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ABSTRACT   

As light propagates through a transmission media, such as an optical fiber, it experiences a length-dependent loss which 

can reduce the communication efficiency as the transmission distance increases. In conventional telecommunications, 

optical signals can be transmitted over inter-continental distances, due to deterministic all-optical amplifiers. However, 

quantum communications are still limited to transmission distances of typically a few 100’s km since deterministic 

amplifiers cannot be used to amplify quantum signals. The use of deterministic amplification on a quantum signal will 

introduce noise that will mask the original quantum properties of the signal, introducing uncertainty or errors to any 

measurement. Nondeterministic methods for amplifying quantum signals via post-selection can be used instead, 

providing a solution to create a low noise quantum amplifier. Several methods for nondeterministic amplification have 

already been experimentally demonstrated. However, these devices rely on “quantum resources” which makes 

implementation challenging. Here we present an overview of experimental demonstrations for amplifying coherent states 

using a method called state comparison amplification. This is a nondeterministic protocol that performs amplification of 

known sets of phase-encoded coherent states using two modular stages. The outcome of each stage is recorded using 

single-photon detectors and time-stamped electronics to enable post-selection. State comparison amplification is a 

relatively simple technique, only requiring “off-the-shelf” components. The presentation will show several 

demonstrations of state comparison amplification including an amplifier which has high gain, fidelity, and success rate 

with the added advantage of being robust to channel noise and easily reconfigurable. Finally, we will discuss the effect 

of introducing a feedforward mechanism allowing for unsuccessful state amplifications. 

Keywords: quantum amplifier, state amplification, coherent states, state comparison, probabilistic amplifier, 

quantum technologies, optical amplifier 

1. INTRODUCTION 

1.1 Quantum amplification 

The cryptographic security of many quantum communication protocols, such as quantum key distribution 

(QKD)[1],[2],[3],[4], quantum digital signature (QDS)[5],[6],[7],[8],[9] and quantum bit commitment[10], partially relies on the use 

of low-intensity optical coherent states, i.e. highly attenuated laser pulses. Optical signals propagating through 

transmission media, such as an optical fiber, are affected by a loss which is dependent on the overall length of the 

communication channel. Commercially available all-optical amplifiers can counteract the loss by exploiting 

deterministic optical effects[11] allowing inter-continental transmissions. However, such amplifiers introduce noise 

levels[12] which destroy any quantum properties that the coherent states carry making it challenging to perform quantum 

communication protocols over long distances. Over the last two decades, new and revised quantum cryptographic 

protocols have tried to address the problem[13], although communication channel attenuation still poses a major limiting 

factor reducing the overall transmission distance of quantum communications to hundreds of kilometers[3],[14]. 
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1.2 Nondeterministic quantum amplifier 

Although deterministic amplification of an unknown quantum state is prohibited by quantum mechanics[15],[16], it is 

possible to address the problem with a probabilistic approach. Probabilistic amplification, also known as 

nondeterministic amplification, while not breaking any intrinsic quantum limit, is capable of amplifying quantum states 

by conditioning the amplification on specific detection events. Many different probabilistic amplifiers have been devised 

and experimentally demonstrated such as photon addition and subtraction[17], random-noise addition combined with 

photon subtraction[18],[19], stimulated parametric down conversion[20], heralded scissor devices[21], entanglement-based 

devices[22] or doped fibers[23]. These systems generally show low success probability, low generation rate and limited 

fidelity, i.e. a measure of the difference between the amplified state and input state, while requiring quantum components 

that are challenging to implement or require high precision control (such as photon number resolving detectors), 

inefficient post-selection criteria, and heralded single-photon sources. They also show low success probability and 

limited operating rates which makes them unsuitable for many quantum communication protocols[24]. On the contrary, 

state comparison amplifiers are capable of producing amplified quantum states with high-fidelity and high success rate 

because they efficiently condition the detection events on the available partial knowledge about the system[25]. 

