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Abstract  44 

 45 

Background 46 

Impairments in activities of daily living (ADL) are a criterion for Alzheimer’s disease (AD) 47 

dementia. However, ADL gradually decline in AD, impacting on advanced (a-ADL, 48 

complex interpersonal or social functioning), instrumental (IADL, maintaining life in 49 

community), and finally basic functions (BADL, activities related to physiological and self-50 

maintenance needs). Information and communication technologies (ICT) have become an 51 

increasingly important aspect of daily functioning. Yet, the links of ADL, ICT, and 52 

neuropathology of AD dementia are poorly understood. Such knowledge is critical as it can 53 

provide biomarker evidence of functional decline in AD.  54 

Methods 55 

ADL were evaluated with the Technology–Activities of Daily Living Questionnaire (T-56 

ADLQ) in 33 patients with AD and 30 controls. ADL were divided in BADL, IADL, and a-57 

ADL. The three domain subscores were covaried against gray matter atrophy via Voxel-58 

Based Morphometry.  59 

Results 60 

Our results showed that three domain subscores of ADL correlate with several brain 61 

structures, with a varying degree of overlap between them. BADL score correlated mostly 62 

with frontal atrophy, IADL with more widespread frontal, temporal and occipital atrophy 63 

and a-ADL with occipital and temporal atrophy. Finally, ICT subscale was associated with 64 
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atrophy in the precuneus. 65 

Conclusions 66 

The association between ADL domains and neurodegeneration in AD follows a traceable 67 

neuropathological pathway which involves different neural networks. This the first 68 

evidence of ADL phenotypes in AD characterised by specific patterns of functional decline 69 

and well-defined neuropathological changes. The identification of such phenotypes can 70 

yield functional biomarkers for dementias such as AD.  71 

 72 

Keywords: Alzheimer's disease; Functional impairment; Activities of Daily Living; 73 

Technology–Activities of Daily Living Questionnaire. 74 

1. Background 75 

Alzheimer’s disease (AD) is one of the most common form of age-related dementia, 76 

affecting more than 25 million people worldwide, with the number of new cases raising 77 

continuously, both in developed and developing countries [1, 2]. The diagnosis of 78 

dementia due to AD is based on the presence of a gradual onset of cognitive 79 

impairment, mainly an episodic memory impairment with evidence of cognitive 80 

dysfunction in at least one other cognitive domain, whose severity has led to a 81 

significant functional decline in Activities of Daily Living (AD), interfere with the 82 

ability to function at work or at usual activities [3]. 83 

The confirmation of the presence and severity of impairment in ADL is critical for the 84 

diagnosis of dementia[3] . Commonly, ADL have been divided in Basic ADL (BADL) and 85 

Instrumental ADL (IADL). BADL are defined as activities related to basic physiological 86 

and self-maintenance needs, including tasks such as eating, toileting or getting dressed.  87 

IADL include activities, essential to maintain independent living and maintaining 88 

life in community, such as managing finances, shopping, handle medications or using the 89 

public transport [4, 5]. Recently, Advanced ADL (a-ADL) has emerged as an additional 90 

important category in ADL[5, 6]. A-ADL are defined as more complex activities, not being 91 

essential to maintain an independent live, are considered voluntary [7] and include 92 

activities necessary for complex interpersonal or social functioning such as using household 93 

technology, going on holidays, practice hobbies, etc.[4, 6, 8]. A-ADL require higher levels 94 

of cognitive, physical, and social functions, are very sensitive to subtle cognitive 95 
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impairment and could contribute to early diagnosis of dementia[4]. Nonetheless, the 96 

definition of a-ADL and its division from IADL is complex and need to consider cultural 97 

variability, since ADL performance is influenced by cultural events [9-12]. Moreover, as 98 

culture evolves, any scale that is sensitive to early ADL deficits must also evolve to 99 

measure newly relevant activities. 100 

In the last decades, information and communication technologies (ICT) have 101 

become an increasingly important aspect of daily functioning and the use of electronic 102 

devices are essential in different everyday life tasks, such as communication, work or 103 

recreational activities. The use of everyday technology may be of particular concern in 104 

people with dementia because most patients typically continue to live at home, in the same 105 

social context as before the disability and, as a result, they are expected to manage the 106 

everyday technology that is common in that context [13]. ICT could include either IADL 107 

and a-ADL depending on the complexity of the technology and sociocultural factors 108 

shaping technology use [6, 14]. 109 

Despite recent advances in the development of ADL scales, the relationship 110 

between those outcomes and structural brain changes in AD is poorly understood, 111 

especially considering the neural correlates of IADL or BADL. BADL dysfunction in AD 112 

was associated with atrophy in the temporal, cingulate, hippocampus, caudate, frontal, and 113 

parietal regions whereas IADL dysfunction was linked to atrophy in the frontal, temporal, 114 

parietal, insula, and caudate regions[15]. Hippocampal and cortical gray matter volume loss 115 

was associated with rapid IADL decline in AD [16]. Parietal and temporal lobe atrophy at 116 

baseline predict further IADL impairment over time [17].  Finally, PET studies have 117 

reported an association between greater rate of IADL impairment over time and middle 118 

frontal, orbitofrontal and posterior cingulate hypometabolism in AD [18].  119 

However, to our knowledge, there is no study investigating the neural correlates of 120 

a-ADL. Nor is their evidence that such correlates differ from those reported for BADL and 121 

