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We show that bosonic atoms loaded into orbital angular momentum l = 1 states of a lattice in a
diamond-chain geometry provides a flexible and simple platform for exploring a range of topological
effects. This system exhibits robust edge states that persist across the gap closing points, indicating
the absence of a topological transition. We discuss how to perform the topological characterization
of the model with a generalization of the Zak’s phase and we show that this system constitutes a
realization of a square-root topological insulator. Furthermore, the relative phases arising naturally
in the tunnelling amplitudes lead to the appearance of Aharanov-Bohm caging in the lattice. We
discuss how these properties can be realised and observed in ongoing experiments.

I. INTRODUCTION

Topological properties play an important role in a wide
range of condensed matter systems [1]. Such properties
are particularly demonstrated by topological insulators
[2], where a bulk-boundary correspondence correlates the
non-trivial topological indices of the bulk energy bands
such as the Berry phase [3], with the existence of topolog-
ical edge states under open boundary conditions. The im-
portance of these concepts has led to a great deal of inter-
est in finding clean environments in which fundamental
features of the system can be observed, and phenomena
arising from interactions and non-equilibrium dynamical
effects can be explored. Highlights of this include the re-
alisation of the Haldane [4] and Hofstadter [5, 6] models
with ultracold atoms, as well as the experimental mea-
surement [7] of Zak’s phase [8] and the detection of topo-
logical states [9, 10], which complements paralell work in
photonic waveguides [11–17]. There are a wide range of
further theoretical proposals for observation of topologi-
cal phenomena in cold atoms [18–25], most of which are
based around the realisation of artificial gauge fields by
laser dressing [5, 6, 26], or periodically driving the lattice
system [27].

Here, we explore topologically non-trivial multi-level
models that arise naturally for ultracold atoms in ex-
cited Orbital Angular Momentum (OAM) states of a 1D
chain. We study a concrete example of a diamond chain
to demonstrate how this model is rendered topologically
non-trivial due to relative phases in tunneling amplitudes
for different OAM states. Remarkably, we find that topo-
logical states exist regardless of the values of the pa-
rameters of the model, with no topological transition
across the gap closing points. This system constitutes
an unusual example of a topological insulator with non-
quantized values of the Zak’s phase due to the inversion
axes not crossing the center of any choice of unit cell [8],
and we make use of recently developed techniques [47] to
perform the topological characterization. Furthermore,
the model belongs to a new class of square-root topolog-
ical insulators [37], in which the quantized values of the

Figure 1. (a) Schematic representation of the considered di-
amond chain. The inset shows, for harmonic oscillator traps,
the dependence of the relative value of J2 and J3 on the inter-
site separation d, expressed in units of σ =

√
~/(mω). (b) En-

ergy spectrum of the diamond chain with OAM l = 1 states.
The left plot shows the band structure computed for d = 3.5σ,
corresponding to J3/J2 = 1.67 (black solid line) and d = 6σ,
corresponding to J3/J2 = 1.13 (red dotted line). In the right
plot, the corresponding exact diagonalization spectra of a di-
amond chain of Nc = 20 unit cells are shown.

Zak’s phases are recovered after taking the square of the
bulk Hamiltonian.

Fundamentally, this behaviour arises because the local
OAM l = 1 states are equivalent to the px and py or-
bitals in optical lattices, which have been shown to natu-
rally display non-trivial topological properties in one-[28]
and two-[29, 30] dimensional systems due to the parity
of their wave functions. In the OAM l = 1 basis, the
mechanism that yields topological properties is the ap-
pearance of relative phases in the tunnelling amplitudes,
which are controllable by tuning the geometry of the lat-
tice [31]. We show that this can be observed directly in
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the corresponding experiments.
Additionally, a proper tuning of the inter-site separa-

tion and the central angle can lead to Aharonov-Bohm
(AB) caging [32, 33]. A distinctive advantage regarding
the realization of AB caging in this model, in relation
to other proposals [34–37], is that one does not need to
rely on creating synthetic gauge fields [38–41] to produce
the magnetic flux required for AB caging. Instead, in
our OAM l = 1 model complex phases with values con-
trolled by the central angle appear naturally at some of
the tunneling parameters [31, 42], giving rise to an effec-
tive magnetic flux.