1.3 Overview 

In this paper, we present different implementations of a probabilistic amplifier which strongly aligns with photon 

addition and subtraction devices both in structure and application but only relies on easily deployable “off-the-shelf” 

commercial components. The amplifier also shows high gain, improved fidelity and a high success rate which 

outperforms similar probabilistic amplifiers by several orders of magnitude. The first section will cover the basic 

principles of state comparison amplification and how it relates to this amplifier. The second section will present an 

overview of the experimental results focusing on three different configurations, i.e. low gain, high gain and amplification 

with added noise. The third section will introduce possible future works followed by a brief conclusion. 

2. STATE COMPARISON AMPLIFICATION 

State comparison amplification operates using the combined underlying principles of photon addition and subtraction[17]. 

As the combination suggests, state comparison amplifier performs quantum state amplification via a two-stage process. 

In the first stage, photons from an external source are added to the quantum state increasing the overall amplitude of the 

signal, hence the name photon addition. Following the photon addition stage is the subtraction stage where a vacuum 

state is interfered with the amplified signal, providing both an improvement to the amplifier’s fidelity and suggestion of a 

successful amplification event. This technique usually adopts a low-reflectivity beam-splitter (BS) and a conditioning 

single-photon detector. Comparison amplifiers utilize a discrete, and known, set of quantum states over which they 

perform imperfect quantum nondemolition (QND) measurements[26]. 

The state comparison amplifier (SCAMP) reported in this paper used a set of phase-encoded coherent states and 

comprised two standard stages: a state comparison stage and a state subtraction stage. The comparison stage performed 

an interferometric measurement between two coherent states on a BS. One of the states was a low-intensity coherent 

state with a randomly chosen unknown phase encoding which mimicked a quantum signal sent from a distant user, i.e. 

the input state, the other was a guess state generated by the amplifying node, i.e. the amplifier unit. The users had 

knowledge of the phase-encoding alphabet used by the device but did not share any information about the phase 

encoding used for each single quantum state between themselves. The resulting output of the measurement was 

monitored by a single-photon detector (SPD) operated in Geiger-mode whose detection events became post-selection 

criteria for subsequent analysis conditioning. When the input state and the guess state shared the same quantum 

properties, i.e. phase-encodings and amplitude, the system underwent destructive interference, no photons were detected 

by the SPD and the amplified signal was sent to the state subtraction stage. 

Conditioning the system only on the SPD’s output would provide a low-fidelity signal as component losses, non-unity 

detection efficiency, and a non-zero probability of a multiphoton pulse would suppress valid detection events especially 

at low intensities. For this reason, the state subtraction stage provided a secondary post-selection condition that increased 

the output fidelity at the cost of a reduced successful probability and lower gain. The stage comprised a high-

transmissive (low-reflective) BS and an SPD operated in Geiger-mode. Here the condition for a successful amplification 

is met when a signal is detected by the SPD as a correctly amplified state is more likely to trigger a detection event than a 

wrongly chosen guess state. The SCAMP defines a successful amplification as the case when the SPD in the state 
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comparison stage does not register an event and the SPD in the state subtraction stage does register an event, thereby 

confirming that it is likely the guess state and the input state share the same quantum properties. 

The success of the SCAMP as a reliable and high-performance probabilistic amplifier is defined by two key parameters: 

correct state fraction (CSF) and interferometric visibility. CSF defines the proportion of states that have been correctly 

amplified against the total number of successfully correlated events. The interferometric visibility defines the ability of 

the system to discriminate between a correctly chosen guess state from a wrongly chosen one. 

3. METHOD AND RESULTS 

This section is divided into three subsections, each of which reports the experimental results of one of three different 

SCAMP configurations which vary both in post-selection criteria and optical setup. The first subsection presents the 

initial SCAMP setup and experimental results[27] highlighting the achieved correct state fraction, i.e. correctly amplified 

quantum states, from state comparison techniques. The second subsection shows a SCAMP setup with an added state 

subtraction stage which allows higher overall gain at the cost of lower successful probability. The third, and final, 

subsection focuses on the amplifier performances when external broadband noise is added to the input quantum state. 

