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Abstract 13 

The current treatment process of Palm Oil Mill Effluent (POME) has been a cause of concern 14 

over recent years as POME is known to cause greenhouse gas emission as well as water 15 

pollution. An alternative for POME treatment process optimization is to eliminate the 16 

conventional cooling ponds and introduce a dewatering device such as a thickener. The 17 

thickener will assist in the solid-liquid separation, removal of microbes and other impurities 18 

from the wastewater. The latter will contribute to making the anaerobic digesters used to treat 19 

POME more efficient by allowing a means of control on the digesters’ load. However, to be 20 

able to design and predict the performance of the thickener unit; essential rheological properties 21 

of the suspension have to be determined. The rheological characteristics and the compressive 22 

behavior of POME have not been studied previously nor has the implementation of such a 23 

dewatering device in the POME treatment process. This paper attempts to bridge the gap on 24 

the rheological characteristics, the compressive behavior and the effect of temperature on the 25 

rheological properties of POME through batch settling and batch filtration experiments. Data 26 

such as the compressive yield stress, the hindered settling function, and the diffusivity function 27 

for POME have been extracted and evaluated. 28 
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1. Introduction 87 

 88 

Every ton of Crude Palm Oil (CPO) produced generates approximately 3.05 m3 of Palm Oil 89 

Mill Effluent (POME) (Hassan et al., 2005). POME is considered as one of the most 90 

challenging waste products to dispose of in the palm oil industry due to its high organic content.  91 

Therefore, an effective technique for disposal is of paramount importance. Nevertheless, when 92 

treated efficiently, POME can provide useful products such as biogas and A grade biosolids 93 

that can be used as fertilizers. Furthermore, the Malaysian government has recognized the 94 

prospect of using POME as a renewable energy resource (Choong et al., 2018). Malaysia’s 95 

National Key Economic Area for Palm Oil industries have 2 specific Entry Point Projects (EPP) 96 

related to palm oil mills, EPP4 which aims to improve the oil extraction rate and EPP5 which 97 

entails developing biogas facilities for palm oil mills; however, the issue with EPP4 is that 98 

some mills incur high oil loss through waste streams. It is thus essential to implement 99 

sustainable practices in the palm oil industry to be able to extract the residual oil in the waste 100 

stream and generate as well as capture biogas as it is a potent source of renewable energy. 101 

There are still more than 85% of palm oil mills in Malaysia that continue to use not biogas 102 

facilities but rather the ponding system owing to the low cost associated with the latter for the 103 

treatment of POME. In addition to the drawback of the excessive use of land for the ponding 104 

system, the emission of greenhouse gases (GHGs) to the atmosphere is a consequential 105 

environmental burden being encountered with the current treatment process.  106 

 Every tonne of POME treated by the ponding system has the potential of generating about 12.4 107 

kg of methane gas (Choong et al., 2018). Another significant concern is that POME can cause 108 

water pollution when discharged in watercourses due to the presence of organic matter which 109 

can decompose easily. This, in turn, results in a high content of Chemical Oxygen Demand 110 

(COD) and Biological Oxygen Demand (BOD) of 51,000 mg/L and 25,000 mg/L respectively 111 
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(Choong et al., 2018; Iskandar et al. 2018). High COD and BOD effluent content contribute to 112 

the oxygen content in the water to be curtailed which gradually hinders the growth of the 113 

aquatic life and in the long term may cause their extinction (Iskandar et al., 2018). The 114 

treatment of POME is, therefore, a high priority concern which needs to be addressed promptly 115 

since the global demand for palm oil is predicted to increase unceasingly in the years to come. 116 

(Tabassum et al., 2015). 117 

The impediment with the current treatment process is that POME discharged at 80-90℃ is sent 118 

to the cooling ponds where the residual oil is removed from the surface in addition to allowing 119 

the temperature to drop so as to achieve an adequate temperature for mesophilic anaerobic 120 

digestion. This process of oil extraction from the cooling ponds is highly ineffective, and there 121 

is considerable heat loss to the atmosphere.  The introduction of a thickener will however allow 122 

the oil, liquid and solid portions of POME to be separated. The residual oil can be scraped off 123 

and material that easily settles out will be removed, resulting in a homogeneous effluent and a 124 

sludge discharge that can be sent for further treatment. The appropriate discharge sludge to 125 

liquid ratio will then be sent to the anaerobic digester at a higher temperature such that 126 

thermophilic anaerobic digestion can take place (Appels et al., 2008). This modification in the 127 

process demands a measure of control on the anaerobic digester’s load. 128 

As a consequence of this alteration, the anaerobic digestion process is expected to be more 129 

stable, and the amount of biogas produced should increase. The thickener will be positioned 130 

after the oil recovery unit and prior to the anaerobic digesters so as firstly to prevent the solid 131 

particles from floating as they are dragged by the oil moving to the surface, secondly to 132 

circumvent the redundancy of the oil recovery unit and lastly to avoid unnecessary modification 133 

to the mill layout.   This adaptation of the process will not only improve the treatment quality 134 

of POME but will prevent heat loss that can be essential to boost the hydrolysis step in 135 

anaerobic digestion (Carrere et al. 2016). 136 
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To be able to design the thickener unit for an efficient POME treatment, operational parameters 137 

such as the flow rate, pressure and the rotational speed of the specific equipment are not 138 

sufficient. Data on the material properties of the suspension being dewatered must be readily 139 

available across the full range of solids fraction being investigated in the process. The 140 

dewatering behavior of the thickener is typically described by the compressional rheology in 141 

which the equilibrium extent and rate of separation are determined by the suspension’s 142 

compressibility and permeability respectively; consequently, these parameters can be 143 

quantified by evaluating the so called compressive yield stress, hindered settling function and 144 

diffusivity function of the material (Stickland et al., 2005; Usher & Scales, 2005). However, 145 

