2 3 4	1	Mapping the neuroanatomy of functional decline in Alzheimer's disease from basic to
5 6	2	advanced activities of daily living
7	3	Andrea Slachevsky ¹⁻²⁻⁵ , Gonzalo Forno ¹⁻²⁻³ , Paulo Barraza ⁴ , Eneida Mioshi ⁶ , Carolina
9	4	Delgado ⁷ , Patricia Lillo ¹ , Fernando Henriquez ¹⁻²⁻³⁻⁴ Eduardo Bravo ⁸ , Mauricio Farias ⁸ ,
10 11	5	Carlos Muñoz-Neira ³ , Agustin Ibañez ¹⁰⁻¹¹⁻¹²⁻¹³⁻¹⁴ , Mario A Parra ⁹⁻¹⁰ , Michael Hornberger ⁶ .
12 13	6	1. Gerosciences Center for Brain Health and Metabolism (GERO), Avenida Salvador 486,
14 15	7	Providencia, Santiago, Chile
16 17	8	2.Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology
18 19	9	Department, ICBM, Neurosciences Department, East Neuroscience Department, Faculty of
20	10	Medicine, University of Chile, Avenida Salvador 486, Providencia, Santiago, Chile
21 22	11	3. Memory and Neuropsychiatric Clinic (CMYN) Neurology Department- Hospital del
23 24	12	Salvador & University of Chile, Av. Salvador 364, Providencia, Santiago, Chile.
25 26	13	4. Center for Advanced Research in Education (CIAE), University of Chile, 8330014,
27 28	14	Santiago, Chile.
29 30	15	5. Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del
31 22	16	Desarrollo, Chile.
33	17	6. School of Health Sciences, University of East Anglia, Norwich, UK
34 35	18	7. Neurology and Neurosurgery Department, Clinical Hospital, University of Chile
36 37	19	8. Neuroradiologic Department. Institute of Neurosurgery Asenjo. Santiago Chile
38 39	20	9. School of Social Sciences, Psychology, University Heriot-Watt, UK
40 41	21	10. Universidad Autonoma del Caribe, Barranquilla, Colombia
42	22	11. Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation,
44	23	Favaloro University, Buenos Aires, Argentina
45 46	24	12. National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917,
47 48	25	C1033AAJ, Buenos Aires, Argentina.
49 50	26	13. Center for Social and Cognitive Neuroscience (CSCN), School of Psychology,
51 52	27	Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Santiago, Chile
53 54	28	14. Centre of Excellence in Cognition and its Disorders, Australian Research Council
55	29	(ACR), Sydney, Australia
57	30	Corresponding Author:
58 59	31	Andrea Slachevsky
60 61	32	Geroscience Center for Brain Health and Metabolism (GERO)
62 63		1
64 65		

- 34 Av. Salvador 486. Providencia. Santiago. Chile
- 35 Phone: (56-2) 29770530 E-mail: andrea.slachevsky@uhile.cl

 Acknowledgements: Funding from CONICYT/FONDECYT/11404223 (to A.S, C.D, E.B,
F.H , C.M., and P.B); FONDAP Program Grant 15150012 (to AS, PL, GF and
AI);CONICYT/FONDECYT (Regular 1170010), the INECO Foundation, and the InterAmerican Development Bank (IADB) (to AI) and PIA-CONICYT Basal Funds for Centers
of Excellence Project FB0003 (to A.S; PB and FH); MAP work is supported by
Alzheimer's Society (Grant AS-SF-14-008).

44 Abstract

46 Background

Impairments in activities of daily living (ADL) are a criterion for Alzheimer's disease (AD) dementia. However, ADL gradually decline in AD, impacting on advanced (a-ADL, complex interpersonal or social functioning), instrumental (IADL, maintaining life in community), and finally basic functions (BADL, activities related to physiological and self-maintenance needs). Information and communication technologies (ICT) have become an increasingly important aspect of daily functioning. Yet, the links of ADL, ICT, and neuropathology of AD dementia are poorly understood. Such knowledge is critical as it can provide biomarker evidence of functional decline in AD.

55 Methods

ADL were evaluated with the Technology–Activities of Daily Living Questionnaire (T-ADLQ) in 33 patients with AD and 30 controls. ADL were divided in BADL, IADL, and a-ADL. The three domain subscores were covaried against gray matter atrophy via Voxel-Based Morphometry.

Results

61 Our results showed that three domain subscores of ADL correlate with several brain 62 structures, with a varying degree of overlap between them. BADL score correlated mostly 63 with frontal atrophy, IADL with more widespread frontal, temporal and occipital atrophy 64 and a-ADL with occipital and temporal atrophy. Finally, ICT subscale was associated with

65 atrophy in the precuneus.