3.1 SCAMP 

Fig. 1 shows the experimental setup. A vertical-cavity surface-emitting laser (VCSEL) operated at a central wavelength 

of 849.8 nm, generating weak coherent states (after attenuation by a motorized optical attenuator) at a clock frequency of 

1 MHz. The optical pulses are then focused into a 5 μm core diameter single mode polarization maintaining fiber. An 

operating wavelength around 850 nm was chosen because of a combination of the attenuation profile of optical fiber[28] 

and the availability of easily deployable, highly efficient, low dark count, room temperature silicon single photon 

avalanche diodes (Si-SPADs)[29],[30],[31]. The optical setup was made of two interwoven interferometers: the innermost 

performed the state comparison amplification procedure while the outer one conducted a state tomography reconstruction 

between the input state and the amplified output. The guess state was phase modulated by a lithium-niobate electro-optic 

phase modulator which selected the phase randomly from a known discrete alphabet of N phase encodings described by 

2πk/N, where k = 0, … , N-1. In this realization, three different sets of phase encodings were used, N = 2, 4 and 8. 

A 50:50 BS (BS1) performed a QND measurement on the input and guess states while a Si-SPAD in Geiger-mode (D0) 

monitored the output result. These two components comprised the amplifier’s state comparison stage. When both input 

and guess states share the same phase and amplitude they interfere destructively, no signal is detected by D0, and the 

amplified output is redirected to the state subtraction stage which comprises a 90:10 BS (BS2) whose low-reflective port 

was monitored by a second Si-SPAD in Geiger-mode (D1). The highly transmissive port of BS2 propagated the 

amplified quantum states to the tomography stage where an amplified copy of the original input state is interfered with 

the SCAMP-amplified state and the operating parameters of the SCAMP evaluated by considering the electrical outputs 

of detectors DA and DB. Fine-tuning of the relative optical paths of both interferometers is possible by using manually 

controlled adjustable air-gaps. 

Proc. of SPIE Vol. 10674  1067413-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

 

Figure 1. Experimental optical setup of the state comparison amplifier (SCAMP). The state comparison stage (enclosed 

within a dashed orange line) performs a nondemolition measurement of the phase of the input state (|α›) and guess state (|β›) 

which has been phase-encoded by an electro-optic phase modulator. The subtraction stage (enclosed within a dot-dash green 

line) purifies the quantum states and then send the amplified output to the tomography stage (enclosed within a solid purple 

line) for fidelity and correct state fraction estimations. 
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Figure 2. Experimental results of SCAMP. (a) shows the computed visibilities of the tomography stage for N = 2 when 

applying three different post-selection criteria: no conditioning (green triangles), conditioning only on detector D0 output 

(brown dots) and conditioning on both detectors D0 and D1 outputs (orange squares). (b)-(d) show computed fidelity (brown 

dots) and correct state fraction (CSF) (orange squares) for the cases N = 2, 4 and 8. 

Fig. 2 (a) reports the visibility analysis of the outer interferometer, i.e. tomography stage, for N = 2 as a function of the 

mean number of photons per pulse, of the coherent states. The plot shows three separate conditioning scenarios on the 

amplifier’s output states: no conditioning (green triangles), conditioning constrained only on detector the output of D0 

(brown dots), conditioning constrained by the outputs of both detectors D0 and D1 (orange squares). As expected, 

incorporating more conditioning constraints on the system increases the fidelity of the output states allowing increasing 

the visibility measured at the tomography stage. Introducing the state subtraction stage limits the number of wrong states 

reaching the outer tomography interferometer and improves the overall fidelity of the output state compared to a 

perfectly amplified version of the input state. 

Figs. 2 (b)-(d) show the correct state fraction (CSF) (squares) and fidelity (circles) for N = 2, 4 and 8. Nominal CSF 

values for N = 2, 4 and 8 when conditioning criteria are not implemented in the analysis would be 50%, 25% and 12.5% 

respectively (that is, equal to the probability of randomly selecting the correct state with a completely uninformed 

choice), however, the amplification has increased these values to ≈ 97%, ≈ 60% and ≈ 30%. Therefore, the SCAMP is 

more successful than an uninformed random guess.  The amplifier not only increases the CSF values but also increases 

the output fidelity by reducing the probability of amplification of states whose amplitudes are different from the target 