IADL. Moreover, no study has incorporated ICT as an important aspect of functional 122 

assessment. The aim of this study was to investigate the neural correlates of the global 123 

score and subscores of the T-ADQL in patients with AD in comparison to healthy controls 124 

(HC). Specifically, we examined which brain areas were associated with a-ADL 125 

impairment in AD in comparison with BADL and IADL scores. In a first step, total T-126 

ADLQ scores; BADL, IADL and a-ADL subscores were regressed against gray matter 127 
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atrophy via voxel-based morphometry (VBM). In a second step, we performed an inclusive 128 

masking analysis to verify which areas of brain atrophy would overlap between BADL and 129 

a-ADL, and between IADL and a-ADL. Finally, we performed an exclusive masking 130 

analysis to verify areas of brain atrophy displaying no overlap between BADL, a-ADL, and 131 

IADL. We hypothesized that these three ADL domains would exhibit shared and 132 

segregated neuroanatomical substrates and that a-ADL would be associated to regions 133 

involved in more complex cognitive tasks. 134 

2. Methods 135 

2.1 Participants 136 

A cohort comprising 63 participants was recruited for the study. This cohort was 137 

divided into two groups matched according to sex, age, and years of education: 33 subjects 138 

with a clinical diagnosis of AD and 30 healthy controls (HC). Patients were recruited from 139 

the Memory and the Neuropsychiatric Clinic at Hospital del Salvador, and the Neurology 140 

and Neurosurgery Department at Hospital Clínico Universidad de Chile (HCUCH), both 141 

located in Santiago, Chile. HC were recruited from a variety of sources, including spouses 142 

or relatives of patients with dementia. The inclusion criteria considered Spanish-speaking 143 

participants older than 60 years of age. All participants required a reliable proxy who had 144 

known them for at least 5 years. Specifically, a proxy was someone who was able to 145 

provide information about ADL performance, behavioral changes, as well as patients’ 146 

general medical history. The exclusion criteria included illiteracy, underlying neurological 147 

or psychiatric illness that could affect cognition (except AD), physical disability, and 148 

sensory disturbance that could interfere with the neuropsychological assessment. All AD 149 

patients met the NINCDS-ADRDA criteria for probable AD [3]. Diagnosis was made by 150 

consensus between senior neurologists (AS and CD) based on extensive clinical protocol, 151 

interviews with a reliable proxy, laboratory tests and global cognitive functioning. Briefly, 152 

AD patients displayed a history of significant episodic memory loss, within the context of 153 

preserved behavioral and personality, score above 0.5 on the Clinical Dementia Rating 154 

scale (CDR) [3]. HC did not report memory complaints, had a score of 0 on the CDR[3] , 155 

and their cognitive performance was considered normal according to local normative data 156 

for the Addenbrooke’s Cognitive Examination – Revised Chilean Version (ACE-R-Ch)  157 

(>76) [19]. Scores of the T-ADQL were not considered to establish the diagnosis. Ethical 158 
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approval for this study was obtained from the Ethical and Scientific Committee of the East 159 

Metropolitan Health Service and the HCUCH. All the participants, and their caregivers, 160 

provided informed consent in accordance with the Declaration of Helsinki. 161 

2.2 Clinical and Neuropsychological examination  162 

All proxies and participants were interviewed separately in order to obtain the CDR scores. 163 

The T-ADLQ was completed by proxies as we have previously described [20]. Experienced 164 

clinical psychologists trained in the administration of our neuropsychological protocol and 165 

blinded to the diagnosis of each subject carried out the neuropsychological assessment. In 166 

addition to the MMSE [21], and the ACE-R-Ch [19] to assess global cognitive functioning, 167 

the neuropsychological protocol included The Boston Naming Test as an index of naming 168 

abilities. The Rey-Osterrieth Complex Figure Test was used to measured visuospatial 169 

constructional abilities [22]. Forward and backward digit-span tasks provided an index of 170 

working memory while the Word free and cued selective reminding test (FCSRT) was used 171 

to assess episodic memory. The Frontal Assessment Battery (FAB), is a screening test for 172 

executive dysfunction that assesses conceptualization, mental flexibility, motor 173 

programming, resistance to interference, inhibitory control and environmental autonomy, 174 

was also applied[23]. Other tests of executive functions (EF) included the Modified 175 

Version of the Wisconsin Card Sorting Test (MCST) [24] which informs on cognitive 176 

flexibility. Verbal fluency tests including both Phonemic Verbal Fluency test (i.e., words 177 

beginning with letters F, A, and S in one minutes) and Semantic Fluency test (i.e., animals 178 

in 1 minute) as well as the Trail Making Test A and B [25, 26]. 179 

2.3 T-ADLQ 180 

The T-ADLQ [20] consists of 7 subscales: Self-Care, Household Care, Employment 181 

and Recreation, Shopping and Money, Travel and ICT . Each item is rated on a 4-point 182 

scale. For each activities, a rating is provided for instances in which the patient may have 183 

never performed that activity in the past, stopped the activity prior to the onset of dementia, 184 

or for which the proxy did not have information [27].The overall functional impairment 185 

