) 39 (0.12) 12 (0.07)
261121 14 (1.5) 5 (1.1) 18 (1.4) 6 (1.3) 34 (1.5) 12 (1.0)

(1.5,1.75)
961 21 (0.029) 4 (0.0086) 28 (0.038) 4 (0.0099) 43 (0.027) 10 (0.01)

16129 21 (0.16) 4 (0.051) 35 (0.2) 5 (0.065) 57 (0.19) 10 (0.049)
261121 20 (2.1) 5 (1.2) 40 (3.1) 5 (1.0) 67 (2.8) 12 (0.97)

6. Conclusions. In this paper we presented two novel ideal preconditioners for
(multilevel) Toeplitz matrices by considering the generating function f . The first,
AR, is formed using the real part of f . While it works best when the (multilevel)
Toeplitz matrix is close to symmetric, it is reasonably robust with respect to the
degree of nonsymmetry. This performance is likely attributable to the eigenvalue dis-
tribution, which remains bounded away from the origin. Our second preconditioner,
AM , is based on | f | , and its performance is less affected by nonsymmetry. The bigger
challenge is to construct efficient approximations to AM in the multilevel case.

Our numerical results not only illustrate the effectiveness of the preconditioners
but also highlight the value of symmetrization, which enables us to compute bounds
on convergence rates that depend only on the scalar function f . Additionally, the
combination of symmetrization and preconditioned MINRES can be more computa-
tionally efficient than applying GMRES or LSQR to these problems.
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