the rheological characteristics and compressive behavior of POME have scarcely been studied, 146 

so much so that POME has not been physically characterized. This paper attempts to bridge 147 

the gap on the study of the physical properties of POME by determining the compressive yield 148 

stress; the hindered settling function, the diffusivity function as well as some relevant solids 149 

content represented by the solids volume fractions. These are firstly the initial solids volume 150 

fraction, 𝜙0 present in the suspension, the gel point, 𝜙𝑔 and the closed packed solids volume 151 

fraction, 𝜙𝑐𝑝  (Usher & Scales, 2005; Usher et al., 2009; Zhang et al., 2015). These parameters 152 

will provide a broader understanding of the dewatering properties and the compressive 153 

behavior of POME as well as fundamental specifications required for the design of the 154 

thickener device. 155 

The rest of this work is laid out as follows; Section 2 relates the background on the different 156 

rheological parameters relevant to this study. Section 3 describes the material used and the 157 

experimental procedures undertaken in this study and Section 4 presents and examines the 158 

results obtained. Finally, Section 5 gives the conclusions on this study. 159 

 160 
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2 Background 161 

 162 

2.1. Compressive Yield Stress, Py(𝜙). 163 

Suspension compressibility is dependent upon the extent of dewatering and can be 164 

characterized by the compressive yield stress, Py(𝜙). Py(𝜙) dictates the solids volume 165 

fraction, 𝜙, to which a suspension will be dewatered at an applied pressure, ∆𝑃. Particles in 166 

most suspensions when left to settle for a significant period of time, form an inter-connected 167 

particle network which is capable of supporting its own weight under gravity (Harbour et al., 168 

2001). The solids volume fraction at which the network starts to form is known as the gel point,  169 

𝜙𝑔. Therefore, a suspension will only exhibit a compressive yield stress if the solids 170 

concentration is greater than 𝜙𝑔. When an external stress i.e. a pressure, ∆𝑃, is applied to the 171 

network, it collapses and irreversible particle consolidation occurs (Aziz et al., 2000; De 172 

Kretser et al., 2001; Harbour et al., 2001; Zhang et al., 2015). As the solids volume fraction, 𝜙, 173 

increases, the number of inter particle bonds increases which consequently causes Py(𝜙) to 174 

increase. Dewatering continues until Py(𝜙)  is equivalent to the applied pressure, ∆𝑃, at which 175 

the system has reached equilibrium. 176 

The functional form of the compressive yield stress Py(𝜙) can be represented by using a 177 

compressive yield stress  empirical equation (1) formulated by Zhang et al. (2015b) 178 

              𝑃𝑦(𝜙) =
𝐶0(𝜙 − 𝜙𝑔)

𝑘𝑜
       

(𝑏0  +  𝜙 − 𝜙𝑔)𝑘0 ∗ (𝜙𝑐𝑝 − 𝜙)
𝑘0

                                (1)    179 

Where; Py(𝜙) is the compressive yield stress measured in Pa, 𝜙𝑔  is the gel point, 𝜙𝑐𝑝 is the 180 

close packing solids volume fraction. Specifically,  𝜙𝑐𝑝 is the close packing solids fraction 181 

which can never be surpassed as the compressive yield stress tends towards infinity,   𝑃𝑦(𝜙) →182 

 ∞ (Zhang et al., 2015b). Moreover, C0 measured in Pa, b0 and k0 which are dimensionless 183 

parameters that are dependent on the suspension properties.  184 
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2.2 Hindered Settling Function, R(𝜙) 185 

 186 

The hindered settling function, R(𝜙) takes into consideration the hydrodynamic interactions 187 

between particles or more commonly between flocs of particles grouped together in a 188 

consolidating suspension. R(𝜙) is finite at all solids volume fractions and typifies the 189 

consolidation rate of the suspension at any given concentration explicitly or in other words, 190 

R(𝜙) quantifies the dewatering rate (Green et al., 1998). The permeability, k(𝜙) measured m2 191 

can be expressed in terms of R(𝜙). From equation (2), it is seen that the permeability of a 192 

material is inversely proportional to the hindered settling function, R(ϕ) (Usher et al., 2001): 193 

𝑘(𝜙) =  
𝜂

𝑅(𝜙) 

(1 − 𝜙)

𝜙
                                                               (2) 194 

Where; 𝜂 is liquid viscosity, 𝑅(𝜙) is the hindered settling function and 𝜙 is the solids volume 195 

fraction. 196 

Unlike compressive yield stress which is identically zero below the gel point, 𝜙𝑔 , the hindered 197 

settling function below the 𝜙𝑔 can be evaluated in the low solids volume fraction regime 198 

through batch settling experiments provided the initial solids volume fraction, 𝜙0, of a 199 

suspension is known (Lester et al., 2005). Using the data from the batch settling experiment, 200 

the settling velocity can be evaluated through the slope of the interfacial height versus time 201 

graph. The analyses of Grassia et al., (2008); Lester et al., (2005) stated that the settling flux, 202 

f(𝜙), the settling velocity, u(𝜙),  and the solids volume fraction, 𝜙, are related via the equation 203 

(3) 204 

𝑓(𝜙) = 𝜙 𝑢(𝜙)                                                                            (3)   205 

Lester et al. (2005) gave equation (4) to calculate R(𝜙) from the batch settling experiments 206 

based on the settling flux, f(𝜙)  207 
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𝑅(𝜙) = − (
(1 − 𝜙)2

𝑓(𝜙)
) ∆𝜌𝑔𝜙                                                              (4) 208 

Where; f(𝜙) is the settling flux in m/s, R(𝜙) is the hindered settling function in Pa s/m2, ∆𝜌 is 209 

the difference in solid-liquid densities, 𝑔 is acceleration due to gravity (9.81m/s2) and 𝜙 is the 210 

solids volume fraction. Since the settling velocities and the settling fluxes are downwards in 211 

direction, the minus sign is introduced to ensure that R(𝜙) remains positive. 212 