(FI) was calculated for each domain as well as for the global questionnaire as follows: (sum 186 

of all ratings not rated ND/DK)/ (3 x total number of items not rated ND/DK).  The 187 

denominator represents the score that would have been obtained if the most severe level of 188 

impairment had been indicated for all items rated not ND/DK [27]. This equation ensures 189 

that the functional impairment score was based on the actual functioning of the patients 190 
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relative to their own premorbid functioning. Higher percentage scores indicate greater 191 

deterioration. 192 

An expert panel (2 neurologists, 3 psychologists, 1 occupational therapist) gathered 193 

the activities of the T-ADLQ in three domains (BADL –IADL – a-ADL).  To ensure 194 

consistency of the division, each expert classified each activity independently and then a 195 

consensus was reached to harmonize the different classifications. The outcomes from the 196 

consensus classification are presented in Table 1. 197 

----- INSERT TABLE 1 BY HERE--------- 198 

2.4 Statistical analyses for demographic and neuropsychological data 199 

The Statistical Package for the Social Sciences (SPSS) version 20 for Windows 200 

(IBM Corp., Armonk, NY, USA) was used to analyze the demographic and 201 

neuropsychological data. We obtained descriptive statistics for such data, used chi-squared 202 

for the categorical variables, and perform two-tailed independent-sample t-tests for the 203 

comparisons between AD and HC. Differences with a p< .05 were considered significant. 204 

Additionally, the effect sizes (Cohen’s-d statistic) were calculated to determine the 205 

magnitude of the group differences. According to Cohen, effect sizes between 0.2 and 0.49 206 

are considered small; those between 0.5 and 0.79, moderate; and those 0.8, large [28]. 207 

2.5 MRI acquisition 208 

MRI acquisition was performed in two 1.5 Tesla MRI scanners, a Philips Intera 209 

Nova Dual gradient system (45mT/m), and a Siemens Symphony Maestro Class (Erlangen, 210 

Germany) with 20 mT/m gradient system. High resolution anatomical scans were obtained 211 

using a T1-weighted three dimensional gradient recalled echo acquisition: 3D T1 fast field 212 

echo sequence on Philips scanner, and 3D T1 fast low angle shot on Siemens scanner, both 213 

with the same acquisition parameters (TE=4.6ms, TR=25ms; flip angle=30º, field of view 214 

on frequency=250 mm, 256x256 matrix, isotropic voxel size 1x1x1 mm). 215 

2.6 VBM analysis 216 

MRI data were analyzed with FSL-VBM, a (Voxel-based Morphometry) VBM 217 

analysis [29, 30] that is part of the FSL software package 218 

(http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html) [31]. First, tissue segmentation was 219 
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carried out using FMRIB’s Automatic Segmentation Tool (FAST) from brain-extracted 220 

images [32]. The resulting grey matter partial volume maps were then aligned to the 221 

Montreal Neurological Institute standard space (MNI152) using the nonlinear registration 222 

approach using FNIRT [33] which uses a b-spline representation of the registration warp 223 

field [34]. A study-specific template was created, combining AD and Control images, to 224 

which the native gray matter images were re-registered nonlinearly. The registered partial 225 

volume maps were then modulated (to correct for local expansion or contraction), by 226 

dividing them by the Jacobian of the warp field. The modulated images were then 227 

smoothed with an isotropic Gaussian kernel with a sigma of 3mm (FWHM: 8 mm).  228 

The statistical analysis was performed via a voxel wise general linear model (GLM) 229 

to investigate gray matter intensity differences. Permutation-based nonparametric testing 230 

(with 5000 permutations per contrast) [35] was used to form clusters with the threshold-free 231 

cluster enhancement (TFCE) method [31]. The significance threshold was p < 0.05 and 232 

tests were corrected for multiple comparisons via Family-wise Error (FWE) correction 233 

across space, unless otherwise stated. For uncorrected results, a threshold of 100 contiguous 234 

voxels was used, at p < 0.001 to reduce the likelihood of significant clusters. Regions of 235 

significant atrophy were superimposed on the MNI standard brain, with maximum 236 

coordinates provided in MNI space. Areas of significant gray matter loss were localized 237 

with reference to the Harvard-Oxford probabilistic cortical and subcortical atlas. 238 

In a first step, differences in gray matter intensities between AD patients and HC 239 

were assessed. To control for a possible scanner site effect, we introduced scanner site as a 240 

nuisance covariate for the group contrasts. Next, correlations between gray matter atrophy 241 

and T-ADLQ total score and the scores of the three domains of the T-ADLQ, i.e. BADL, 242 

IADL and a-ADL subscores, were entered as covariates in the design matrix of the VBM 243 

analysis for AD patients combined with HC. This procedure improves the statistical power 244 

to detect brain-behavior relationships[36]. In a third step, we study overlap of brain atrophy 245 

between the BADL, IADL and a-ADL subscores performing an inclusive masking analysis. 246 