66 Conclusions

The association between ADL domains and neurodegeneration in AD follows a traceable neuropathological pathway which involves different neural networks. This the first evidence of ADL phenotypes in AD characterised by specific patterns of functional decline and well-defined neuropathological changes. The identification of such phenotypes can yield functional biomarkers for dementias such as AD.

73 Keywords: Alzheimer's disease; Functional impairment; Activities of Daily Living;
74 Technology–Activities of Daily Living Questionnaire.

75 1. Background

Alzheimer's disease (AD) is one of the most common form of age-related dementia, affecting more than 25 million people worldwide, with the number of new cases raising continuously, both in developed and developing countries [1, 2]. The diagnosis of dementia due to AD is based on the presence of a gradual onset of cognitive impairment, mainly an episodic memory impairment with evidence of cognitive dysfunction in at least one other cognitive domain, whose severity has led to a significant functional decline in Activities of Daily Living (AD), interfere with the ability to function at work or at usual activities [3].

The confirmation of the presence and severity of impairment in ADL is critical for the diagnosis of dementia[3]. Commonly, ADL have been divided in Basic ADL (BADL) and Instrumental ADL (IADL). BADL are defined as activities related to basic physiological and self-maintenance needs, including tasks such as eating, toileting or getting dressed. IADL include activities, essential to maintain independent living and maintaining life in community, such as managing finances, shopping, handle medications or using the public transport [4, 5]. Recently, Advanced ADL (a-ADL) has emerged as an additional

91 important category in ADL[5, 6]. A-ADL are defined as more complex activities, not being

92 essential to maintain an independent live, are considered voluntary [7] and include

93 activities necessary for complex interpersonal or social functioning such as using household

94 technology, going on holidays, practice hobbies, etc. [4, 6, 8]. A-ADL require higher levels

95 of cognitive, physical, and social functions, are very sensitive to subtle cognitive

б

96 impairment and could contribute to early diagnosis of dementia[4]. Nonetheless, the
97 definition of a-ADL and its division from IADL is complex and need to consider cultural
98 variability, since ADL performance is influenced by cultural events [9-12]. Moreover, as
99 culture evolves, any scale that is sensitive to early ADL deficits must also evolve to
100 measure newly relevant activities.

In the last decades, information and communication technologies (ICT) have become an increasingly important aspect of daily functioning and the use of electronic devices are essential in different everyday life tasks, such as communication, work or recreational activities. The use of everyday technology may be of particular concern in people with dementia because most patients typically continue to live at home, in the same social context as before the disability and, as a result, they are expected to manage the everyday technology that is common in that context [13]. ICT could include either IADL and a-ADL depending on the complexity of the technology and sociocultural factors shaping technology use [6, 14].

Despite recent advances in the development of ADL scales, the relationship between those outcomes and structural brain changes in AD is poorly understood, especially considering the neural correlates of IADL or BADL. BADL dysfunction in AD was associated with atrophy in the temporal, cingulate, hippocampus, caudate, frontal, and parietal regions whereas IADL dysfunction was linked to atrophy in the frontal, temporal, parietal, insula, and caudate regions[15]. Hippocampal and cortical gray matter volume loss was associated with rapid IADL decline in AD [16]. Parietal and temporal lobe atrophy at baseline predict further IADL impairment over time [17]. Finally, PET studies have reported an association between greater rate of IADL impairment over time and middle frontal, orbitofrontal and posterior cingulate hypometabolism in AD [18].

However, to our knowledge, there is no study investigating the neural correlates of a-ADL. Nor is their evidence that such correlates differ from those reported for BADL and IADL. Moreover, no study has incorporated ICT as an important aspect of functional assessment. The aim of this study was to investigate the neural correlates of the global score and subscores of the T-ADQL in patients with AD in comparison to healthy controls (HC). Specifically, we examined which brain areas were associated with a-ADL impairment in AD in comparison with BADL and IADL scores. In a first step, total T-ADLQ scores; BADL, IADL and a-ADL subscores were regressed against gray matter

atrophy via voxel-based morphometry (VBM). In a second step, we performed an inclusive masking analysis to verify which areas of brain atrophy would overlap between BADL and a-ADL, and between IADL and a-ADL. Finally, we performed an exclusive masking analysis to verify areas of brain atrophy displaying no overlap between BADL, a-ADL, and IADL. We hypothesized that these three ADL domains would exhibit shared and segregated neuroanatomical substrates and that a-ADL would be associated to regions involved in more complex cognitive tasks.