The rest of the paper is organized as follows. In Sec.
II, we present the physical system and we discuss its ba-
sic properties and symmetries. In Sec. III, we present a
series of analytical mappings that allow to gain insight
into the system and to perform its topological character-
ization. In Sec. IV, we support the analytical findings
discussed in the previous section with numerical results
and we discuss under which conditions and to which ex-
tent the system exhibits AB caging. In Sec. V, we make
some considerations regarding the experimental imple-
mentation of the diamond chain loaded with bosons in
the OAM l = 1 states. Finally, in Sec. VI we briefly
summarize the main conclusions of this work.

II. PHYSICAL SYSTEM

We consider a quasi-one-dimensional optical lattice
with a diamond-chain shape. As shown in Fig. 1(a), the
unit cells of this chain, labelled with the index i, are
formed of three sites, Ai, Bi and Ci, each corresponding
to a cylindrically symmetric potential of radial frequency
ω, and forming a triangle with central angle Θ = π/2
and nearest-neighbour separation d. We assume that the
lattice is composed of an integer number Nc of unit cells,
so that its right termination has a closed edge. The chain
is loaded with non-interacting ultracold atoms of mass m
that may occupy the two degenerate OAM l = 1 states
with positive or negative circulation localized at each
site, 〈~r|ji,±〉 = ψ(rji)e

±i(ϕji
−ϕ0), where j ∈ {A,B,C},

(rji , ϕji) are the polar coordinates with origin at the site
ji and ϕ0 is the phase origin. The tunneling dynamics
of this type of states has been studied in detail in [31].
Between two neighbouring sites, there are only three in-
dependent tunneling amplitudes: J1, which corresponds
to the self-coupling at each site between the two OAM
states with different circulations, and J2 and J3, which
correspond to the cross-coupling between OAM states in
different sites with equal or different circulations, respec-
tively. The tunneling amplitudes between states with
different OAM circulations J1 and J3 acquire relative
phases that depend on ϕ0, which is determined by Θ in
the diamond-chain lattice. For Θ = π/2, due to destruc-
tive interference between neighbouring sites with differ-
ent phases in the tunneling amplitudes the self-coupling
vanishes everywhere except for the sites at the left edge

B1 and C1. Moreover, since typically |J1| � |J2|, |J3|
[31], in this paper we neglect the self-coupling term at
these two sites and leave a study of its consequences for
Ref. [43]. Choosing ϕ0 to point along the direction of the
line that connects the sites Ci, Ai and Bi+1 and assuming
coupling only between nearest-neighbouring sites due to
the rapid decay of the tunneling amplitudes as the inter-
site separation increases [43], the non-interacting Hamil-
tonian of the system takes the form (~ ≡ 1)

Ĥ = J2

Nc∑
i=1

∑
α=±

[
âi†α (b̂iα + b̂i+1

α + ĉiα + ĉi+1
α )

]

+ J3

Nc∑
i=1

∑
α=±

[
âi†α (e−2αiΘb̂i−α + b̂i+1

−α + ĉi−α + e−2αiΘĉi+1
−α )

]
+ h.c., (1)

In our convention for ϕ0, we see that a π phase is acquired
in tunnelling Bi ↔ Ai ↔ Ci+1 for a central angle Θ =
π/2. As shown in the inset of Fig. 1(a), the relative
value of J2 and J3 depends on the inter-site separation
d, starting at J3/J2 ≈ 2.2 for d = 3σ and tending rapidly
and asymptotically to J3/J2 = 1 as d increases. The
diamond lattice with two states per site described by (1)
possesses inversion symmetry, leading to a quantization
to 0 or π (mod 2π) of the Zak’s phases [8]. Additionally,
since the model is bipartite it has chiral symmetry defined
as ΓĤΓ = −Ĥ, which entails that the energy spectrum
is symmetric around 0.

