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ABSTRACT  

One of the life-limiting components of an Advanced Gas cooled Reactor (AGR) is its 

graphite core. The bricks present in the core undergo radiolytic oxidation throughout their lifetime 

which causes graphite weight loss and irradiation which can result in some of the bricks 

developing cracks. Understanding the nature and extent of brick cracking within the core is key to 

ensuring continued and extended operation of the AGR fleet. A semi-supervised machine learning 

classification algorithm is proposed as a method for improving the detection of cracked graphite 

bricks, by combining the labels derived from infrequent, detailed inspections of the core, with 

unlabeled, more frequent monitoring measurements taken during refueling operations. Semi-

supervised machine learning, which is an emerging field in nuclear power condition monitoring, is 

the combination of ideas from both supervised and unsupervised machine learning whereby the 

data that is used to train the algorithm is a combination of labeled and unlabeled data. This paper 

introduces the initial research that has been undertaken in creating a semi-supervised self-training 

algorithm to detect the presence of graphite brick cracks and then proceeds to show that there is an 

improvement in the classification of graphite bricks using a semi-supervised machine learning 

classifier compared to supervised machine learning classifiers. This improved classification 

performance is encouraging as it does not require time consuming and costly human analysis to 

obtain extra learning information from available data. 
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1  INTRODUCTION 

In the United Kingdom, the fleet of Advanced Gas-cooled Reactors (AGR) is entering the latter 

stages of their operational lives. One of the critical life limiting factors of AGRs are their graphite cores. 

The core of an AGR is comprised of an interlocked lattice structure of thousands of cylindrical graphite 

bricks stacked over multiple layers. Intersecting the graphite bricks are fuel and control rod channels. It is 

important to monitor the health of the graphite bricks as irradiation results in them changing shape over 

their lifetime. Brocklehurst and Kelly [1] have shown that as graphite is irradiated it shrinks, until a 

turnaround point where the graphite then starts to expand.  When the graphite is formed into hollow 
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cylindrical bricks and irradiated from the inner bore surface (as is found in the graphite cores), this has the 

effect of building up internal stresses within the bricks, which can lead to cracking.  When this turnaround 

point is reached, the internal stresses within the bricks also changes, which can introduce new cracking 

mechanisms. Cole-Baker and Reed [2] describe this process in further detail. Understanding these 

cracking mechanisms, as well as the level of cracking present in the core is key to ensuring safe continued 

operation of the station. Too many cracks in certain configurations, coupled with a seismic event, could 

lead to distortions in the core, which could lead to difficulties in fuel and control rod movement. 

This paper discusses the initial work completed on detecting cracked graphite bricks from refueling 

data using a semi-supervised machine learning algorithm. The paper describes how utilizing more 

frequently available unlabeled data can improve fault detection from new, previously unseen data. The 

novelty of the work in this paper stems from the investigation of semi-supervised learning techniques as a 

method to detect the presence of cracks in graphite bricks from refueling monitoring data. The true 

benefit of semi-supervised learning is the cost and time savings that could occur by making use of 

unlabeled data. This unlabeled data is currently manually analyzed which is a time consuming process. 

2 BACKGROUND INFORMATION 

The use of Fuel Grab Load Trace (FGLT) data to provide health information about the state of the 

graphite core is an ongoing research area. The earliest use of the FGLT data for condition monitoring was 

the generation of database to store the fuel channel and graphite brick FGLT responses to create a 

benchmark of normal behavior of the bricks and identifying any anomalous bricks. Simulated anomalous 

brick FGLT data, such as cracks, were obtained from experimental rig work to provide understanding of 

how certain crack configurations would manifest themselves in the FGLT response [3][4]. More recent 

work is ongoing to create a model that explains the relationship of the FGLT data to the bore diameter 

measurements of fuel channels [5]. The model isolates a component relating to stabilizing brush friction, 

which in turn is used to estimate the channel bore diameter. 