2. Methods

б

2.1 Participants

A cohort comprising 63 participants was recruited for the study. This cohort was divided into two groups matched according to sex, age, and years of education: 33 subjects with a clinical diagnosis of AD and 30 healthy controls (HC). Patients were recruited from the Memory and the Neuropsychiatric Clinic at Hospital del Salvador, and the Neurology and Neurosurgery Department at Hospital Clínico Universidad de Chile (HCUCH), both located in Santiago, Chile. HC were recruited from a variety of sources, including spouses or relatives of patients with dementia. The inclusion criteria considered Spanish-speaking participants older than 60 years of age. All participants required a reliable proxy who had known them for at least 5 years. Specifically, a proxy was someone who was able to provide information about ADL performance, behavioral changes, as well as patients' general medical history. The exclusion criteria included illiteracy, underlying neurological or psychiatric illness that could affect cognition (except AD), physical disability, and sensory disturbance that could interfere with the neuropsychological assessment. All AD patients met the NINCDS-ADRDA criteria for probable AD [3]. Diagnosis was made by consensus between senior neurologists (AS and CD) based on extensive clinical protocol, interviews with a reliable proxy, laboratory tests and global cognitive functioning. Briefly, AD patients displayed a history of significant episodic memory loss, within the context of preserved behavioral and personality, score above 0.5 on the Clinical Dementia Rating scale (CDR) [3]. HC did not report memory complaints, had a score of 0 on the CDR[3], and their cognitive performance was considered normal according to local normative data for the Addenbrooke's Cognitive Examination – Revised Chilean Version (ACE-R-Ch) (>76) [19]. Scores of the T-ADQL were not considered to establish the diagnosis. Ethical

approval for this study was obtained from the Ethical and Scientific Committee of the East
Metropolitan Health Service and the HCUCH. All the participants, and their caregivers,
provided informed consent in accordance with the Declaration of Helsinki.

2.2 Clinical and Neuropsychological examination

All proxies and participants were interviewed separately in order to obtain the CDR scores. The T-ADLQ was completed by proxies as we have previously described [20]. Experienced clinical psychologists trained in the administration of our neuropsychological protocol and blinded to the diagnosis of each subject carried out the neuropsychological assessment. In addition to the MMSE [21], and the ACE-R-Ch [19] to assess global cognitive functioning, the neuropsychological protocol included The Boston Naming Test as an index of naming abilities. The Rey-Osterrieth Complex Figure Test was used to measured visuospatial constructional abilities [22]. Forward and backward digit-span tasks provided an index of working memory while the Word free and cued selective reminding test (FCSRT) was used to assess episodic memory. The Frontal Assessment Battery (FAB), is a screening test for executive dysfunction that assesses conceptualization, mental flexibility, motor programming, resistance to interference, inhibitory control and environmental autonomy, was also applied[23]. Other tests of executive functions (EF) included the Modified Version of the Wisconsin Card Sorting Test (MCST) [24] which informs on cognitive flexibility. Verbal fluency tests including both Phonemic Verbal Fluency test (i.e., words beginning with letters F, A, and S in one minutes) and Semantic Fluency test (i.e., animals in 1 minute) as well as the Trail Making Test A and B [25, 26].

180 2.3 T-ADLQ

The T-ADLQ [20] consists of 7 subscales: Self-Care, Household Care, Employment and Recreation, Shopping and Money, Travel and ICT. Each item is rated on a 4-point scale. For each activities, a rating is provided for instances in which the patient may have never performed that activity in the past, stopped the activity prior to the onset of dementia, or for which the proxy did not have information [27]. The overall functional impairment (FI) was calculated for each domain as well as for the global questionnaire as follows: (sum of all ratings not rated ND/DK)/ (3 x total number of items not rated ND/DK). The denominator represents the score that would have been obtained if the most severe level of impairment had been indicated for all items rated not ND/DK [27]. This equation ensures that the functional impairment score was based on the actual functioning of the patients

relative to their own premorbid functioning. Higher percentage scores indicate greaterdeterioration.

An expert panel (2 neurologists, 3 psychologists, 1 occupational therapist) gathered the activities of the T-ADLQ in three domains (BADL –IADL – a-ADL). To ensure consistency of the division, each expert classified each activity independently and then a consensus was reached to harmonize the different classifications. The outcomes from the consensus classification are presented in Table 1.

198 ----- INSERT TABLE 1 BY HERE------

199 2.4 Statistical analyses for demographic and neuropsychological data

The Statistical Package for the Social Sciences (SPSS) version 20 for Windows (IBM Corp., Armonk, NY, USA) was used to analyze the demographic and neuropsychological data. We obtained descriptive statistics for such data, used chi-squared for the categorical variables, and perform two-tailed independent-sample t-tests for the comparisons between AD and HC. Differences with a p < .05 were considered significant. Additionally, the effect sizes (Cohen's-d statistic) were calculated to determine the magnitude of the group differences. According to Cohen, effect sizes between 0.2 and 0.49 are considered small; those between 0.5 and 0.79, moderate; and those 0.8, large [28].