To determine R(𝜙) above 𝜙𝑔, de Kretser et al. (2001) designed a rapid filtration measurement 213 

technique to determine dewatering parameters i.e.  R(𝜙) and another parameter to be defined 214 

shortly D(𝜙). De Kretser et al. (2001) indicated that during the cake formation stage of 215 

filtration, the correlation between time, t and the specific volume of filtrate, V (where the 216 

volume is expressed per unit area of membrane), followed a quadratic relationship such that 217 

the plot of t versus V2 produced a linear correlation. The inverse of the slope of this linear 218 

portion is denoted by 𝛽2. They also investigated how the slope of the plot 𝛽2 versus ∆𝑃 can be 219 

used to calculated R(𝜙) above  𝜙𝑔 as shown in equation (5)(Usher et al,. 2001). 220 

𝑅(𝜙∞) =  
2

𝑑𝛽2

𝑑∆𝑃

(
1

𝜙0
−

1

𝜙∞
) (1 − 𝜙∞)2                                              (5) 221 

Where; 𝜙0 is the initial solids volume fraction, 𝜙∞ is the equilibrium solids volume fraction at 222 

the corresponding applied pressure.  Using equations (4) and (5), it is possible to determine the 223 

values of R(𝜙) over the full range of solids volume fractions. 224 

2.3 Diffusivity Function, D(𝜙)  225 

The solids diffusion coefficient also known as the diffusivity function, D(𝜙) designates the 226 

interaction between the hindered settling behavior, the compressibility and the solids content 227 

of a suspension (Landman et al., 1999; Scales, 2006). D(𝜙) represents a parameter which can 228 

fully characterize the dewaterability of a suspension. D(𝜙) characterizes the dewatering process 229 

by combining both the extent of filtration i.e. Py(𝜙)  (which expresses the compressibility of 230 
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the suspension) and the rate of filtration, related inversely with R(𝜙) (which expresses the 231 

permeability of the suspension) as presented in equation (6) (Stickland et al., 2008; Raha et al., 232 

2005; Usher et al., 2001): 233 

𝐷(𝜙) =
(1 − 𝜙)2 𝑑𝑃𝑦(𝜙)

𝑑𝜙

𝑅(𝜙)
                                                                    (6) 234 

Where; is 
𝑑𝑃𝑦(𝜙)

𝑑𝜙
 the differential of the compressive yield stress, 𝜙  is the solids volume fraction 235 

and 𝑅(𝜙) is the hindered settling function.  It has been proven mathematically that D(𝜙)  is 236 

inversely proportional to the time taken for a suspension to dewater (Harbour et al., 2001; 237 

Scales, 2006). As such a simple comparison of dewaterability can be established by comparing 238 

D(𝜙)  on an equal solids volume fraction scale. The proper interpretation of the information of 239 

the D(ϕ) versus the solids volume fraction plot conveys is essential; it is found that a plot shifted 240 

more towards the right towards higher solids volume fraction tends to be more compressible 241 

and a plot shifted upwards shows a higher diffusivity function indicating a shorter filtration 242 

time (Harbour et al., 2001; Skinner et al., 2015). 243 

Moreover, a convenient and consistent way to calculate the diffusivity function via pressure 244 

filtration data is by using equation (7) presented by de Kretser et al. (2001). 245 

𝐷(𝜙∞) =
1

2

𝑑𝛽2

𝑑𝜙∞
(

1

𝜙0
−

1

𝜙∞
)−1                                                      (7) 246 

Where; 𝜙0 is the initial solids volume fraction, 𝜙∞ is the equilibrium solids volume fraction at 247 

the corresponding applied pressure. 248 

To summarize, the discussion above has illustrated what the key parameters characterizing the 249 

dewatering of a suspension are. The next sections focus specifically upon how these are to be 250 

obtained in the case of POME. 251 

 252 
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3 Materials and Methods 253 

 254 

3.1 Materials 255 

Hot POME (65oC) was obtained at the Seri Ulu Langat Palm Oil Mill, Dengkil, Malaysia. The 256 

sample site lies within longitude 030, 11’, and 52.5” N and latitude 1010, 18’ and 23.7” E. The 257 

temperature of POME at the collection location was measured to be 65°C. The temperature 258 

drop from the discharged temperature (80-90°C) can be attributed to the heat loss through the 259 

pipeline as it reaches the sampling location. In order to mimic industrial conditions, the hot 260 

POME samples were stored at 65°C using a thermos flask and used within 12 hours upon 261 

collection. Otherwise, the samples were kept refrigerated at 4°C until further use.  262 

3.2  Methods 263 

3.2.1. Physico-chemical properties 264 

The physico-chemical properties experiments for POME such as the Chemical Oxygen 265 

Demand (COD), Biochemical Oxygen Demand (BOD), Total Solids (TS), Total Suspended 266 

Solids (TSS), volatile solid (VS), and oil and grease were conducted as per the Standard 267 

Methods approved by the United States Environmental Protection Agency (US EPA) which is 268 

in accordance to ASTM standards (ASTM 2000).  Table 1 lists the physico-chemical 269 

compositions of the POME: 270 

Table 1: Physico-chemical properties of POME 271 

 272 

Parameters Raw 

Solids volume fraction 𝝓/ v/v 0.177±0.003 

COD/ mg/L 44800±3500 

BOD/ mg/L 21950±1000 

TS/ mg/L 48680±3400 

VS/ mg/L 993±60 
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Oil and grease/ mg/L 653±0.3 