For statistical power, a covariate-only statistical model with a t-contrast was used, 247 

providing an index of association between brain atrophy and scores on the functional 248 

scales. The statistical maps generated from the contrast using BADL, IADL and a-ADL 249 

subscores as covariate, were scaled using a threshold of p < 0.001, following which, the 250 

scaled contrasts were multiplied to create an inclusive, or overlap, mask across groups. In a 251 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

fourth step, we performed a contrast analysis between the three subscores BADL, IADL 252 

and a-ADL subscores of the T-ADLQ to study the existence of significant anatomical 253 

differences between the different domains. For the exclusive masks, the same procedure 254 

described above was adopted. However, the scaled images were subsequently subtracted 255 

from each other, to create an exclusive mask for each condition. 256 

3. Result 257 

3.1. Demographic and neuropsychological data 258 

Demographic and neuropsychological scores are shown in Table 2. AD and HC 259 

groups did not differ in terms of sex, age, or education (all p> 0.05). In brief, AD patients 260 

exhibited scores significantly higher on assessments of severity of the disease (CDR) and 261 

lower on measures of global cognitive efficiency (ACE-R-Ch and MMSE) and episodic 262 

memory (FCSRT) relative to HC. Compared to the HC group, the AD group was impaired 263 

on the global scores of T-ADLQ (F(1,67) = 70.981, p< 0.001); the three ADL domains  and 264 

the ICT subscores  (see Table 2) The details of the neuropsychological battery in HC and 265 

AD subjects are shown in Supplementary Table 1. 266 

----- INSERT TABLE 2 BY HERE-------- 267 

3.2. VBM: Groups comparison analysis 268 

Results are shown in Table 3 and Figure 1. The AD group was contrasted with HC 269 

group to reveal patterns of brain atrophy. The AD group showed significant grey matter 270 

atrophy in bilateral hippocampal brain regions, bilateral precentral gyrus, and a right 271 

lateralized atrophy in the precuneus cortex, inferior frontal gyrus (par opercularis), inferior 272 

temporal gyrus and temporal fusiform cortex (posterior division) (Pfwecorr<0.05). Similar 273 

results were obtained in the analysis covarying for scanner site (see Supplementary Table 2 274 

and Supplementary Figure 1). 275 

------- INSERT TABLE 3 BY THERE ----- 276 

------- INSERT FIGURE 1 BY THERE ----- 277 

3.3 Correlations with T-ADLQ subscores 278 

VBM correlations with T-ADLQ total score are presented in supplementary files 279 

(see Supplementary Table 3 and Supplementary Figure 2). In brief, T-ADLQ total score 280 
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covaried with bilateral atrophy in the parahippocampal gyrus (anterior division) and the 281 

inferior temporal gyrus (posterior division and temporo-occipital region), and a right 282 

lateralized atrophy in the lateral occipital cortex (inferior and superior division) (punorr< 283 

0.001).  284 

BADL, IADL and a-ADL subscores of the T-ADLQ were entered as covariate in 285 

the design matrix of the VBM analysis. Results are shown in Table 4 and Figure 2.  For the 286 

AD group, the score on the BADL domain covaried with atrophy in the left supplementary 287 

motor cortex and right frontal regions (orbital cortex and superior/middle frontal gyrus) 288 

(punorr< 0.001). The IADL subscore covaried with atrophy in several areas widely 289 

distributed, highlighting the left paracingulate gyrus, bilateral temporal fusiform cortex, left 290 

parahippocampal gyrus (anterior division), and right intracalcarine cortex (punorr< 0.001). 291 

Finally, the a-ADL score covaried mainly with atrophy in the left lingual gyrus, 292 

intracalcarine cortex, and bilateral parahippocampal gyrus (anterior division) (punorr<0.001).   293 

We present the VBM results showing regions of significant gray matter intensity decrease 294 

that covary with the ICT subscale in supplementary material (see Supplementary Table 4 295 

and Supplementary Figure3). 296 

------- INSERT TABLE 4 BY THERE ----- 297 

------- INSERT FIGURE 2 BY THERE ----- 298 

3.4 Overlap analysis 299 

We performed an inclusive masking analysis to verify which areas of brain atrophy 300 

overlap when accounting for functional impairment in AD as measured by IADL domain 301 

vs. a-ADL domain and BADL domain and a-ADL domain. Results show that the BADL 302 

domain overlap with neither the IADL nor the a-ADL domain subscores of the T-ADLQ.  303 

We found an overlap between the IADL and a-ADL domain subscores of the T-ADLQ (see 304 

Table 5 and Figure 3). 305 

------- INSERT TABLE 5 BY THERE ----- 306 

------- INSERT FIGURE 3 BY THERE ---- 307 

3.5 Contrast Analysis 308 

In a final step, we performed a contrast analysis between the BADL, IADL and a-309 
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ADL domain subscores of the T-ADLQ to study the existence of significant anatomical 310 

differences between the different domains. Results shows that a-ADL were exclusively 311 

associated with one cluster in the left lingual gyrus and the anterior division of the 312 

parahippocampal gyrus. The score of the IADL covariated exclusively with atrophy in 313 

several areas, mainly the left paracingulate and cingulate gyrus (anterior division), the right 314 

and left temporal fusiform cortex (anterior division) and the right middle frontal gyrus 315 