208 2.5 MRI acquisition

MRI acquisition was performed in two 1.5 Tesla MRI scanners, a Philips Intera Nova Dual gradient system (45mT/m), and a Siemens Symphony Maestro Class (Erlangen, Germany) with 20 mT/m gradient system. High resolution anatomical scans were obtained using a T1-weighted three dimensional gradient recalled echo acquisition: 3D T1 fast field echo sequence on Philips scanner, and 3D T1 fast low angle shot on Siemens scanner, both with the same acquisition parameters (TE=4.6ms, TR=25ms; flip angle=30°, field of view on frequency=250 mm, 256x256 matrix, isotropic voxel size 1x1x1 mm).

216 2.6 VBM analysis

MRI data were analyzed with FSL-VBM, a (Voxel-based Morphometry) VBM analysis [29, 30] that is part of the FSL software package (http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html) [31]. First, tissue segmentation was

carried out using FMRIB's Automatic Segmentation Tool (FAST) from brain-extracted images [32]. The resulting grey matter partial volume maps were then aligned to the Montreal Neurological Institute standard space (MNI152) using the nonlinear registration approach using FNIRT [33] which uses a b-spline representation of the registration warp field [34]. A study-specific template was created, combining AD and Control images, to which the native gray matter images were re-registered nonlinearly. The registered partial volume maps were then modulated (to correct for local expansion or contraction), by dividing them by the Jacobian of the warp field. The modulated images were then smoothed with an isotropic Gaussian kernel with a sigma of 3mm (FWHM: 8 mm).

The statistical analysis was performed via a voxel wise general linear model (GLM) to investigate gray matter intensity differences. Permutation-based nonparametric testing (with 5000 permutations per contrast) [35] was used to form clusters with the threshold-free cluster enhancement (TFCE) method [31]. The significance threshold was p < 0.05 and tests were corrected for multiple comparisons via Family-wise Error (FWE) correction across space, unless otherwise stated. For uncorrected results, a threshold of 100 contiguous voxels was used, at p < 0.001 to reduce the likelihood of significant clusters. Regions of significant atrophy were superimposed on the MNI standard brain, with maximum coordinates provided in MNI space. Areas of significant gray matter loss were localized with reference to the Harvard-Oxford probabilistic cortical and subcortical atlas.

In a first step, differences in gray matter intensities between AD patients and HC were assessed. To control for a possible scanner site effect, we introduced scanner site as a nuisance covariate for the group contrasts. Next, correlations between gray matter atrophy and T-ADLQ total score and the scores of the three domains of the T-ADLQ, i.e. BADL, IADL and a-ADL subscores, were entered as covariates in the design matrix of the VBM analysis for AD patients combined with HC. This procedure improves the statistical power to detect brain-behavior relationships[36]. In a third step, we study overlap of brain atrophy between the BADL, IADL and a-ADL subscores performing an inclusive masking analysis. For statistical power, a covariate-only statistical model with a t-contrast was used, providing an index of association between brain atrophy and scores on the functional scales. The statistical maps generated from the contrast using BADL, IADL and a-ADL subscores as covariate, were scaled using a threshold of p < 0.001, following which, the scaled contrasts were multiplied to create an inclusive, or overlap, mask across groups. In a

fourth step, we performed a contrast analysis between the three subscores BADL, IADL and a-ADL subscores of the T-ADLQ to study the existence of significant anatomical differences between the different domains. For the exclusive masks, the same procedure described above was adopted. However, the scaled images were subsequently subtracted from each other, to create an exclusive mask for each condition.

3. Result

3.1. Demographic and neuropsychological data

Demographic and neuropsychological scores are shown in Table 2. AD and HC groups did not differ in terms of sex, age, or education (all p > 0.05). In brief, AD patients exhibited scores significantly higher on assessments of severity of the disease (CDR) and lower on measures of global cognitive efficiency (ACE-R-Ch and MMSE) and episodic memory (FCSRT) relative to HC. Compared to the HC group, the AD group was impaired on the global scores of T-ADLQ (F(1,67) = 70.981, p < 0.001); the three ADL domains and the ICT subscores (see Table 2) The details of the neuropsychological battery in HC and AD subjects are shown in Supplementary Table 1.

33 267

7 ----- INSERT TABLE 2 BY HERE------

3.2. VBM: Groups comparison analysis

Results are shown in Table 3 and Figure 1. The AD group was contrasted with HC group to reveal patterns of brain atrophy. The AD group showed significant grey matter atrophy in bilateral hippocampal brain regions, bilateral precentral gyrus, and a right lateralized atrophy in the precuneus cortex, inferior frontal gyrus (par opercularis), inferior temporal gyrus and temporal fusiform cortex (posterior division) ($P_{fwecorr}<0.05$). Similar results were obtained in the analysis covarying for scanner site (see Supplementary Table 2 and Supplementary Figure 1).