Temperature/ °C 65±2.8 

pH 4.64±0.3 

 273 

3.2.1 Batch Settling Experiment 274 

The batch settling experiments were undertaken at a constant temperature of 65°C to mimic 275 

industrial conditions but for different dilutions of POME. POME was diluted with distilled 276 

water to cater for different solids fractions. The concentrations considered were raw, 2, 4, 6 277 

and 8 times diluted POME. Different dilutions of POME were then transferred into 5 identical 278 

100mL measuring cylinders which were in turned placed in a water bath at 65°C. The height 279 

of the interface, h, between suspension and liquor was measured with time for each sample. 280 

The experiment ended when the interfacial height remained constant for a period of 3 hours. 281 

The experiments were undertaken at different dilutions of POME to allow the evaluation of the 282 

hindered settling function, R(𝜙)  below the gel point, 𝜙 g. The experiments were repeated with 283 

cold POME thawed to room temperature (CPTRT) at 28°C  and cold POME which was allowed 284 

to settle in a thermostatic cabinet at 10°C to investigate the effect of temperature on the settling 285 

properties of POME. The media in all the experiments were unstirred to allow settling by 286 

gravity. Figure 1 shows the experimental set up for the batch settling experiments. From the 287 

batch settling experiments, data such as the settling velocities u(𝜙), the settling fluxes, f(𝜙) and 288 

the hindered settling function, R(𝜙)  below the gel point, 𝜙 g, were obtained.  289 

 290 
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 291 

Figure 1: Batch Settling Experimental Set Up 292 

 293 

Figure 2 depicts the schematic illustration for the consolidation of a suspension where h0 is the 294 

initial interfacial height and Zc(t) is the position at which the consolidation region meets free-295 

falling flocs, implying a rapid transition from free falling individual flocs at  𝜙 = 𝜙0 to 𝜙 = 𝜙𝑔. 296 

 297 

Figure 2: Schematic illustration of consolidating suspension when ɸ0 < ɸg 298 

 299 

In this study, solely the initial rate of change of h was measured. However, it was noted that 300 

rates of change of h at later stages can furnish additional rheological information (Lester et al., 301 

2005). 302 
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3.2.2 Batch Filtration Experiment 303 

A single pressure filtration technique was employed for the batch filtration experiment. This 304 

method involves the application of a single constant pressure which enables the determination 305 

of a single compressibility and permeability value for each test.  Single pressure filtration is a 306 

suitable filtration technique for measuring suspension rheological properties; however, it 307 

requires a significant amount of time with five or more individual filtration tests required to 308 

characterize a sample effectively (Usher et al., 2001). Stepped pressure filtration can potentially 309 

cut down the experiment time (de Kretser et al. 2001) but in this study,  the latter was not 310 

utilized. The batch filtration experiment was undertaken in a stirred pressure cell (Brand: 311 

Sterlitech HP 4750). The stirrer was set at 150rpm. POME samples for hot POME, CPTRT, 312 

and cold POME were filtered at constant gauge pressures ranging from 100 -500kPa. Pressure 313 

was applied by air filtration rather than with the use of a piston and the system was tightly 314 

sealed with a membrane separating the blown air from the suspension to prevent desaturation. 315 

50 mL of the sample was placed into the stirred pressure cell, the required pressure was set, 316 

and the experiment was allowed to run. In order to monitor the evaporation taking place during 317 

the filtration experiment, a beaker of 50mL of water at 65°C, 28°C and 10°C for hot, CPTRT 318 

and cold POME respectively were placed under the same conditions as the filtrate. The initial 319 

mass was measured using an electronic balance (Brand: A&D scales model FX-3000i) which 320 

sent the recorded data directly to a software and volume of water were recorded. Once the 321 

filtrate mass remained constant for up to an hour, the experiment was stopped. The final mass 322 

and volume of water along with that of the filtrate were measured.  Figure 3 shows the 323 

experimental set up for the batch filtration experiments. The experiments were repeated with 324 

cold POME and CPTRT to investigate the effect of temperature on the rheological 325 

characteristic of POME.  326 
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 327 

Figure 3: Batch Filtration Experimental Set Up 328 

 329 

A significant challenge was finding the initial solids volume fraction in the sample of POME 330 

used since the composition and chemical characteristics of POME vary from batch to batch 331 

when sampled. The method for evaluating the initial solids volume fraction is discussed below. 332 

3.3 Initial solids volume fraction, 𝜙0  333 

For the determination of the initial solids volume fraction, 𝜙0, 3 different batches of POME 334 

sample were used to undertake pressure filtration experiments and were ran at a pressure of 335 

100kPa.  Once the filtrate volume was constant for up to an hour, the cake obtained at the end 336 

of the experiment was oven dried at 105°C and weighed until the weight remained constant 337 

(Stickland, 2015). The equations below were used to determine the initial solids volume 338 

fraction, 𝜙0. The mass balance for the filtration system is as shown below: 339 

𝑀𝑇 =  𝑀𝑇𝐶 + 𝑀𝐹𝐹                                                                   (8) 340 

Where MT is the mass of suspension, MTC is the mass of the cake after filtration (which consists 341 

of the mass of solid and liquid in the cake) and MFF is the mass of the final filtrate. The above 342 

equation should be rewritten in terms of volume since in this study the solids volume fraction 343 

is the parameter of interest (Landman & White, 1994; Perlmutter & White, 1994). 344 