(puncorr< 0.001) (see Table 6 and Figure 3). 316 

------- INSERT TABLE 6 BY THERE ----- 317 

4. Discussion 318 

To the best of our knowledge, this is the first study assessing the neural correlates of 319 

a-ADL and ICT in AD. Our results showed that T-ADLQ subscores correlate with several 320 

brain structures, with a varying degree of overlap when the three domains of activities of 321 

the questionnaire were considered. The BADL score correlated mostly with frontal atrophy, 322 

IADL with more widespread frontal, temporal and occipital atrophy and a-ADL with 323 

occipital and temporal atrophy. The inclusive masking analysis did not show areas that 324 

overlap between BADL, IADL and a-ADL. However, the bilateral parahippocampal region 325 

(PHR) and the precuneus cortex are implicated in both, the IADL and a-ADL. In the 326 

exclusive masking analysis, we found an association between IADL and the paracingulate 327 

gyrus and the temporal fusiform cortex, while a-ADL correlated more with lingual gyrus 328 

atrophy.  329 

T-ADQL total score correlated with a large cluster centered in the temporal 330 

fusiform cortex (anterior division) and parahippocampal gyrus (anterior division). 331 

Concerning the association with the temporal cortex, our results are in line with studies in 332 

both AD and other neurological disorders. Medial temporal lobe atrophy has been 333 

associated with functional impairment in both, subjects with stroke [37] and mild cognitive 334 

impairment (MCI) [38]. The association with the PHR is not surprising due to the 335 

involvement of the PHR in multiple cognitive process relevant to everyday functioning as 336 

visuospatial processing, episodic memory, and contextual associative processing [39]. 337 

Moreover, PHR atrophy has been reported as an early biomarker of AD [40], and 338 

hypometabolism in this region has been associated with greater decline in IADL 339 

performance [18]. Concerning BADL, AD patients assessed in our study were in mild to 340 

moderate stages of the disease and presented mild impairment in some BADL activities 341 
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(average of 5% of impairment). BADL correlated with two small clusters in left 342 

supplementary motor cortex and right frontal regions (orbital cortex and superior/middle 343 

frontal gyrus). Although we acknowledge that these results should be interpreted with 344 

caution due to the characteristics of our samples, they are in agreement with several studies 345 

which have reported that motor abilities are crucial for BADL[41] [42, 43]and tend to 346 

decline as the disease progresses[44].  347 

IADL correlated with the left paracingulate gyrus, bilateral temporal fusiform 348 

cortex, left parahippocampal gyrus (anterior division), and right intracalcarine cortex, 349 

among others. Our results are in agreement with previous studies on the neural correlates of 350 

IADL [15]. IADL impairment has been associated with inferior temporal and lateral 351 

parietal (supramarginal) atrophy [17], decreased gray matter volume in the medial frontal 352 

and temporo-parietal cortices in early stages of AD [45], and white matter lesion [46]. The 353 

multiple brain areas related with IADL have been attributed to the complex nature of these 354 

activities and their increased demand [15]. 355 

a-ADL correlated with the left lingual gyrus, intracalcarine cortex, and bilateral 356 

parahippocampal gyrus (anterior division), areas that has been associated with higher order 357 

cognitive functions [39], such as explicit memory [47]. As Braak and Braak described, the 358 

brain atrophy of AD patients progresses following a hierarchical model, with early atrophy 359 

in the hippocampus and parahippocampus gyrus [48], linked to memory and visuospatial 360 

impairments in the early stages of the disease, progressing to a generalized pattern of brain 361 

atrophy linked to a wide deterioration of cognitive domains [49]. 362 

In the overlap analysis, we found that the bilateral atrophy of the parahippocampal 363 

gyrus, the paracingulate gyrus, and the intracalcarine cortex are associated to both IADL 364 

and a-ADL impairments. Atrophy of these areas has been associated with impairment in 365 

episodic memory, language, praxis and visual perception. These symptoms appear in the 366 

early stages of AD [47, 50], corresponding to the typical progression of the disease, starting 367 

with impairment in complex cognitive domains, including IADL, to difficulties in BADL in 368 

the most advanced stages [51]. 369 

In the exclusive analysis, we found that left parahippocampal gyrus correlated 370 

exclusively with a-ADL. This area has been extensively associated with topographical 371 

learning and spatial navigation [52-54], and is crucial for normal adaptive behaviors in 372 

work, travelling, or during other activities that comprise a-ADL. 373 
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Finally, we found that the ICT subscale is associated with atrophy in the precuneus, area 374 

that has been related with visuospatial functioning, attentional shift, and processing speed 375 

[55, 56] It has also been considered a higher-order area that is generally involved in 376 

controlling spatial aspects of motor behavior, and episodic memory retrieval[57]. Evidence 377 

shows that attentional and visuospatial abilities are necessary for internet searching [58]. 378 

