9 W average power, 150 kHz repetition rate diamond Raman laser at 1519 nm, pumped by a Yb fibre amplifier

Łukasz Dziechciarczyk¹, Zhimeng Huang², Giorgos Demetriou¹, Dan Cheng², Shankar Pidishety², Yujun Feng², Yutong Feng², Guozheng Wang², Huaiqin Lin², Sheng Zhu², Di Lin², Thomas W. Hawkins³, Liang Dong³, Alan Kemp³, Johan Nilsson³ and Vasili Savitski³

1. Institute of Photonics, Dept. of Physics, University of Strathclyde, Glasgow, G1 1RD, UK
2. Optoelectronics Research Centre, University of Southampton, Southampton, S01 1BJ, UK
3. ECE/COMSET, Clemson University, AMRL Building, 91 Technology Drive, Anderson, South Carolina 29625, USA

Commercially available pulse fibre lasers at ~1.5 μm have many uses in imaging, defense, communications and light radar (LIDAR) [1]. For 3D scanning LIDAR, higher signal-to-noise ratio requires lasers with high average power and high pulse repetition rate (ideally several MHz) for faster scanning rate, whereas to improve distance resolution requires pulse durations <10 ns [2,3]. One limitation of the pulsed fibre lasers at ~1.5 μm is scaling to high average powers [4]. Raman frequency conversion of high average power fibre master oscillator power amplifier (MOPA) systems at ~1 μm is a potential alternative. The large Raman shift and Raman gain of diamond allows two-stage Raman conversion to ~1.5 μm for ~1 μm pumping [5]. Excellent thermal properties make diamond suitable for high average powers [6]. Much work has been done on conversion of 1.064 μm lasers to 1.485 μm using diamond [7]; however, the “eye-safety” requirements for LIDAR typically call for wavelengths above 1.5 μm, due to the order of magnitude higher Maximum Permissible Exposure limit [8]. Developing such a diamond Raman laser (DRL) was the major motivation for this research.

Experimentally a DRL at 1.519 μm was pumped by a maximum of 50W of power from an Yb fibre MOPA emitting polarized 15-ns pulses at 1.082 μm with 150 kHz repetition rate [9]. The MOPA’s linewidth of 0.18 nm was comparable to the diamond’s Raman linewidth. The pump beam was focused to 90 μm radius in a 4 mm long diamond crystal. The 15 mm long DRL cavity consisted of a plane input coupler and a 50 mm radius of curvature output coupler. The input coupler was highly reflective at 1.2 μm and 1.5 μm and highly transmissive at 1.08 μm. The output coupler had a transmittance of 70% at 1.52 μm and was highly reflective at 1.2 μm. The diamond was supplied by Element 6 (UK) Ltd. and had an absorption coefficient of <0.005 cm⁻¹ at 1 μm and was oriented for propagation along the <110> axis. The pump was polarised along the <111> axis of the diamond and the mode sizes for 1st and 2nd Stokes were 90 and 100 μm respectively.

The maximum power achieved from the DRL at 1.52 μm (Fig. 1 (b)) was 9 W (Fig. 1 (a)) with a pulse duration of 7 ns (Fig. 1 (c)). The maximum conversion efficiency was 23% (Fig. 1 (a)). The slope efficiency was 29% before the plateau at 40W of pump power. The high-power roll-over may have been caused by the pump beam quality degradation, either in the MOPA or in an isolator that was used to block the back reflected pump emission. Funding: EP/P00041X/1, EPSRC EP/P001254/1. Research data: doi.org/10.15129/b17b6db6-7c52-46a3-b13a-f89b61e38c0c

![Fig. 1 Power transfer and energy conversion (a), pump and output spectra (b) and 2nd Stokes pulse (c)](image)

References