𝑉𝑇𝐶 = 𝑉𝑇 − 𝑉𝐹𝐹                                                                        (9)  345 
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Where VT is the volume of suspension, VTC is the volume of the cake after filtration and VFF is 346 

the final filtrate volume. The cake consists of mostly solid flocs and entrapped liquid. To be 347 

able to determine the volume of solids present in the cake, the cake was oven dried to remove 348 

the liquid present and was weighed. Equation (10) expresses VTC in terms of masses and 349 

densities of the solid and liquid found in the cake. 350 

𝑉𝑇𝐶 = 𝑉𝑆𝐶 + 𝑉𝐿𝐶 =
𝑀𝑆𝐶

𝜌𝑠
+

𝑀𝐿𝐶

𝜌𝑙
                                            (10)   351 

Where VSC is the volume of solids in the cake, VLC is the volume of liquid in the cake, MSC is 352 

the mass of solids in the cake, MLC is the mass of liquid in the cake,  𝜌𝑠 is the density of the 353 

solids and 𝜌𝑙 is the density of the filtrate. From the filtration experiments,𝑉𝐹𝐹 , 𝑀𝐹𝐹 , 𝑉𝑇𝐶 and 𝜌𝑙 354 

can be known. After drying the cake, 𝑀𝑆𝐶   can be measured and assuming the solids are present 355 

as suspended solids rather than dissolved solids hence 𝑀𝐿𝐶 and 𝑉𝐿𝐶 can be calculated. It is 356 

therefore possible to compute 𝜌𝑠 to be able to evaluate 𝑉𝑆𝐶 by subtracting 𝑉𝐿𝐶  to 𝑉𝑇𝐶. Once the 357 

value for   𝑉𝑆𝐶 is evaluated. The initial solids volume fraction can therefore be determined using 358 

equations (11- 13) 359 

                                                             𝑉𝑆𝐶 = 𝜙0 ∗ 𝑉𝑇                                                              (11)     360 

                                                         𝑉𝑆𝐶 = 𝜙∞ ∗ 𝑉𝑇𝐶                                                                 (12)  361 

                                                      𝑉𝑆𝐶 = 𝜙0 ∗ 𝑉𝑇 = 𝜙∞ ∗ 𝑉𝑇𝐶                                                 (13)   362 

Where 𝜙∞ is the solids volume fraction at equilibrium in the cake after filtration which can also 363 

be expressed as VSC/VTC. Equation 13 demonstrates that the total volume of solids in the 364 

suspension equals to the total volume of solids in the cake as no solids pass through to the 365 

filtrate as the solids are assumed to be suspended rather than dissolved. To ensure that the 366 

assumption was valid, the filtrate was dried off and the dissolved solids volume fraction was 367 

calculated. The dissolved solids volume fraction in the filtrate was evaluated to be 368 
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0.0186±0.0027 v/v; as this value is significantly less than 1, it is valid to assume that the 369 

dissolved solids in this study is negligible. Combining equations 9 and 13 and the values of 370 

VSC, VTC, VT and VFF, 𝜙0 was found as shown in equation 14. 371 

𝑉𝑆𝐶

𝑉𝑇𝐶
=

𝜙0 ∗ 𝑉𝑇

𝑉𝑇 − 𝑉𝐹𝐹
                                                                  (14)     372 

The initial solids volume fraction found for the 3 batches were 0.177, 0.183 and 0.171. 373 

Therefore, the initial solids volume fraction used for the study was 0.177±0.003. Hence 374 

equation (15) was used to determine 𝜙∞ after each filtration experiment 375 

𝜙∞ =
0.177 ∗ 𝑉𝑇

𝑉𝑇𝐶
                                                                    (15)    376 

Where VT and VTC are dependent on the pressure and temperature of each filtration experiment. 377 

The liquid density at 10, 28 and 65℃ were found to be around 1000.4, 1000.2 and 999.9 kg/m3 378 

respectively. It was observed that within the studied temperature range the variation in the 379 

liquid densities were negligible compared to the difference between the solid and liquid 380 

density. Therefore, the liquid density used for the calculations was 1000 kg/m3. From the above 381 

analysis, the solid density within the suspension was evaluated to be 1100 kg/m3. It is worth 382 

noting however that the relatively low density difference between solids and liquid may limit 383 

the extent to which a gravity thickener may dewater a POME suspension.  These densities 384 

values will further aid in the calculation of the hindered settling function, R(𝜙) below the gel 385 

point, 𝜙𝑔. 386 

4 Results and Discussion 387 

 388 

4.1 Batch Settling  389 

 390 

 The batch settling experiments of 2, 4, 6 and 8 times dilutions of POME accounting for solid 391 

volume fractions of 0.089±0.004, 0.0443±0.001, 0.030±0.002 and 0.022±0.001 v/v 392 
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respectively were undertaken to assist in the evaluation of the gel points of POME as well as 393 

to examine the behavior of R(ϕ) below the gel point.  Figure 4 shows the batch settling results 394 

for Hot POME at a constant temperature of 65℃. 395 

 396 

Figure 4: Batch Settling results for Hot POME 397 

                                 398 

It can be observed that the settling rate for raw POME is considerably lower than 2,4, 6 and 8 399 

times dilutions. The final bed heights for raw, 2, 4, 6 and 8 times dilutions were 7.3, 3.6, 1.7, 400 

1.1 and 0.8 cm respectively for a 14.1 cm initial height. Figure 4 shows data for Hot POME, 401 

batch settling tests were also conducted for diluted CPTRT and Cold POME. However, there 402 

was a constraint to the batch settling experiments of CPTRT and Cold raw POME. Raw POME 403 

does not settle at room temperature and below, instead the solid particles present in the 404 

suspension tend to rise to the surface or form distinct lumps of solid particles floating with the 405 

liquid medium along the settling column.   Some possible explanations for the latter behavior 406 

are firstly, POME starts to decompose at these temperatures producing biogas that causes 407 

distinct mass of particles to float as the biogas rises; while for Hot POME, the microorganisms 408 



19 
 

responsible for the decomposition of POME cannot thrive at such a high temperature, therefore 409 

no biogas is produced, and the flocs settle normally. Secondly, the initial solids volume fraction 410 

may be greater than the gel point however owing to being a weak networked suspension at 411 

these temperatures the flocs in the suspension do not settle. 412 

4.2 Compressive Yield Stress, Py(𝜙) 413 

 414 

As mentioned earlier, batch filtration was used as the primary means of determining Py(𝜙) . 415 