⁵⁰ 51 276

----- INSERT TABLE 3 BY THERE -----

- ⁵³₅₄ 277 ------ INSERT FIGURE 1 BY THERE -----
- ⁵⁶₅₇ 278 **3.3 Correlations with T-ADLQ subscores**

279 VBM correlations with T-ADLQ total score are presented in supplementary files
280 (see Supplementary Table 3 and Supplementary Figure 2). In brief, T-ADLQ total score

covaried with bilateral atrophy in the parahippocampal gyrus (anterior division) and the inferior temporal gyrus (posterior division and temporo-occipital region), and a right lateralized atrophy in the lateral occipital cortex (inferior and superior division) (p_{unorr} < 0.001).

BADL, IADL and a-ADL subscores of the T-ADLQ were entered as covariate in the design matrix of the VBM analysis. Results are shown in Table 4 and Figure 2. For the AD group, the score on the BADL domain covaried with atrophy in the left supplementary motor cortex and right frontal regions (orbital cortex and superior/middle frontal gyrus) $(p_{unorr} < 0.001)$. The IADL subscore covaried with atrophy in several areas widely distributed, highlighting the left paracingulate gyrus, bilateral temporal fusiform cortex, left parahippocampal gyrus (anterior division), and right intracalcarine cortex ($p_{unorr} < 0.001$). Finally, the a-ADL score covaried mainly with atrophy in the left lingual gyrus, intracalcarine cortex, and bilateral parahippocampal gyrus (anterior division) (*p*_{unorr}<0.001). We present the VBM results showing regions of significant gray matter intensity decrease that covary with the ICT subscale in supplementary material (see Supplementary Table 4 and Supplementary Figure3).

³² 33 297 ------ INSERT TABLE 4 BY THERE -----

³⁵ ₃₆ 298 ------ INSERT FIGURE 2 BY THERE -----

299 3.4 Overlap analysis

We performed an inclusive masking analysis to verify which areas of brain atrophy overlap when accounting for functional impairment in AD as measured by IADL domain ws. a-ADL domain and BADL domain and a-ADL domain. Results show that the BADL domain overlap with neither the IADL nor the a-ADL domain subscores of the T-ADLQ. We found an overlap between the IADL and a-ADL domain subscores of the T-ADLQ (see Table 5 and Figure 3).

- ⁵¹₅₂ 306 ------ INSERT TABLE 5 BY THERE -----
 - 307 ------ INSERT FIGURE 3 BY THERE ----

308 3.5 Contrast Analysis

In a final step, we performed a contrast analysis between the BADL, IADL and a-

ADL domain subscores of the T-ADLQ to study the existence of significant anatomical differences between the different domains. Results shows that a-ADL were exclusively associated with one cluster in the left lingual gyrus and the anterior division of the parahippocampal gyrus. The score of the IADL covariated exclusively with atrophy in several areas, mainly the left paracingulate and cingulate gyrus (anterior division), the right and left temporal fusiform cortex (anterior division) and the right middle frontal gyrus (puncorr< 0.001) (see Table 6 and Figure 3).

17 317

----- INSERT TABLE 6 BY THERE -----

318 4. Discussion

To the best of our knowledge, this is the first study assessing the neural correlates of a-ADL and ICT in AD. Our results showed that T-ADLQ subscores correlate with several brain structures, with a varying degree of overlap when the three domains of activities of the questionnaire were considered. The BADL score correlated mostly with frontal atrophy, IADL with more widespread frontal, temporal and occipital atrophy and a-ADL with occipital and temporal atrophy. The inclusive masking analysis did not show areas that overlap between BADL, IADL and a-ADL. However, the bilateral parahippocampal region (PHR) and the precuneus cortex are implicated in both, the IADL and a-ADL. In the exclusive masking analysis, we found an association between IADL and the paracingulate gyrus and the temporal fusiform cortex, while a-ADL correlated more with lingual gyrus atrophy.

T-ADQL total score correlated with a large cluster centered in the temporal fusiform cortex (anterior division) and parahippocampal gyrus (anterior division). Concerning the association with the temporal cortex, our results are in line with studies in both AD and other neurological disorders. Medial temporal lobe atrophy has been associated with functional impairment in both, subjects with stroke [37] and mild cognitive impairment (MCI) [38]. The association with the PHR is not surprising due to the involvement of the PHR in multiple cognitive process relevant to everyday functioning as visuospatial processing, episodic memory, and contextual associative processing [39]. Moreover, PHR atrophy has been reported as an early biomarker of AD [40], and hypometabolism in this region has been associated with greater decline in IADL performance [18]. Concerning BADL, AD patients assessed in our study were in mild to moderate stages of the disease and presented mild impairment in some BADL activities

342 (average of 5% of impairment). BADL correlated with two small clusters in left 343 supplementary motor cortex and right frontal regions (orbital cortex and superior/middle 344 frontal gyrus). Although we acknowledge that these results should be interpreted with 345 caution due to the characteristics of our samples, they are in agreement with several studies 346 which have reported that motor abilities are crucial for BADL[41] [42, 43]and tend to 347 decline as the disease progresses[44].

