Product and process fingerprint for nanosecond pulsed laser ablated superhydrophobic surface

Cai, Yukui and Luo, Xichun and Liu, Zhanqiang and Qin, Yi and Chang, Wenlong and Sun, Yanzhou (2019) Product and process fingerprint for nanosecond pulsed laser ablated superhydrophobic surface. Micromachines. ISSN 2072-666X (In Press)

[thumbnail of Cai-etal-Micromachines-2019-Product-and-process-fingerprint-for-nanosecond-pulsed-laser]
Text (Cai-etal-Micromachines-2019-Product-and-process-fingerprint-for-nanosecond-pulsed-laser)
Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview


    Superhydrophobic surfaces have attracted extensive attention over the last few decades. It is mainly due to their capabilities of providing several interesting functions such as self-cleaning, corrosion resistance, anti-icing and drag reduction. Nanosecond pulsed laser ablation is considered as a promising technique to fabricate superhydrophobic structures. Many research proved that machined surface morphology has a significant effect on the hydrophobicity of specimen. However, few quantitative investigations were conducted to identify effective process parameters and surface characterization parameters for laser-ablated microstructures which are sensitive to the hydrophobicity of microstructured surface. This paper proposed and reveals for the first time, the concepts of process and product fingerprints for laser ablated superhydrophobic surface through experimental investigation and statistical analysis. The results of correlation analysis showed that a newly proposed dimensionless functional parameter in this paper, Rhy i.e. the average ratio of Rz to Rsm is the most sensitive surface characterization parameter to the water contact angle of specimen, which can be regarded as the product fingerprint. It also proposes another new process parameter, average laser pulse energy per unit area of specimen (Is), as the best process fingerprint which can be used to control the product fingerprint Rhy. The threshold value of Rhy and Is are 0.41 and 536 J/mm2 respectively, which help to ensure the superhydrophobicity (contact angle larger than 150°) of specimen in laser ablation process. Therefore, the process and product fingerprints overcome the research challenge of the so-called inverse problem in manufacturing as they can be used to determine the required process parameters and surface topography according to the specification of superhydrophobicity.

    ORCID iDs

    Cai, Yukui, Luo, Xichun ORCID logoORCID:, Liu, Zhanqiang, Qin, Yi ORCID logoORCID:, Chang, Wenlong ORCID logoORCID: and Sun, Yanzhou;