state. The slight downwards trend of the fidelity with increasing number of photons is attributed to the nature of 

measurement of an optical pulse by a Si-SPAD. These Geiger-mode devices output a fixed electrical signal irrespective 

of the incident optical intensity, i.e. number of photons per pulse, therefore, at larger mean number of photons per pulse 
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the measured count rates approach an asymptote equal to the system’s clock frequency, i.e. 1 MHz restricting the 

estimation of the fidelity[27]. The nominal gain of the system, defined as the ratio of the BS2 transmittivity to the BS1 

reflectivity yields a value of 1.8 based on the component’s parameters while the maximum measured success probability 

is 2.6% at a mean number of photons per pulse of 0.94. 

3.1.1 High gain SCAMP and a secondary state subtraction stage 

Fig. 3 shows the revised SCAMP optical setup where the 50:50 BS at the state comparison stage has been replaced by a 

highly transmissive 90:10 BS. This was introduced to increase the overall gain of the SCAMP. An additional state 

subtraction stage has been introduced for a secondary set of measurements. As in the case of the primary subtraction 

stage, this secondary subtraction stage comprised a highly transmissive 90:10 BS and a Si-SPAD operated in Geiger-

mode (here denoted by D2). The overall operation remained similar to the previous SCAMP configuration and the 

secondary state subtraction stage provided an additional post-selection constrain on the analysis, i.e. a successful 

amplification event was now defined when detector D0 at the state comparison stage did not fire and both detectors D1 

and D2, at the first and second state subtraction stage respectively, did fire. 

 

Figure 3. Experimental optical setup of SCAMP with high-transmissive BS and additional subtraction stage. The operating 

parameters remain the same as for the previous experiment. The additional subtraction stage provides a third post-selection 

constraint to the analysis refining the system acquisition criteria. In this configuration (|α›) defines the input state and (|β›) 

the guess state which is phase encoded by the lithium-niobate modulator. 
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Figure 4. Theoretical and experimental results of the SCAMP with a higher gain, and an additional subtraction stage. (a) 

shows the theoretical correct state fraction with (dashed brown line) and without (solid orange line) the additional state 

subtraction stage for N = 4. (b) shows the visibility of the tomography stage for the same N = 4 case. A visibility of more 

than 90 % suggests the fidelity of the amplified states will be high. 

Figs. 4 (a)-(b) report the theoretical and experimental results of both configurations, i.e. the optical setup with a highly 

transmissive 90:10 BS at the state comparison stage and the other setup with an additional state subtraction stage for 

N = 4. Fig. 4 (a) clearly shows an improvement over the correct state fraction (dashed brown line) when a secondary 

state subtraction stage is added to the system. This improvement comes at the cost of success probability, due to the 

additional post-selection condition. The visibility of the outer interferometer (tomography stage) reaches values as high 

as 97% demonstrating high contrast between a correctly chosen guess state and a wrongly chosen guess state (see Fig. 4 

(b)) in both configurations. The nominal gain for the 90:10 BS was given to be 8.35, and 6.5 with the additional 

subtraction stage. These were derived by including unbalanced beam-splitting ratios of the optical components to the 

analysis.  

3.2 SCAMP with added channel noise 

Fig. 5 shows the SCAMP configuration used to evaluate the amplifier’s performance and robustness against background 

noise. This background noise might be present in real applications when the device is deployed across fiber 

telecommunication networks, and could be due to ambient light, nonlinear Raman scattering in optical fibers or simply 

increased detector dark counts. In this experiment, the extra noise was introduced using a light emitting diode (LED) 

with a central wavelength of 869.5 nm and spectral linewidth of 31.5 nm evanescently coupled into an exposed fiber 

splice situated where the input state is fed to the state comparison stage (Point A). The LED’s optical emission was 

operated in continuous wave (CW) mode in order to send a constant photon flux across the interferometer providing an 

easy estimation of the background noise when post-selecting on the Si-SPADs detection events. By changing the LED’s 

power output three different noise levels were tested, i.e. low, medium and high noise corresponding to raw count rates 

of 0.16, 0.4 and 0.8 mega-counts per second respectively at the detector D0. 
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Figure 5. Experimental optical setup of SCAMP with added channel noise. An LED source, operating in CW mode, is 

coupled into an exposed fiber splice (Point A) where the input signal is fed to the state comparison stage. The broadband 

noise can be varied by changing the LED output power. The state (|α›) defines the input while (|β›) the guess state. 