Semi-supervised learning is an emerging concept in the field of fault detection in nuclear power 

stations, with only two instances being reported in the literature [6][7]. Semi-supervised learning has been 

shown to be useful to be able to generate a fault diagnostic classification system for a CANDU simulator 

and nuclear process components facility when there is limited training data available [6]. Initially limited 

offline data is analyzed and labels are associated to the faults. Then, during online operation, faults are 

detected and using a graph based semi-supervised clustering model they are provided a label. It was found 

that although only a limited amount of labeled data with uncertainty was used as training data all faults in 

the data were correctly diagnosed. Additionally the combination of both supervised and semi-supervised 

learning has been shown to be used to identify transients in nuclear power station data [7]. Both known 

and unknown transients are used to train a classifier which identifies further unknown transients. It was 

shown that this method of applying labels to the unknown transients resulted in an improvement in 

performance for transient identification compared to previously developed classifiers.  

3 MONITORING AND INSPECTION 

3.1 Fuel Grab Load Trace Data 

FGLT data is obtained during the refueling process of AGRs. Refueling events occur roughly every 

6-8 weeks on a small selection of channels and can be performed when the reactor is offline or online at 

reduced generation capacity.  During refueling the load values of the fuel stringer being removed 

(discharge) and inserted (charge) are recorded and stored.  This data is required to be recorded and stored 

for safety purposes to detect faults that occur during the refueling process such as failure of the tie-bar 

load mechanism, ledging and false bottoming [8].  An example of a FGLT is shown in Figure 1.  The two 

traces shown are the charge (red trace, lower load value) and discharge (blue trace, higher load 

value).There are four components that make up the load value of the FGLT; the deadweight of the fuel 



stringer, the frictional component of the set of lower stabilizing brushes being in contact with the channel 

wall, the frictional component of the upper stabilizing brush being in contact with the refueling guide tube 

and aerodynamic contributions from the carbon dioxide coolant gas. It is important to note that the load 

contributions from the fuel stringer deadweight and the aerodynamic will always be a positive 

contribution to the load value unlike the frictional components which change depending on the direction 

of motion of the fuel stringer. This results in an increase in load when the fuel channel is narrow in the 

discharge as it is more difficult to lift the fuel stringer out and a decrease in load in the charge trace as the 

friction is supporting the weight of the stringer as it is inserted into the core. It can be seen in Figure 1 that 

there are periodic peaks (in the discharge trace) and troughs (in the charge Trace) in the load value, these 

are the brick interface points where the channel becomes narrower resulting in increased friction. 

Additionally contributions from friction can be seen as step changes at sample numbers 1-1100 and 2500-

2800 where there is friction introduced be the upper set of stabilizing brushes interacting with restrictions 

being in the refueling guide tube and the piston seal bore respectively.  

3.2 Inspection 

Inspections of the graphite bricks occur every 1-3 years during planned, periodic outages. Before 

these outages core engineers select candidate channels to be inspected based on a number of factors such 

as those known to contain defects of interest, those which show unusual characteristics in the refueling 

data trace  or regions of the core that are underrepresented by inspections to date.  This is done to obtain 

greater understanding of the entire core and the CHANSELA software system has been developed to 

support this [9]. It is not practical to obtain inspection data for the entire core as it would be too costly to 

have the reactor out of operation for extended periods of time. During these inspections physical 

measurement and visual equipment called the Channel Bore Inspection Unit (CBIU) or New In-Core 

Inspection Equipment mark 2 (NICIE2) are inserted into and removed from the empty fuel channels at 

various orientations [10]. At multiple orientations visual footage is recorded showing the fuel channel 

walls, while the diameter throughout the channel is also recorded. After the inspection is complete 

engineers examine the inspection data and identify any abnormalities on the channel such as cracks. 

Figure 1. Example of a discharge (blue) and charge (red) trace obtained from the same refueling event, with a 

magnified example of a single brick layer. 



These are then reported in the Television Graphite Assessment Panel (TV-GAP) reports with the type of 

defect found in the graphite and additional information such as description and dimensions of the features. 

The devices can also be reinserted and maneuvered to obtain better images of defects such as cracks. 

Once the inspections have been performed the fuel stringers can be reinserted into the fuel channels. 

It is important to clarify that during the offload visual and physical inspections it is required to 

remove the fuel stringers of the respective channels being inspected. Therefore for every inspection that 

occurs there is a matching set of monitoring FGLT data, meaning that for offload FGLT data a label can 

be provided to the various layers in the trace indicating if there are cracks present. 