As the filtration experiment reaches the end, the filtrate volume remains constant, no more 416 

consolidation occurs, and the filter cake has a uniform solids concentration at the equilibrium 417 

solids volume fraction,𝜙∞.  At equilibrium, the sample has stopped compressing for a given 418 

applied pressure i.e., the compressive yield stress Py(𝜙∞), at the equilibrium solids volume 419 

fraction can be thus equated to the applied pressure (de Kretser et al., 2001; Green et al., 1996;  420 

Landman et al., 1995). Zhang et al. (2015b) states that the compressive yield stress can exhibit 421 

different types of variation in the neighborhood of the gel point, 𝜙𝑔.  Zhang et al. (2015a) 422 

suggested an empirical equation to fit the compressive yield stress Py(𝜙) as shown in equation 423 

1. However, in the present study equation (1) was rewritten in such a form that the constants 424 

C0, b0 and k0 were collapsed together into a single parameter denoted by X0  (𝑋0 ≡ 𝐶0/𝑏0
𝑘0), 425 

since compared to Zhang et al. (2015b) study, in the case assuming 𝜙 − 𝜙𝑔 ≪ 𝑏0  some 426 

parameters are redundant (Stickland, 2015; Zhang et al., 2015a). The form in which equation 427 

1 reduces in the neighborhood of the gel point is shown below.  428 

𝑃𝑦(𝜙) = 𝑋0 ∗ (
𝜙 − 𝜙𝑔

𝜙𝑐𝑝 − 𝜙
)

𝑘0

                                                         (16) 429 

Using the data obtained from the pressure filtration test and equation (16), X0, 𝜙𝑔, 𝜙𝑐𝑝 and k0 430 

were estimated by data fitting. Table 2 presents the values obtained for X0, 𝜙𝑔, 𝜙𝑐𝑝 and k0 for 431 

hot, CPTRT and cold POME. 432 
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Table 2: Compressive yield stress fitted parameters 433 

POME 

sample 

𝑿𝟎 ≡ 𝑪𝟎/𝒃𝟎
𝒌𝟎/ 

Pa 

𝝓𝒈/ (𝐯/𝐯) 𝝓 𝝓𝒄𝒑/ (v/v) 𝒌𝟎 

Hot (65°C) 2.132±0.094 0.380±0.030 0.980±0.025 1.372±0.030 

CPTRT (28°C) 1.968±0.095 0.352±0.050 0.970±0.010 1.364±0.003 

Cold (10°C) 1.950±0.040 0.321±0.047 0.961±0.010 1.356±0.009 

 434 

From Table 2, it can be established that X0 and 𝜙𝑔 are temperature sensitive parameters while 435 

𝜙𝑐𝑝   and k0 proved to be unresponsive to temperature change. The fitted gel point decreased 436 

with decreasing temperature, as did X0. An explanation for X0 to show changes with 437 

temperature is due to the compensation for the temperature dependence of 𝜙𝑔. As for the high 438 

𝜙𝑐𝑝  values (predicted very close to unity), this occurrence can be due to the residual or bound 439 

water in the nominally solid particles or tentatively due to the dissolved solids in the liquid 440 

phase which has been neglected here. The data shown above is unique in the study of the 441 

rheology of POME since no previous research has been undertaken on this aspect of POME 442 

and no such findings have formerly been presented. It can thus be concluded based on these 443 

filtration data  that the initial solids volume fraction, (𝜙0 = 0.177) lies below the gel point, 𝜙𝑔 444 

as the 𝜙𝑔 of hot, CPTRT and cold POME which were evaluated to be 0.380±0.030 v/v, 445 

0.352±0.050 v/v and 0.321±0.047 v/v respectively.  When designing a thickener, it is essential 446 

to know whether the feed suspension is networked (𝜙0 > 𝜙𝑔) or unnetworked (𝜙0 < 𝜙𝑔) as this 447 

will consequently dictate the design and operation of the dewatering device. Landman & White 448 

(1994) stated that knowing whether the feed is networked or not is fundamental as the operator 449 

may have less straightforward control on the flux if the feed input is unnetworked. The 450 

unnetworked mode can still however be used to its advantage as such a system can be used to 451 

clarify the suspension, albeit the underflow will be networked. Additionally, a benefit of an 452 

unnetworked suspension is that the latter can be flocculated by the addition of appropriate 453 
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polymers to enhance the settling rate (Deniz 2015). The latter is a potential advantage for 454 

thickening with unnetworked suspension. 455 

 456 

Figure 5: Graph of compressive yield stress, Py(𝜙) for hot, CPTRT and Cold POME versus solids volume 457 

fraction 458 

 459 

Fitted Py versus 𝜙 curves were plotted in Figure 5. The dash lines in Figure 5 represents the gel 460 

points, 𝜙𝑔  of POME at the different temperatures; 65℃ for hot, 28℃ for CPTRT, and 10℃ 461 

for cold POME. Figure 5 shows that hot and CPTRT POME have higher gel points, 𝜙𝑔 than 462 

Cold POME. According to Table 2, the close packing volume fractions, 𝜙𝑐𝑝, are also slightly 463 

higher compared to cold POME although the value of 𝜙𝑐𝑝  is still some way away from the 464 

range of 𝜙 plotted in the above figure. This implies that hot and CPTRT POME are more 465 

compressible than cold POME as the graphs for hot and CPTRT POME lie more towards the 466 

right. The trends of the compressive yield stress graphs for hot and CPTRT POME are found 467 

to be very close to each other. When comparing the compressive yield stress graphs of hot and 468 



22 
 

CPTRT POME, it can be noted that the data points on the hot POME graph lie more to the right 469 

compared to that of CPTRT, this shows that hot POME is slightly more compressible that 470 