Attentional engagement had also been described in motor-cognitive skills when working 379 

with touch-screen terminal [59]. Recent evidence suggests that hypometabolism in the 380 

precuneus may be a biomarker of potential progression to AD [60]. From this perspective, 381 

functional changes associated to this region may reflect the earliest manifestations of the 382 

impact of AD on ADL, suggesting that these novel functional assessment tools could be 383 

considered sensitivity tools to aid in the early diagnosis of AD.  Longitudinal studies in AD 384 

and other dementias are mandatory to support this hypothesis. 385 

Our division of the T-ADLQ items in BADL, IADL and a-ADL should be 386 

interpreted with caution as it was performed based on an expert panel in clinical diagnosis 387 

of dementia and research in functional assessment.  Although experts hold experience in 388 

cognitive neurology (AS and CD), neuropsychology (CMN, FH and GF) and occupational 389 

therapy (EM), some of such decisions can be influenced by sociocultural factors. For 390 

example, classification of computer use as an a-ADL and use of mobile phones as an IADL 391 

may not be representative of every socio-cultural or generational context.  The study here 392 

presented was carried out in 2015 when only 10% of the targeted elderly population 393 

reported use of internet, 80% of them had access to the internet via landline connectivity 394 

and only 20% via mobile phones [61, 62].  Moreover, elderly people in Chile, as in other 395 

countries such as Portugal, report that they mainly use mobile phones for basic functions 396 

such as answering and calling[63].  Also,  in a recent paper by our group [64], we provide 397 

additional evidence on the validity of our proposed division of the T-ADLQ in the BADL/ 398 

IADL and a-ADL categories. Nevertheless, further studies need to address the subdomains 399 

characterization of evolving T-ADLQ; and these would need to be updated considering 400 

intra-country specificity and socio-cultural factors [5, 65]. 401 

Some methodological issues warrant consideration. First, our neuroimaging results 402 

regarding the correlation between VBM and subscore domain did not survive conservative 403 

corrections for multiple comparisons and were therefore reported uncorrected at p< 0.001. 404 

However, we reduced the likelihood of false positive results, by applying cluster extent 405 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 

 

thresholds of 100 contiguous voxels in the analysis. Importantly, Monte Carlo simulations 406 

and experimental data demonstrate that cluster thresholding is an effective tool to reduce 407 

the probability of false positive findings without compromising the statistical power of the 408 

study [66]. Given our sample size, the application of stringent cluster extended thresholds, 409 

and our a priori assumptions, we are confident that our results do not represent false 410 

positive findings. However, it will be important to replicate these findings in larger patient 411 

cohorts using corrected neuroimaging approaches. Second, the diagnosis of AD was 412 

established on clinical grounds without any neuropathological confirmation for the 413 

diagnoses. Nevertheless, AD patients presented bilateral atrophy in the hippocampal region, 414 

a structural biomarkers of AD. Moreover, clinical pathological studies suggested that 415 

NINCDS-ADRDA criteria are reliable for the diagnosis of AD. Finally, patients included in 416 

the study fulfilled criteria for Alzheimer’s Clinical Syndrome according to the latest NIA-417 

AA Research Framework [67]. 418 

In conclusion, our study suggests that combining a domain specific approach to 419 

ADL with neuropathological data drawn from MRI, specific functional phenotypes can be 420 

identified. We have demonstrated that in the sample of AD investigated here such a 421 

phenotype is characterized by widespread atrophy of the prefrontal, temporal and occipital 422 

brain regions significantly associated with functional impairments that follow a gradient of 423 

deterioration in the diseases continuum. Such functional phenotypes seemingly inform 424 

about such a continuum. Our data also suggest that ADL assessment via such an approach 425 

can be very sensitive to neurodegenerative processes, and that the association of types of 426 

functional decline and AD progression does follow a traceable neuropathological pathway 427 

that involves different neural network. Our results are consistent with the existence of a 428 

specific pattern of functional loss in the activities of daily living, namely functional 429 

phenotypes, beginning with impairment in the a-ADL, followed by losses in IADL and 430 

finally progressing to BADL[4] .  431 

Further studies need to address the contribution of white matter lesion to functional 432 

impairment[68]. Finally, generalization of our results to other neurodegenerative diseases 433 

should be made with cautious. Nevertheless, futures studies are needed to investigate if 434 

other neurodegenerative disease leads to functional phenotypes different to those seen in 435 

AD. Indeed, ADL dysfunction in FTD is associated with atrophy in network different to 436 

that reported in AD and the left superior frontal gyrus is the only region implicated in IADL 437 
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dysfunction in both FTD and AD [15]. 438 
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Figure 1: VBM showing significant gray matter intensity decrease in AD in contrast HC 

uncorrected by scanner. 

 
VBM analysis showing brain areas of decreased gray matter intensity in AD patients in 

comparison with Controls (MNI coordinates X = -38; Y = -36; Z = -8). Colored voxel show 

regions that were significant in the analysis with P < 0.05 corrected for multiple 

comparisons (family-wise error), with a cluster threshold of 100 contiguous voxels. 

Clusters are overlaid on the MNI standard brain. 



Figure 2.  

VBM correlation with T-ADLQ subscores in AD in comparison with HC uncorrected by 

scanner. 