4 GRAPHITE BRICK CRACKS 

Cracks in AGR graphite bricks can be caused by a number of reasons, some cracks occurred in the years 

following construction that are not associated with the ageing process in the core. Other cracks developed 

much later in the lifetime of the reactor due to the stress that is exhibited on the bricks due to weight 

change caused by irradiation [11]. Cracks occurring in graphite bricks can manifest in numerous ways and 

detailed categorization of their features are recorded in the TV-GAP reports produced at inspections. 

However for these cracks to be noticeable in the FGLT there has to be a change in the diameter of the fuel 

channel which will result in a different frictional response in load than a normal brick. This resulting 

change in load value in the FGLT varies with the type of crack and the magnitude of the dimensional 

change that has occurred. An example of a brick trace which has cracks present is shown in Figure 2 

where a circumferentially cracked brick and an axially cracked brick have been indicated. The 

circumferential crack results in the narrowing of the fuel channel which corresponds to a prominent spike 

in the FGLT trace.  However, the presence of the axial crack in Figure 2 is much more subtle and depends 

upon a number of factors, such as where the crack initiated from, whether it covers the full height of the 

brick and whether the crack has opened up. Domain expertise of graphite core engineers is key to 

determining the presence of these types of cracks and has been used to guide the selection of suitable 

features in the data to be used as inputs to a semi-supervised classifier. 

Figure 2. A full FGLT trace containing both an axially cracked brick and a circumferentially cracked brick 

which have been indicated. 

Circumferential 
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5 SEMI-SUPERVISED LEARNING 

Semi-supervised learning is a machine learning technique which combines principles from both 

supervised and unsupervised machine learning methods. Typical supervised learning for classification is 

the default machine learning method, where a relationship between input and output data is explored 

through learning examples with a supply of ground truth training data. Unsupervised learning is focused 

on determining the underlying patterns and distributions of data with no information about the outputs 

[7]. Examples of unsupervised learning include clustering data into similar groupings, identifying 

anomalous data sample or reducing the dimensionality of data while retaining its characteristics. Semi-

supervised learning combines both aspects of supervised and unsupervised learning by using both labeled 

data (input data with ground truth value) and unlabeled data (only input data) to improve performance 

than just using either labeled or unlabeled data in isolation. This can be seen as supervised learning that 

uses the statistical properties of all data to construct a classifier or unsupervised learning that assigns 

meaning to patterns or groupings based on known data [7]. 

Semi-supervised learning is often applied to many problems where there is a disparity between the 

amount of labeled data and unlabeled data. This often occurs due to the abundance of sensors recording 

operational data and as a result it is costly to provide labels to that data. In the case considered here 

detailed inspections to understand the health of the graphite can only be performed when the reactor is 

offline and only on a select number of fuel channels in parallel FGLT data is obtained from these 

channels. FGLT data is also produced at scheduled refueling events, while the reactor is operating at 

reduced capacity, on a more frequent basis but contains no corresponding ground truth information to 

apply to this data. Overall, the number of online refueling events greatly outnumbers the number of 

offline events which have associated labels. 

5.1 Feature Extraction 

Initially the features that have been chosen as inputs to the classifier were the base calculations 

which are obtained from the M/W point features [4]. The M/W point features shown on stylized discharge 

brick trace which can be seen in Figure 2.  They are named after the general shape of a single brick in the 

FGLT, where a single brick can either be simplified to 5 points that look similar to the letters “M” and 

“W”. The points are calculated from different regions of the bricks with how their values are obtained 

shown in Table 1 where 0-100% indicates a relative location from the bottom of the brick to the top of the 

brick or left to right in the FGLT as indicated in Figure 3. These values were chosen to be able to obtain 

the key shape of the response of a single graphite brick in the trace. The base calculations then develop 

this further by performing operations on the bricks and their neighbors. These operations were originally 

chosen by graphite core engineers as a guideline to detect abnormal bricks and the calculations to obtain 

them can be seen in Table 2 where the subscripts to the M/W points are indicating if they are obtained 

from the neighboring bricks specifically the upper or lower bricks indicated by U and L respectively. 

Additional features that were in included were the difference between the current bricks average load and 

the average load of the neighboring bricks, both upper and lower. The last feature was the difference in 

load of the height of the highest peak in the middle 20-80% of the brick layer and the average load over 

that same region.  