CPTRT and subsequently has a lower compressive yield stress. The coefficients of correlation 471 

squared, R2, can be used to validate a prediction in this case Py(ϕ) based on experimental data; 472 

the higher the value of R2, the more effective is the validation. The values of R2 for hot, CPTRT 473 

and cold POME correlations of Py(ϕ) were found to be 0.9996, 0.9993 and 0.9989 respectively, 474 

indicating that the correlations for Py(ϕ) for hot, CPTRT and cold POME were good fits over 475 

the 𝜙 range taken into consideration. This however does not mean that the fits are necessarily 476 

good extrapolating outside the range of 𝜙 studied.  Batch pressure filtration data in general 477 

tend to correspond to 𝜙 values above the gel point, so the gel point here has been estimated via 478 

extrapolation and the estimate might not be accurate as a consequence. Another minor issue is 479 

the distinction between equations (1) and (16). In fact, (16) to which the curves were fitted is a 480 

specific case to (1) assuming that 𝜙 − 𝜙𝑔 ≪ 𝑏0.  However, if 𝜙 − 𝜙𝑔 ≫ 𝑏0, the (1) 481 

approximate to 𝐶0(𝜙𝑐𝑝 − 𝜙)𝑘0. This no longer involves the gel point, 𝜙𝑔 as a parameter 482 

making it no longer possible to estimate 𝜙𝑔 from the curve fit to data restricted to the domain 483 

𝜙 − 𝜙𝑔 ≫ 𝑏0. 484 

Batch settling experiments tend to be more appropriate than batch filtration when it comes to 485 

the investigation of the behavior of a suspension close to the gel point. 486 

Figure 6 shows the variation of time, t/s versus specific volume of filtrate squared V2/m2 487 

recorded for a typical POME filtration experiment. The figure further illustrates that POME 488 

behaves traditionally and is characterized by long cake formation times (up to 85% of the total 489 

filtration time) followed by short compression times (Harbour & Scales, 2002; Stickland et al., 490 

2008; Stickland et al., 2005); this observation is in concurrence with Stickland et al. (2005) 491 
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study. However, an abnormal jump was observed in all the POME filtration t/s versus specific 492 

volume of filtrate squared V2/m2 graphs. 493 

 494 

Figure 6: Graph of time, t versus specific volume of filtrate square, V2 495 

 496 

The atypical jump in Figure 6 could be explained under the condition that the initial solids 497 

volume fraction, 𝜙0 lies below the gel point, 𝜙𝑔. De Kretser et al. (2001) identified a similar 498 

occurrence when using a suspension with lower solids volume fraction than the latter’s gel 499 

point, 𝜙𝑔; this anomaly is directly attributed to sedimentation of the suspension within the 500 

filtration cylinder during the time frame of the experiment, leaving some clear liquid adjacent 501 

to the cylinder that is expelled later on once the cake is formed (De Kretser et al., 2001). 502 

Sedimentation occurs early on since there is no solids network stress gradient to support the 503 

particles at this particular stage of the experiment, therefore, the individual flocs are in free fall 504 

at the top of the filtration cylinder, as illustrated in Figure 2, albeit hindered by the 505 

hydrodynamics interaction with neighboring flocs.  506 

4.3 Hindered Settling Function, R(𝜙) 507 

 508 
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The hindered settling functions, R(ϕ) below the gel point, 𝜙𝑔,  were calculated based on the 509 

batch settling experiment results. Once the settling flux, f(ϕ) was found, the value was 510 

substituted in equation (4) to find R(ϕ) below the gel point, 𝜙𝑔. As for the determination of 511 

R(ϕ) above the gel point, 𝜙𝑔, the slopes resulting from the graphs of t versus V2 at different 512 

pressures obtained from the filtration experiment were calculated i.e. the values, of β2. A graph 513 

of β2 versus the applied pressure was plotted to find 
𝑑𝛽2

𝑑∆𝑃
. The value for 

𝑑𝛽2

𝑑∆𝑃
 was substituted in 514 

equation (5) based on de Kretser et al. (2001) study. The graphs of the hindered settling 515 

functions in log scale were plotted versus solids volume fraction, as shown in Figure 7.  516 

 517 

Figure 7: Graph of hindered settling function, R(𝜙) in log scale for hot, CPTRT and Cold POME versus 518 

solids volume fraction 519 

 520 

Stickland et al. (2008) study on wastewater treatment sludges exhibited R(ϕ) as high as that of 521 

POME at higher solid concentrations. Stickland et al. (2008) described wastewater treatment 522 

sludge as a weak permeable network at low solids volume fractions but with a very low 523 

permeability at high solids volume fractions. It was observed that POME exhibits a similar 524 
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behavior to such wastewater treatment sludges; with low R(ϕ) at lower solids volume fraction 525 

and high R(ϕ) at higher solids volume fractions which indicates that POME tends to be 526 

impermeable at high solids volume fractions. Figure 7 shows the trends for the hindered settling 527 

function for hot, CPTRT, and cold POME against different solids volume fractions. The R(ϕ) 528 

for hot POME at 0.771v/v was evaluated to be 8.75x1017 Pa s/m2, for CTRT at 0.769 v/v was 529 

evaluated to be 2.35x1018 Pa s/m2 and for cold POME at 0.750 v/v was evaluated to be 530 

3.26x1018 Pa s/m2. It is seen in Figure 7 that hot POME has a substantially lower R(ϕ) compared 531 

to CPTRT and cold POME. Although batch settling data for low solids volume fraction R(ϕ) 532 

and batch filtration data for high solids volume fraction R(ϕ) were effectually evaluated, there 533 

is a gap covering several orders of magnitude for R(ϕ) which is unaccounted for.   Similar 534 

results have been observed for wastewater treatment sludges and waste activated sludge (Aziz 535 

et al., 2000; Harbour et al., 2001; Stickland et al., 2008; Skinner et al., 2015).  As 536 

aforementioned, permeability is known to be inversely proportional to the hindered settling 537 

function, R(ϕ), as shown in equation (2). The lower the hindered settling function, the more 538 

permeable the material is. Hence, it can be established that hot POME is more permeable that 539 