 
VBM analysis showing brain areas in which gray matter intensity correlates significantly 

with T-ADLQ subscores (A) BADL (MNI coordinates X = 32; Y = 6; Z = 44), (B) IADL 

(MNI coordinates X = -4; Y = -70; Z = -16) and (C) a-ADL subscores (MNI coordinates X 

= 30; Y = -62; Z = 46) in AD in comparison with Controls. Colored voxel show regions 

that were significant in the analysis with P < 0.001 uncorrected. For all analysis, a cluster 

threshold of 100 contiguous voxels was used. Clusters are overlaid on the MNI standard 

brain. 

 



Figure 3.  

VBM overlap and exclusive mask analysis for IADL and a-ADL in AD compared with HC.  

 
VBM analysis showing overlap brain regions between T-ADLQ IADL and a-ADL domain 

sub-scores (green), and regions that correlate exclusively with IADL (red) and a-ADL 

(blue) in AD in comparison with Controls (MNI coordinates X = 30; Y = -62; Z = 40). 

Colored voxel show regions that were significant in the analysis with P < 0.001 

uncorrected. For all analysis, a cluster threshold of 100 contiguous voxels was used. 

Clusters are overlaid on the MNI standard brain. 

 



Table 1  

Division of the three domains of the Technology – Activities of daily living questionnaire 

*. 

Basic ADL Instrumental ADL Advanced ADL 

Eating Taking pills or medicine Employment 

Dressing Handling cash Recreation 

Bathing Managing finances Organization 

Elimination Public transportation Travel 

Interest in personal 

appearance 

Driving Internet access 

 Mobility around the neighborhood Email Access 

 Traveling outside familiar environment Computer use 

 Preparing meals, cooking  

 Setting the table  

 Housekeeping  

 Home maintenance  

 Home repair   

 Laundry  

 Food shopping  

 Using the telephone  

 Talking  

 Understanding  

 Reading  



 Writing  

 Cell phone use  

 ATM use  

* The T-ADLQ scale is presented in supplementary files 

 



Table 2  

Demographic, global cognitive, and functional characteristics of AD and HC.  

 AD Control t-test/χ2 Effect Size1 

(d) 

95% CI 

     Lower Upper 

N 33 29     

Sex (m:f) 13:20 9:20 0.492    

Age (years) 73.09 ± 

6.96 

72.03 ± 

5.99 

0.636 0.163 -2.265 4.378 

Education 

(years) 

12.21 ± 

4.45 

12.59 ± 

3.73 

-0.356 -0.092 -2.476 1.728 

MMSE 20.79 ± 

4.88 (30) 

28.07 ± 

1.67 (30) 

-7.648** -1.996 -9.185 -5.377 

ACE-R 62.24 ± 

15.64 (100) 

92.55 ± 

5.60 (100) 

-9.887** -2.580 -36.441 -24.177 

CDR 1.66 ± 0.65 

(3) 

0 ± 00  

(3) 

13.648** 3.611 1.413 1.899 

CDR-SB 5.84 ± 2.82 

(18) 

0 ± 00  

(18) 

11.157** 2.928 4.796 6.892 

CDR-AlG 1.13 ± 0.83 

(3) 

0 ± 00 

(3) 

7.269** 1.925 0.815 1.435 

T-ADLQ (%) 

Total  

38.00 ± 

16.96 (100) 

8.41 ± 8.90 

(100) 

8.425** 2.184 22.562 36.611 



BADLi 

domain 

subscore  of 

the  T-ADLQ 

(%) 

5.70 ± 

11.56 (100) 

 

 

0.93 ± 2.94 

(100) 

 

2.158* 

 

 

0.565 

 

 

0.347 

 

 

9.184 

 

 

IADL domain 

subscore of 

the  T-ADLQ 

(%) 

43.73 ± 

19.39 (100) 

 

7.79 ± 

10.23 (100) 

 

 

8.939** 

 

 

 

2.318 

 

 

 

27.893 

 

 

 

43.975 

 

 

 

a-ADL 

domain  of the 

T-ADLQ (%) 

52.33 ± 

22.00 (100) 

19.76 ± 

19.85 (100)  

6.087** 1.554 21.869 43.280 

Abbreviations: AD: Alzheimer’s diseases; CDR: Clinical Dementia Rating. CDR-SB: 

Clinical Dementia Rating – Sum of Box. CDR-AlG: Clinical Dementia Rating – Algorithm; 

MMSE: Mini-Mental State Examination; ACE-R: Addenbrooke’s Cognitive Examination 

Revised; MoCA: Montreal Cognitive Assessment; T-ADLQ: Technology of Daily Living 

Questionnaire. i. BADL: Basic Activities of daily life. ii. IADL: Instrumental ADL. iv a-

ADL Advanced Activities of daily life. 

Data are presented in mean ± standard deviation (Total score).  

*p<0.05, **p<0.001. 

 



Table 3. 

VBM showing significant gray matter intensity decrease in AD in contrast HC uncorrected 

by scanner.  

