Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Anomalous heat transport in binary hard-sphere gases

Moir, Craig and Lue, Leo and Gale, Julian D. and Raiteri, Paolo and Bannerman, Marcus N. (2019) Anomalous heat transport in binary hard-sphere gases. Physical Review E, 99 (3). ISSN 1539-3755

Text (Moir-etal-PRE-2019-Anomalous-heat-transport-in-binary-hard-sphere-gases)
Accepted Author Manuscript

Download (689kB)| Preview


    Equilibrium and non-equilibrium molecular dynamics (MD) are used to investigate the thermal conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid values. The MD simulations verify that revised Enskog theory can accurately predict non-equilibrium thermal conductivities at low densities and this theory is applied to explore the model parameter space. Only certain mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas mixtures and a review of the literature confirms the existance of mixture thermal conductivity below the series bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous thermal conductivities outside the series/parallel bounds as this work demonstrates they are a fundamental feature of even simple fluids.