CPTRT and cold POME. The findings above demonstrate that hot POME will be dewatered 540 

more readily compared to CPTRT and cold POME. 541 

4.4 Diffusivity Function, D(𝜙) 542 

 543 

The solids diffusivity function, D (𝜙) is an essential parameter which should be investigated 544 

and evaluated to comprehend the dewatering behavior of POME (Usher & Scales, 2005; Zhang 545 

et al., 2013). The solids diffusivity function gives an overall measure of the dewaterability of 546 

a material, in this case POME (Landman et al., 1995; Landman et al., 1999; Stickland et al., 547 

2005). An alternative definition for D(ϕ) involves the rate at which a concentration gradient 548 

propagates through the suspension (Skinner et al., 2015).  D(𝜙) is governed by both the 549 
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compressive yield stress, Py(𝜙) more specifically 𝑑𝑃𝑦(𝜙)/𝑑𝜙  and the hindered settling 550 

function, R(𝜙) as shown in equation (6) (de Kretser et al., 2001; Landman et al., 1999; Usher 551 

et al., 2001).  de Kretser et al. (2001) study states that D(𝜙) can be determined when the values 552 

of the quantity β2 are plotted against 𝜙∞ and substituted in equation 7 as indicated in Section 553 

2.3. Figure 8 below shows the graphs of D(𝜙) versus solids volume fraction for hot, CPTRT 554 

and cold POME 555 

 556 

Figure 8: Graph of diffusivity function, D(𝜙) for hot, CPTRT and Cold POME versus solids volume 557 

fraction 558 

 559 

Figure 8 shows that the highest D (𝜙) occurs just slightly above the gel point, 𝜙𝑔. By contrast 560 

for inorganic suspensions, D(𝜙) usually grow monotonically between the initial solids 561 

concentration of the feed to the dewatering device and the final solids concentration of the filter 562 

cake when equilibrium is achieved (Skinner et al., 2015). However, as observed in Figure 8, 563 

this is not the case for POME. There are various explanations for this. Firstly, Skinner et al. 564 

(2015) described that in nearly every compressible material scenario, D(ϕ) peaks 565 

nonmonotonically then decreases as the solids volume fraction increases; this trend was 566 
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observed when sewage sludge was filtered at high solids concentrations and at high pressures 567 

and is in agreement with the rheological study of POME. Secondly, based on equation 5 as ϕ 568 

increases, dPy/dϕ must grow less rapidly than R(ϕ). Indeed, from Figure 5, it is observed that 569 

the plot Py(ϕ) versus solids volume fraction increases gradually after the gel point while R(ϕ) 570 

increases sharply as shown in Figure 7. From Figure 8, it can be distinguished that the plot of 571 

D(ϕ) versus ϕ for hot POME lies well above the plots for CPTRT and cold POME. The highest 572 

D(ϕ) recorded for hot POME at 0.39 v/v was 2.94x10-12 m2/s, for CPTRT POME at 0.385 v/v 573 

was 1.76x10-12 m2/s, and cold POME at 0.335v/v was 1.43x10-12 m2/s. This observation further 574 

validates that hot POME will dewater faster than CPTRT and cold POME as a higher D(𝜙)  575 

designates a shorter filtration time. 576 

It can be concluded that during thickening POME is likely to achieve an underflow solids 577 

volume fraction which is just slightly higher than the gel point owing to its low permeability at 578 

higher solids volume fractions. To further enhance the dewaterability of POME, the thickening 579 

system can be raked so as to bind the individual flocs together more tightly and have 580 

correspondingly more liquid in the voids between the flocs (Gladman et al,. 2006; Tan et al,. 581 

2017). With this approach, it is easier for the liquid to be removed through the voids rather than 582 

through the flocs themselves.  Given that the experiments were repeated, it is worthwhile to 583 

note that the extracted hindered settling functions, R(ϕ) and the diffusivity function, D(ϕ) were 584 

reproducible. The latter indicates that the parameter extraction method and the consequent 585 

material characterization were well founded for POME.  586 

5 Conclusion 587 

 588 

This study has described efforts to quantify the dewaterability of POME alongside a study of 589 

the effect of temperature on the rheological properties of POME. From the findings the 590 

following conclusions can be established  591 
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● Based on the batch filtration data, raw POME was estimated to be an unnetworked 592 

suspension as the initial solids volume fractions, 𝜙0, lies below the gel point 𝜙𝑔. This 593 

is an interesting finding as this will dictate how the thickener device should be designed 594 

and operated. 595 

● Hot POME exhibited a more compressible network compared to CPTRT and cold 596 

POME. Since the discharge temperature of POME is already high, it proves to be more 597 

advantageous to design a thickener that will be operated using hot POME. 598 

● The hindered settling function for hot POME was substantially lower than CPTRT and 599 

cold POME which designates that hot POME is more permeable, as permeability is 600 

inversely proportional to the hindered settling function.  Subsequently, Hot POME will 601 

be dewatered faster owing to its high diffusivity function. Both these dewatering 602 

characteristics are favorable for the design of the dewatering device. 603 

● Based on the results obtained, the design of the thickener to improve anaerobic 604 

digestion appears feasible as it was established the hot POME is compressible, 605 

permeable and can be dewatered relatively fast compared to CPTRT and Cold POME. 606 

The dewaterability can be further enhanced by introducing a rake in the thickener for 607 

the individual flocs to cohere allowing more liquid in the voids between them.  608 

● A drawback, however, is that the hindered settling function of POME rises rapidly as 609 

the solids volume fraction increases, which may limit the solid fraction that a thickener 610 

can attain. 611 
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