  MNI coordinates  

Regions 

Hemisphere x y z 

Number of 

voxel 

      

Hippocampus Left -24 -34 -10 1513 

Hippocampus Right 24 -36 -8 1155 

Precentralgyrus Left -38 0 28 122 

Precuneous cortex Right 16 -64 32 119 

Inferior frontal gyrus, 

par opercularis / 

precentralgyrus 

Right 36 8 26 117 

Inferior Temporal gyrus 

/ Temporal Fusiform 

cortex, posterior division 

Right 44 -14 -30 111 

All results corrected for multiple comparisons (family-wise error) at P< 0.05; only cluster 

with at least 100 contiguous voxels included. MNI = Montreal Neurological Institute. 

 



Table 4: VBM correlation with T-ADLQ subscores in AD in comparison with HC 

uncorrected by scanner. 

  MNI coordinates  

Regions Hemisphere x y z Numberof voxel 

  BADL IADL a-

ADL 

 

BADLi domain 

subscore 

     

Supplementary 

Motor Cortex 

Left -14 6 50 274 

Frontal orbital 

cortex 

Right 32 28 0 260 

Superior frontal 

gyrus / Middle 

frontal gyrus 

Right 24 26 44 139 

IADLii domain 

subscore  

     

Para cingulate 

gyrus 

Left -4 34 26 3363 

Temporal 

fusiform cortex, 

anterior division 

Right 32 -2 -40 1936 

Temporal Left -28 -10 -38 1418 



fusiform cortex / 

Parahippocampal 

gyrus, anterior 

division 

Intracalcarine 

cortex 

Right 8 -66 12 836 

Frontal 

operculumcortex 

/ Central 

opercular córtex 

Right 42 10 10 512 

Parahippocampal 

gyrus, posterior 

division /  

Temporal 

fusiform cortex, 

posterior division 

Left -32 -34 -16 379 

Intracalcarine 

cortex 

Left -12 -70 10 191 

Precentral gyrus Left -38 0 22 185 

Lateral occipital 

cortex, inferior 

division 

Right 34 -78 10 146 

Lingual gyrus / Right 20 -74 -6 107 



Occipital 

fusiform gyrus 

Superior parietal 

lobule / Angular 

gyrus 

Right 32 -50 42 101 

a-ADLiii  domain 

subscore 

     

Lingual gyrus / 

Intracalcarine 

cortex 

Left -14 -62 4 1379 

Parahippocampal 

gyrus, anterior 

division 

Left -24 -10 -38 1169 

Parahippocampal 

gyrus, anterior 

division 

Right 30 -14 -28 732 

Paracingulate 

gyrus 

Left -12 28 32 324 

Superior frontal 

gyrus 

Right 12 10 58 175 

Superior frontal 

gyrus 

Left -18 8 46 131 

Paracingulate Right 12 30 40 107 



gyrus / Superior 

frontal gyrus 

Paracingulate 

gyrus 

Right 4 26 40 106 

. i. BADL: Basic ADL. ii. IADL : Instrumental ADL. iii: a-ADL Advanced ADL 

All results uncorrected at P< 0.001. Only cluster with at least 100 contiguous voxels 

included. MNI = Montreal Neurological Institute. 

 



Table 5. VBM overlap between IADL and a-ADL subscores in AD compared with HC 

uncorrected by scanner. 

  MNIcoordinates  

 

Regions 

 

Hemisphe

re 

 

x 

 

y 

 

z 

Number 

of voxel 

Regions of overlap      

Parahippocampal 

gyrus, anterior 

division 

Right 30 -14 -28 471 

Precuneous cortex Right 14 -56 12 463 

Parahippocampal 

gyrus, anterior 

division 

Left -28 -12 -36 373 

Parahippocampal 

gyrus, posterior 

division 

Left -28 -36 -14 232 

Paracingulate 

gyrus 

Left -10 28 36 191 

Intracalcarine 

cortex 

Left -12 -68 10 108 

All results uncorrected at P< 0.001. Only cluster with at least 100 contiguous voxels 

included. MNI = Montreal Neurological Institute. 



Table 6.  

VBM exclusive regions that correlate with IADL and a-ADL subscores in AD compared 

with HC. 

  MNI coordinates  

Regions Hemisphere x y z Number of voxel 

IADLi domain 

subscores 

     

Paracingulate 

gyrus / Cingulate 

gyrus, anterior 

division 

Left -8 36 22 1930 

Temporal 

fusiform cortex, 

anterior division 

Right 30 -2 -42 1258 

Temporal 

fusiform cortex, 

anterior division 

Left -30 0 -40 862 

Middle frontal 

gyrus 

Right 26 26 40 731 

Central 

operculum cortex  

Right 42 8 10 482 

Precuneous 

cortex 

Right 18 -58 20 242 



Central 

operculum cortex 

Left -36 0 20 185 

Lateral occipital 

cortex, inferior 

division 

Right 36 -82 8 146 

Occipital 

fusiform gyrus 

Right 26 -66 -8 107 

a-ADLii domain  

subscores 

     

Lingual gyrus Left -16 -62 2 646 

Parahippocampal 

gyrus, anterior 

division 

Left -20 -10 -40 340 

ii IADL : Instrumental ADL. ii: a-ADL: Advanced ADL 

All results uncorrected at P < 0.001. Only cluster with at least 100 contiguous voxels 

included. MNI = Montreal Neurological Institute. 

 