IADL correlated with the left paracingulate gyrus, bilateral temporal fusiform cortex, left parahippocampal gyrus (anterior division), and right intracalcarine cortex, among others. Our results are in agreement with previous studies on the neural correlates of IADL [15]. IADL impairment has been associated with inferior temporal and lateral parietal (supramarginal) atrophy [17], decreased gray matter volume in the medial frontal and temporo-parietal cortices in early stages of AD [45], and white matter lesion [46]. The multiple brain areas related with IADL have been attributed to the complex nature of these activities and their increased demand [15].

a-ADL correlated with the left lingual gyrus, intracalcarine cortex, and bilateral parahippocampal gyrus (anterior division), areas that has been associated with higher order cognitive functions [39], such as explicit memory [47]. As Braak and Braak described, the brain atrophy of AD patients progresses following a hierarchical model, with early atrophy in the hippocampus and parahippocampus gyrus [48], linked to memory and visuospatial impairments in the early stages of the disease, progressing to a generalized pattern of brain atrophy linked to a wide deterioration of cognitive domains [49].

In the overlap analysis, we found that the bilateral atrophy of the parahippocampal gyrus, the paracingulate gyrus, and the intracalcarine cortex are associated to both IADL and a-ADL impairments. Atrophy of these areas has been associated with impairment in episodic memory, language, praxis and visual perception. These symptoms appear in the early stages of AD [47, 50], corresponding to the typical progression of the disease, starting with impairment in complex cognitive domains, including IADL, to difficulties in BADL in the most advanced stages [51].

In the exclusive analysis, we found that left parahippocampal gyrus correlated exclusively with a-ADL. This area has been extensively associated with topographical learning and spatial navigation [52-54], and is crucial for normal adaptive behaviors in work, travelling, or during other activities that comprise a-ADL.

Finally, we found that the ICT subscale is associated with atrophy in the precuneus, area that has been related with visuospatial functioning, attentional shift, and processing speed [55, 56] It has also been considered a higher-order area that is generally involved in controlling spatial aspects of motor behavior, and episodic memory retrieval[57]. Evidence shows that attentional and visuospatial abilities are necessary for internet searching [58]. Attentional engagement had also been described in motor-cognitive skills when working with touch-screen terminal [59]. Recent evidence suggests that hypometabolism in the precuneus may be a biomarker of potential progression to AD [60]. From this perspective, functional changes associated to this region may reflect the earliest manifestations of the impact of AD on ADL, suggesting that these novel functional assessment tools could be considered sensitivity tools to aid in the early diagnosis of AD. Longitudinal studies in AD and other dementias are mandatory to support this hypothesis.

Our division of the T-ADLQ items in BADL, IADL and a-ADL should be interpreted with caution as it was performed based on an expert panel in clinical diagnosis of dementia and research in functional assessment. Although experts hold experience in cognitive neurology (AS and CD), neuropsychology (CMN, FH and GF) and occupational therapy (EM), some of such decisions can be influenced by sociocultural factors. For example, classification of computer use as an a-ADL and use of mobile phones as an IADL may not be representative of every socio-cultural or generational context. The study here presented was carried out in 2015 when only 10% of the targeted elderly population reported use of internet, 80% of them had access to the internet via landline connectivity and only 20% via mobile phones [61, 62]. Moreover, elderly people in Chile, as in other countries such as Portugal, report that they mainly use mobile phones for basic functions such as answering and calling[63]. Also, in a recent paper by our group [64], we provide additional evidence on the validity of our proposed division of the T-ADLQ in the BADL/ IADL and a-ADL categories. Nevertheless, further studies need to address the subdomains characterization of evolving T-ADLQ; and these would need to be updated considering intra-country specificity and socio-cultural factors [5, 65].

402 Some methodological issues warrant consideration. First, our neuroimaging results 403 regarding the correlation between VBM and subscore domain did not survive conservative 404 corrections for multiple comparisons and were therefore reported uncorrected at p < 0.001. 405 However, we reduced the likelihood of false positive results, by applying cluster extent

thresholds of 100 contiguous voxels in the analysis. Importantly, Monte Carlo simulations and experimental data demonstrate that cluster thresholding is an effective tool to reduce the probability of false positive findings without compromising the statistical power of the study [66]. Given our sample size, the application of stringent cluster extended thresholds, and our a priori assumptions, we are confident that our results do not represent false positive findings. However, it will be important to replicate these findings in larger patient cohorts using corrected neuroimaging approaches. Second, the diagnosis of AD was established on clinical grounds without any neuropathological confirmation for the diagnoses. Nevertheless, AD patients presented bilateral atrophy in the hippocampal region, a structural biomarkers of AD. Moreover, clinical pathological studies suggested that NINCDS-ADRDA criteria are reliable for the diagnosis of AD. Finally, patients included in the study fulfilled criteria for Alzheimer's Clinical Syndrome according to the latest NIA-AA Research Framework [67].