By applying a series of exact mappings, we shall
demonstrate that these symmetries are accompanied
by the presence of topologically protected states lo-
calized at the right edge of the chain. Under peri-
odic boundary conditions, the bulk Hamiltonian cor-
responding to the Fourier transform of (1) yields
six energy bands after diagonalization. Their dis-
persion relations appear in three degenerate pairs
E(k) = 0,±2

√
(J2

2 + J2
3 ) + cos(ka)(J2

2 − J2
3 ), where a =√

2d is the lattice constant. The band structure presents
a gap of size 2

√
2J2 (for J3 > J2) or 2

√
2J3 (for J3 < J2)

and, in the J2 = J3 limit, all bands become flat. As
shown in the energy spectrum of Fig. 1(b), for an exper-
imentally feasible inter-site separation of d = 6σ one is
already very close to this all-flat limit. In the case of open
boundary conditions, exact diagonalization performed for
a chain with Nc = 20 unit cells, shown in Fig. 1 (b), re-
veals the presence of four in-gap states localized at the
right edge of the chain. Importantly, these in-gap states
persist provided both J2 and J3 are non-zero, implying
that there is no topological transition across the gap clos-
ing points.

III. ANALYTICAL MAPPINGS

The two-fold degeneracy of the spectrum and the pres-
ence of gaps in the band structure can be understood



3

Figure 2. Schematic representation of the tight-binding
models obtained through the different mappings. (a) H+

diamond chain obtained after applying the basis rotation
{|Bi,±〉 , |Ci,±〉} → {|Fi,±〉 , |Di,±〉} to the original OAM
l = 1 diamond chain. (b) Modified SSH model obtained after
applying the basis rotation {|Di,+〉 , |Fi,−〉} → {|Gi,±〉} to
the H+ chain. Nc is the total number of unit cells.

by performing a rotation into a basis of symmetric and
antisymmetric states, |Di,±〉 = 1√

2
(|Ci,+〉 ± |Bi,+〉),

|Fi,±〉 = 1√
2
(|Ci,−〉 ± |Bi,−〉). This rotation decouples

the diamond chain with six states per unit cell (1) into
two independent and identical diamond chains, H+ and
H−, which have three states per unit cell, see Fig. 2(a).
These two chains are described by the Hamiltonians

Ĥ+ =

Nc∑
i=1

âi†+ [
√

2J2(d̂i+ + d̂i+1
+ ) +

√
2J3(f̂ i− − f̂ i+1

− )] + h.c.

(2a)

Ĥ− =

Nc∑
i=1

âi†−[
√

2J2(f̂ i+ + f̂ i+1
+ ) +

√
2J3(d̂i− − d̂i+1

− )] + h.c.

(2b)

The minus sign in one of the couplings can be as-
sociated with a net π flux through the plaquettes of
these diamond chains [43], which explains the gap in
the band structure [44]. Furthermore, the existence
of in-gap edge states and the flattening of the bands
in the J2 = J3 limit can be understood by means of
a second basis rotation for each of the two subchains
H+ and H−. For the H+ chain, this basis rotation is
given by |Gi,+〉 = 1√

J2
2+J2

3

(J2 |Di,+〉 + J3 |Fi,−〉) and

|Gi,−〉 = 1√
J2
2+J2

3

(J3 |Di,+〉−J2 |Fi,−〉). An equivalent

rotation can be defined for the H− chain by replacing
F ↔ D. After applying this transformation, the H+

diamond chain is mapped into a modified Su-Schrieffer-
Heeger (SSH) model [45] with an extra dangling state per
unit cell, as shown in Fig. 2(b), which is described by the

Hamiltonian

Ĥ+
SSH =

Nc∑
i=1

âi†+(Ω1ĝ
i
+ + Ω2ĝ

i+1
− + Ω3ĝ

i+1
+ ) + h.c., (3)

where Ω1 =
√

2
√
J2

2 + J2
3 and Ω3 =

√
2(J2

2−J
2
3 )√

J2
2+J2

3

are the

strong and weak horizontal couplings and Ω2 = 2
√

2J2J3√
J2
2+J2

3

is the coupling strength of the dangling state of each
unit cell i to the central state |Ai,+〉. From eq. (3), a
compact expression for the zero-energy flat band states
Ĥ+
SSH |0〉

+
i = 0 can be derived

|0〉+i =
1√
C

(
Ω3

Ω2
|Gi,−〉 − |Gi,+〉+

Ω1

Ω2
|Gi+1,−〉

)
.