0% 100% 

Figure 3. Single brick trace including interface regions with accompanying illustration of the M/W point 

features on stylized representation of a single brick  FGLT. 



Table 1. Calculations to obtain W point features for a single brick from a discharge trace [4] 

 

 

 

 

 

 

Table 2. Basic calculations for feature selection obtained from W point data for discharge trace [4] 

5.2 Self-Training 

The self-training algorithm [12] is the simplest form of semi-supervised learning. Self-training is a 

wrapper algorithm which means that any base classifier can be used provided the base classifier can 

assign a confidence score of predicted data. The self-training algorithm can be seen in Figure 4. 

 

A The maximum load value between 0-10% of the brick 

B The minimum load value between 10-25% of the brick 

C The maximum load value between 25-75% of the brick 

D The minimum load value between 75-90% of the brick 

E The maximum load value between 90-100% of the brick 

BC1 Height of the upper brick interface peak for the previous brick layer (EL-DL) 

BC2 Difference between the upper brick interface for the previous brick layer and the lower 

brick interface for the current layer (A-EL) 

BC3 Height of the lower brick interface peak for the current layer (A-B) 

BC4 Difference in the peak base heights between the upper brick interface for the previous brick layer 

and the lower brick interface for the current brick layer (B-DL) 

BC5 Difference in the peak base heights between the upper brick interface for the current brick layer 

and the lower brick interface for the next brick layer (D-BU) 

BC6 Difference in the upper brick interface peak for the current brick layer (E-D) 

BC7 Difference between the upper brick interface for the current brick layer and the lower brick 

interface for the next brick layer (E-AU) 

BC8 Height of the lower brick interface peak for the next brick later (AU-BU) 

BC9 The difference between the mean load value of 45-55% and mean load value of 20-80% of the 

brick 

Classification 

Confidence  
Classifier 

Unlabeled 

Data 

Labeled Data 

Semi-

Supervised 

Classifier 

Figure 4. Flow chart of semi-supervised self-training algorithm 

High confidence unlabelled classification 



Self-training initially involves splitting the available dataset into labeled and unlabeled instances of 

data and deciding which base classifier to implement. The labeled data is then used to train the base 

classifier. Once the classifier has been trained the unlabeled data is supplied to it to be classified. A subset 

of the highest confidence data instances is then provided with labels from the classifier. The newly 

labeled data instances are then removed from the unlabeled group and added to the labeled group. This 

process is then repeated by training new classifiers and to apply labels to more unlabeled data until 

defined criteria is met such as all the unlabeled data eventually being provided a label. Once the criterion 

is met a final classifier is trained which is then use to classify future data.  

Self-training has been implemented using two base classifiers; these were an Artificial Neural 

Network (ANN) and a linear Support Vector Machine (SVM). The confidence scores that were used for 

the ANN were the output scores of the network. These indicate the likelihood of the output being correct 

based on their training and vary between 0-1 with 1 being strong confidence in the classification. 

Therefore, data that has an output that exceeds the defined threshold of 0.9 can be assumed to be 

classified correctly to be applied a label. Similarly the confidence score for the SVM is the distance that 

the unlabeled data is on either side of the separating hyperplane. The hyperplane is the boundary 

generated in the feature space that is used to separate the different classes. The further the sample is away 

from the hyperplane the more likely that it has been classified correctly. Therefore the furthest away 10% 

of the data from the hyperplane are chosen to be labeled.  

6 RESULTS 

6.1 Available Data 

The data that is available and used to train the self-training algorithm is from roughly a decade of 

inspection and monitoring data from a single reactor. Of this data each brick layer is considered on an 

independent basis. Some layers are not able to be resolved with the M/W features such as some of which 

can be seen in Figure 1 particularly brick layer 4 and 5. In this example the brick layer was chosen which 

contained the largest amount of cracks on a single layer. The layer that was chosen contained 58 instances 

of inspection data which can be paired with associated FGLT data to extract the previously mentioned 

features. Additionally there are a further 71 instances of inspection data that can be used as training data. 

These are obtained from channels which have had inspections and FGLT monitoring data but not at the 

same time. When the monitoring data occurs prior to the inspection data only uncracked bricks can be 

included as training data as it is known that they were also uncracked in the past. Similarly only cracked 

bricks can be used when monitoring data is obtained after the inspection data as there is no guarantee that 

the uncracked bricks have not cracked in the time between inspection and monitoring. Lastly there are 

216 unlabeled traces which do not have any associated inspection data. This large discrepancy in 

available labeled data was a drive to use semi-supervised learning as the labeled data on its own is not 

sufficient enough data to obtain a true relationship.  