In conclusion, our study suggests that combining a domain specific approach to ADL with neuropathological data drawn from MRI, specific functional phenotypes can be identified. We have demonstrated that in the sample of AD investigated here such a phenotype is characterized by widespread atrophy of the prefrontal, temporal and occipital brain regions significantly associated with functional impairments that follow a gradient of deterioration in the diseases continuum. Such functional phenotypes seemingly inform about such a continuum. Our data also suggest that ADL assessment via such an approach can be very sensitive to neurodegenerative processes, and that the association of types of functional decline and AD progression does follow a traceable neuropathological pathway that involves different neural network. Our results are consistent with the existence of a specific pattern of functional loss in the activities of daily living, namely functional phenotypes, beginning with impairment in the a-ADL, followed by losses in IADL and finally progressing to BADL[4].

Further studies need to address the contribution of white matter lesion to functional impairment[68]. Finally, generalization of our results to other neurodegenerative diseases should be made with cautious. Nevertheless, futures studies are needed to investigate if other neurodegenerative disease leads to functional phenotypes different to those seen in AD. Indeed, ADL dysfunction in FTD is associated with atrophy in network different to that reported in AD and the left superior frontal gyrus is the only region implicated in IADL

	Τ
	2
	2
	3
	1
	4
	5
	5
	6
	-
	/
	8
	0
	9
1	\sim
Т	U
1	1
-	-
1	2
1	2
-	5
1	4
1	-
Τ	5
1	б
-	0
1	7
1	0
Т	Q
1	9
÷	2
2	0
	1
2	т
2	2
2	_
2	3
2	Δ
4	т
2	5
~	2
2	6
2	7
2	'
2	8
2	\sim
2	9
3	Ω
2	
3	1
2	\sim
3	2
3	23
3	2 3
3 3 3	2 3 4
3332	2 3 4 5
3 3 3 3	2 3 4 5
33333	2 3 4 5 6
3 3 3 3 3 5	234567
3 3 3 3 3 3	2 3 4 5 6 7
333333	2 3 4 5 6 7 8
333333	2 3 4 5 6 7 8
3333333333	23456789
33333334	234567890
3 3 3 3 3 3 3 3 4	234567890
3333333344	2345678901
33333344	23456789010
333333444	23456789012
33333334444	234567890123
33333334444	234567890123
333333344444	2345678901234
3333333444444	23456789012345
3333333444444	23456789012345
333333344444444	234567890123456
333333344444444	234567890123456
3333333444444444	2345678901234567
3333334444444444	23456789012345670
33333344444444444	23456789012345678
3333333444444444444	234567890123456789
3333333444444444444	2345678901234567890
33333334444444444445	2345678901234567890
33333334444444444455	23456789012345678901
3333333444444444455	23456789012345678901
333333334444444444555	234567890123456789012
3333333344444444445555	2345678901234567890122
33333333444444444455555	2345678901234567890123
333333344444444455555555555555555555555	23456789012345678901234
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234
333333444444444555555555	234567890123456789012345
333333344444444445555555555555555555555	2345678901234567890123456
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678
333333344444444445555555555555555555555	2345678901234567890123456780
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567890
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789012
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789012?

438 dysfunction in both FTD and AD [15].

440 **5. Conflict of Interest**

441 On behalf of all authors, the corresponding author states that there is no conflict of interest.

443References

439

442

CP, Prince 1. Ferri Μ. Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A. Mathers C. Menezes 4. PR, Rimmer E, Scazufca (2005)Global М prevalence of dementia: Delphi consensus а study. Lancet 366:2112-2117 Qiu C, Kivipelto M, von 2. Strauss E (2009)Epidemiology of Alzheimer's disease: 5. occurrence, determinants, and strategies toward Dialogues intervention. Clin Neurosci 11:111-128 3. McKhanna GM, Knopman DS, Chertkow H, Hyman BT, Jack CRJ, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, 6. Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's

Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263 - 269

- De Vriendt P. Gorus E. Cornelis E, Bautmans I, Petrovic М. Mets Т (2013) The Advanced Aactivities of Dailv Living: A tool allowing the evaluation of subtle functional decline in Mild Cognitive Impairment. J Nutr Health Aging 17:64-71
- De Vriendt P, Gorus E, Cornelis E, Velghe A, Μ. Mets Т Petrovic (2012) The process of decline in advanced activities of daily living: a qualitative explorative study in mild cognitive impairment. Int Psychogeriatr 24:974-986 Dias EG, de Andrade FB, de Oliveira Duarte YA,
 - de Onveira Duarte YA, Ferreira Santos JL, Lúcia Lebrão M (2015) Advanced activities of daily living and incidence of cognitive decline in the elderly: the SABE Study. Cad Saúde Pública 8:1 - 13