(4)
In the original basis {|ji,±〉}, the most localized forms of
the zero-energy states (4) span the four sites surround-
ing the central site Ai, with no contribution from the
states at this site. Additionally, |G1,−〉 is a completely
decoupled zero-energy state localized at the left edge of
the chain, see Fig. 2 (b). In the J2 = J3 limit, we have
Ω3 = 0 and the bulk of the chain can be decomposed into
isolated trimers {|Gi,+〉 , |Ai,+〉 , |Gi+1,−〉} with equal
internal couplings Ω1 = Ω2 = 2J2. The eigenstates of
these trimers with a component of the state |Ai,+〉 are

the top and bottom flat-band states |E±〉+i

|E±〉+i =
1

2

(
|Gi,+〉 ±

√
2 |Ai,+〉+ |Gi+1,−〉

)
;

Ĥ+
SSH |Ω3=0 |E±〉+i = ±2

√
2J2 |E±〉+i . (5)

However, at the right edge of the chain there is a dimer
formed by the states |GNc ,+〉 and |ANc ,+〉, whose eigen-

states |Edge,±〉+ have the following expressions and en-
ergies

|Edge±〉+ =
1√
2

(|GNc
,+〉 ± |ANc

,+〉);

Ĥ+
SSH |Ω3=0 |Edge±〉+ = ±2J2 |Edge±〉+ . (6)

As shown in Fig. 1 (b), in-gap states appear also for
general values of the couplings J2 6= J3. In this scenario,
these states are strongly localized at the right edge of
the chain, exhibiting an exponentially decaying tail to the
bulk, which widens as one deviates from the J2 = J3 limit
[43]. In order to tell whether this robustness is due to
topological effects, one should compute the Zak’s phase
for each band, which are the relevant quantities to topo-
logically characterize one-dimensional models [8]. How-
ever, the computation of the Zak’s phases is not straight-
forward in our system. In the original OAM l = 1 model
(1) the degeneracy of the bands means that their Zak’s
phases are ill-defined. On the other hand, each of the de-
coupled chains of the two successive mappings given by
the Hamiltonians in (2) and (3), respectively, does not
have inversion symmetry, so that the Zak’s phase can
yield non-quantized values. In order to circumvent these
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limitations a third mapping can be introduced, through a
basis rotation of (3) (see [43] for details), wherein inver-
sion symmetry and, therefore, a quantized Zak’s phase
for each band is recovered. Under this third mapping
the system becomes a diamond chain with alternating
tunneling amplitudes, whose non-trivial topological na-
ture of the gaps where the edge states lie is explicitly
shown in [46], making use of the technique described in
[47] to circumvent the fact that the inversion axes do not
cross the center of any choice of the unit cell. As stated
above, a striking feature of the topology of this model,
directly carried over to the original OAM l = 1 model,
is that there is no topological transition across the gap
closing point, as can be seen by fixing either J2 or J3 and
varying the other across zero. We find that this model
constitutes a realization of a square-root topological in-
sulator using ultracold atoms [43] like the one recently
reported in a photonic system [37]. In this type of topo-
logical insulator, the usual expression of the Zak’s phase

γn = −i
∫ k+2π

k
dk 〈un(k)| ddk |un(k)〉 yields non-quantized

values, but by squaring the bulk Hamiltonian, centered
inversion axes within the unit cell and quantized Zak’s
phases are recovered.

IV. NUMERICAL RESULTS

To illustrate these results, in Fig. 3 we show the nu-
merical density plots of the different types of states that
can be found in a diamond chain of Nc = 10 unit cells
and a separation between nearest-neighbour sites d = 6σ,
corresponding to J3/J2 = 1.13. In (a), two degenerate
edge states are shown, evidencing their strong localiza-
tion at the right end of the chain. In (b), two examples of
zero-energy states, which have no population at the cen-
tral (A) sites of the chain, are displayed. These contain
components of many maximally localized states (4) and,
in the case of the state at the right panel, also of the zero-
energy decoupled mode localized at the left edge,|G1,−〉,
see Fig. 2 (b). Finally, (c) shows a the two degenerate
ground states of the system. In (a) and (c), the states
at the left and right panels have different orientations of
the nodal lines due to the fact that they belong to the
two different subchains H+ and H−.