Figs. 6 (a)-(b) report the experimental results showing a comparison of the amplifier’s parameters, i.e. state fraction and 

visibility, with and without added channel noise. To improve the readability of the graphs Fig. 6 (a) shows only data 

points relative to the mid-noise levels for N = 4. Similarly, Fig. 6 (b) only shows data points for N = 4, covering the 

entire noise level range, as the cases N = 2 and 8 display similar trends. 

 

 

Figure 6. Experimental results of SCAMP with added channel noise. (a) shows the computed correct state fraction with 

(hollow data points) and without (filled data points) the external broadband noise introduced by the LED source for N = 4. 

(b) shows the visibility of the tomography stage for the same N = 4 case and different noise levels. 
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The correct state fraction shows a decrease at lower numbers of photons because, although more photons reach the 

subtraction stage due to the added external broadband noise, incorrect states have a higher probability of being detected 

by D1 and erroneously triggering the system’s post-selection criteria. As the mean number of photons per pulse 

increases, the results converge to the no-noise case due to an increased probability of a wrong state triggering detector D0 

at the state comparison stage, thereby lowering the number of spurious events that meet the system’s post-selection 

criteria. To provide a performance estimation, Fig. 6 (b) shows the visibility computed for the tomography stage, 

highlighting the contribution noise makes to the system. As expected, the addition of noise negatively affects the system 

at low mean photon numbers, i.e. less than 0.5. At higher photon number values the visibility is partially recovered 

because of the increased signal to noise ratio (SNR), however quantum experiments typically operate at low mean 

photon numbers[32], e.g. less than 0.5. A visibility estimation for the amplifier can, in theory, provide valuable 

information on possible external accesses to the device by a malicious party and may be useful in identifying security 

related attacks such as Trojan horse attack or detector blinding attack[33],[34]. 

4. CONCLUSION AND FUTURE WORK 

This paper has demonstrated an easy way to implement quantum amplifier based on a state comparison technique for a 

discrete set of phase encoded optical quantum states. The amplifier here greatly surpasses alternative probabilistic 

amplifiers in terms of output fidelity, success probability and gain[18],[20],[35],[36] using coherent states, linear optical 

components and commercially available single-photon detectors. Three different SCAMP configurations were described: 

namely “basic” SCAMP[27], SCAMP with an extra subtraction state, and a SCAMP operating in the presence of 

additional external noise. The first configuration of SCAMP provided benchmark values for state comparison 

amplification based on the photon addition and subtraction procedure. The system showed a success probability as high 

as 2.6% and approximately a twofold increase over the measured correct state fractions compared to the nominal values 

from a uniformed random guess strategy. A secondary SCAMP configuration with an added subtraction stage showed 

enhanced gain and correct state fraction. The same configuration was also tested for robustness against coupled external 

ambient light, crosstalk from co-propagating signal channels or excessively noisy detectors showing the ability of the 

device to perform in non-ideal environmental conditions. 

All of the SCAMP configurations discussed in this paper implement a series of post-condition criteria to discriminate 

successful amplifications event from spurious ones by considering cross correlation of detection events. However, events 

where the amplifier has made a wrong guess when comparing the quantum states at the state comparison stage are 

discarded and this affects both the performance and efficiency of the amplifier. One possible way to address the problem 

is to actively change the guess state by implementing a secondary state comparison stage using a feedforward 

mechanism based on the response of detector D0. It is hypothesized that the feedforward mechanism would increase the 

success probability and output fidelity. 

The modular nature of the SCAMP makes it easily reconfigurable and therefore easy to adapt for different applications.  

However, it is currently not a compact system due to the many beam splitters and optical components which compose the 

different stages and therefore the output is easily influenced by thermal and mechanical stress. We believe that many of 

these problems can potentially be resolved by miniaturizing the device onto a photonic integrated circuit. 
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