6.2 Implementation 

The labeled data is split into training data and testing data, whereas the unlabeled data can only ever 

be used as training data as there is no true way to verify the state of the bricks without further inspection 

of the core. The labeled data consists of 129 instances which are composed of 33 labeled cracked bricks 

and 98 labeled uncracked bricks. The labeled data was randomly split into a training set and a test set with 

a ratio of 3:1. The training set was then split further into 10% increments of the available training data for 

each training session to establish how the changing amount of initial data affects the algorithm. The 

available unlabeled training data was available for each instance of the training and the average correct 

classification was calculated using the test set. This was performed 100 times at each 10% increment and 

the average performances calculated. This was completed for both an ANN and a SVM as the base 

classifiers and the results can be seen in Figure 5 and Figure 6 respectively where the blue trace is the 

semi-supervised self-training method and the red trace is the supervised equivalent. 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5. Performance results for semi-supervised self-training ANN compared to supervised ANN with 

varying amounts of labelled training data used 

Figure 6. Performance results for a semi-supervised self-training SVM compared to supervised SVM with 

varying amounts of labeled training data used 



It can be seen that there is an improvement in classification performance accuracy when using 

unlabeled data as compared to using only labeled data for ANN however overall the performance is not 

yet sufficient to be fully reliant on this method of identifying the cracked bricks. Conversely the self-

trained SVM does not show much of an improvement over the supervised SVM. This occurs as 

continually choosing the most confident data results in labeled instances which are very far from the other 

classification in the feature space and often they will not be used in generating the future separating 

hyperplane boundaries.  However it is worth noting that the self-trained ANNs performed the best out of 

all learning methods tested and is an improvement compared to basic supervised machine learning.  

 It was hypothesized that when enough training data was used the performance of the supervised 

learning method should converge to the same performance as semi-supervised learning. This should occur 

as when the feature space becomes saturated with training examples no new trained data is from areas of 

the feature space that is unknown and therefore the current solution cannot be improved. From this choice 

of features for the data there appears to be valuable information that can be obtained from unlabeled data 

as there is still an increase in performance when all available labeled training data is used. Therefore for 

this particular application there is still information to be learned about the classification of cracks that 

cannot be obtained from the currently available data. This means that until a suitable amount of future 

inspections have taken place, unlabeled data is a viable solution compared to purely labeled inspection 

data. 

7 FURTHER WORK 

The initial results show an increase in the performance of brick classification with the inclusion of 

combining unlabeled training data with labeled training data compared to training on only labeled data for 

ANNs. However the performance in these initial tests is not reliable enough to be fully relied on practical 

industrial usage. This could occur due to the features that have been chosen to train the algorithm. The 

features that have been chosen to characterize the shape of the brick do not allow for sufficient separation 

of the classes in the feature space. This means that the current features will always experience a tradeoff 

between false positives or undetected cracks. Possible solutions to this problem are to: 

 Investigate different features in the FGLT that better represent all types of cracks in the 

graphite bricks 

 Transform the current features to improve their separation in the feature space 

 Use multiple classifiers that are used to detect individual different types of cracks 

Another improvement that should be made in the future is being able to train the algorithms from 

more than one layer in the core or from other reactors of similar design. This has the benefit of providing 

both unlabeled and labeled additional data. 

8 CONCLUSIONS  

This paper has described the initial work that has been undertaken in the initial investigation of using 

a semi-supervised machine learning algorithm to detect cracks in graphite bricks in AGRs. It was found 

that using self-trained semi-supervised machine learning algorithm produced better crack detection results 

than compared to a supervised classifier when the base classification algorithm was an ANN. It was 

shown that by utilizing the unlabeled data, which previously is unused or would require a large time 

commitment from a specialist to apply a speculative label, improves the ability for graphite brick health to 

be classified correctly. This work has also highlighted how, provided the classification performance 

improves, the semi-supervised learning approach could be used to augment the existing manual 

assessment, by leveraging more of the available unlabeled monitoring data.  
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