Aharanov-Bohm caging

Finally, we show that in the J2 = J3 limit the sys-
tem can exhibit AB caging. In this limit, from the rela-
tions (5) and the equivalent ones for the H− chain, we
can express the states |Ai,±〉 in terms of flat-band states
that occupy solely the four sites surrounding Ai, i.e., Bi,
Bi+1, Ci and Ci+1. Therefore, an initial state prepared
in an arbitrary superposition of the |Ai,+〉 and |Ai,−〉
states will oscillate coherently to its four neighbouring
sites with a frequency ω = 2

√
2J2 (given by the absolute

value of the energies of the top/bottom flat-band states)

Figure 3. Density profiles of numerically obtained eigenstates
for a diamond chain of Nc = 10 units cells and inter-site
separation d = 6σ, corresponding to J3/J2 = 1.13. (a) Two
degenerate edge states. (b) Two states of the flat band. (c)
The two degenerate ground states.

Figure 4. AB caging in a diamond chain of Nc = 5 unit
cells. (a) Snapshots at different times of the density pro-
files corresponding to the time evolution of a wave packet
initially prepared in the state |A3,+〉 in the perfect caging
limit J2/J3 = 1. (b) Time evolution of the population of the
same initial state as in (a) (black solid lines) and the total
population of the cage (red dotted lines) for J3/J2 = 1 (left
panel) and 1.1 (right panel).

and, therefore, never leave the cage formed by the unit
cells i and i + 1. In Fig. 4 (a), we show some snapshots
of the time evolution of a wave packet prepared initially
in the state |A3,+〉 of a diamond chain with Nc = 5 unit
cells. In a real experiment, the condition J2 = J3 would
never be exactly fulfilled, but for sufficiently close values
the AB caging would persist for a significant amount of
time. In Fig. 4 (b), we plot, for the same initial state
as in (a), the time evolution of the population of the
state |A3,+〉 and the total sum of the states forming the
cage for J3/J2 = 1, 1.1 (left and right panels, respec-
tively). While perfect caging only occurs for J3/J2 = 1,
for J3/J2 = 1.1 we observe that approximately 40% of
the population remains on the cage after a time J2t = 10.
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V. EXPERIMENTAL IMPLEMENTATION

An optical diamond chain could be implemented by
using two pairs of counter-propagating lasers at ±45 de-
grees with respect to the x−axis in a quasi 1D-cigar shape
geometry [48]. To load atoms in the OAM l = 1 mani-
fold of local sites of the lattice, which are combinations
of the p−band orbitals of the form px ± ipy, three dif-
ferent approaches could be used: to adiabatically modify
the trapping potentials such that atoms are transferred
from the ground to the p−band of an adjacent well via
resonant tunnelling [53], to combine lattice shaking with
shortcuts to adiabaticity to promote the atoms to the
p−band [50], and, finally, to directly transfer OAM from
a light beam to the trapped atoms [52]. Once the atoms
are loaded into the p-band, loss of population can be in-
duced by collisions that transfer one atom to the lowest
band, and one to a higher band. This is strongly sup-
pressed for dilute samples and weak interactions, and in
deep lattices where bandwidths are small anharmonic-
ity ensures that the process is not resonant. To detect
the atomic distribution and thereby AB caging and edge
states with single-site resolution in the diamond chain,
the quantum gas microscope technique [54, 55] could be
used. This technique has recently been applied to observe
topological states of ultracold bosonic atoms in optical
lattices [56, 57]. On the other hand, edge states have
been observed with an atomic Bose gas in the quantum
Hall regime [58] making use of the synthetic dimensions
provided by the internal degrees of freedom.

VI. CONCLUSIONS

In summary, OAM provides phases in the tunneling
amplitudes, which can be tuned by modifying the ge-

ometry. For realistic experimental parameters, this can
be used to directly observe topological edge states and
AB caging in a diamond chain. This could form the ba-
sis for future studies of interacting particles, and also a
broad range of scenarios of out of equilibrium dynamics
in topological lattices.
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[53] G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys.
7, 147 (2011).

[54] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M.
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