1 2				
3 4	7.	Reuben DB, Laliberte L,		Diener L, Robert P,
5		Hiris J, Mor V (1990) A		Antipolis S, Erzigkeit H
5 7		hierarchical exercise		(2001) The Alzheimer's
8		scale to measure function		Disease Activities of
9		at the Advanced		Daily Living
11		Activities of Daily Living		International Scale (ADL-
12		(AADL) level. J Am		IS). International
13		Geriatr Soc 38:855-861		Psychogeriatrics 13:163 -
14	8.	De Vriendt P, Mets T,		181
15 16		Petrovic M, Gorus E	12.	Kalisch T, Richter J, Lenz
17		(2015) Discriminative		M, Kattenstroth J-C,
18		power of the advanced		Kolankowska I,
19		activities of daily living		Tegenthoff M, Dinse HR
20 21		(a-ADL) tool in the		(2011) Questionnaire-
22		diagnosis of mild		based evaluation of
23		cognitive impairment in		everyday competence in
24		an older population. Int		older adults. Clinic Interv
25 26		Psychogeriatr 27:1419-		Aging 6:37 - 46
27		1427	13.	Rosenberg L, Kottorp A,
28	9.	Femia EE, Zarit SH,		Winblad B, Nygard L
29		Johansson B (1997)		(2009) Perceived
30 31		Predicting Change in		difficulty in everyday
32		Activities of Daily Living:		technology use among
33		A Longitudinal Study of		older adults with or
34		the Oldest Old in Sweden.		without cognitive
35 36		Journal of Gerontology:		deficits. Scand J Occup
37		Psychological Sciences		Ther 16:216-226
38		52B:294 - 302	14.	Luborsky MR (1993)
39	10.	Goldberg TE, Koppel J,		Sociocultural Factors
40 41		Keehlisen L, Christen E,		Shaping Technology
42		Dreses-Werringloer U,		Usage: Fulfilling the
43		Conejero-Goldberg C,		Promise. Technol Disabil
44		Gordon ML, Davies P		2:71-78
45 46		(2010) Performance-	15.	Mioshi E, Hodges JR,
47		Based Measures of		Hornberger, M. (2013)
48		Everyday Function in		Neural correlates of
49		Mild Cognitive		activities of daily living in
50 51		Impairment. Am J		frontotemporal
52		Psychiatry 167:845 - 853		dementia. J Geriatr
53	11.	Reisberg B, Finkel S,		Psychiatry Neurol 26:51-
54		Overall J, Schmidt-Gollas		57
55 56		N, Kanowski S, Lehfeld H,	16.	Cahn-Weiner D, Farias S,
57		Hulla F, Sclan S, Wilms H,		Julian L, Harvey DJ,
58		Heininger I, Stemmler M,		Kramer JH, Reed BR,
59 60		Poon L, Kluger A, Cooler		Mungas D, Wetzel M,
60 61		C, Bergener M, Hugonot-		Chui H (2007) Cognitive
62				16
63				10

1 2				
3 4 5		and neuroimaging		Huasaf J, Flores P,
5		predictors of		Slachevsky A (2012) The
3 7		instrumental activities of		Technology – Activities
8		daily living. J Int		of Daily Living
9		Neuropsychol Soc		Questionnaire: A Version
10		13:747-757		with a Technology-
11 12	17.	Marshall GA, Lorius N,		Related Subscale.
13		Locascio II. Hyman BT.		Dement Geriatr Cogn
14		Rentz DM. Johnson KA.		Disord 33:361 - 371
15		Sperling RA (2014)	21.	Folstein MF. Folstein SE.
16		Regional cortical	2 1.	McHugh PR (1975) Mini-
17 10		thinning		Mental State: a practical
19		corobrospinal		method for grading the
20		biomorborg prodict		acceptitive state of
21		Diomarkers predict		cognitive state of
22		worsening daily		patients for clinician. J
23		functioning across the		Psychiatr Res12:189-198
24		Alzheimer's disease	22.	Rey A (1959) Test de
25		spectrum. J Alzheimers		copie d'une figure
27		Dis. 41:719-728		complexe. Centre de
28	18.	Roy K, Pepin LC,		Psychologie Appliquée,
29		Philiossaint M, Lorius N,		Paris
30		Becker JA, Locascio JJ,	23.	Dubois B, Slachevsky A,
3⊥ 20		Rentz DM, Sperling RA,		Litvan I, Pillon B (2000)
33		Johnson KA, Marshall GA		The FAB: a Frontal
34		(2014) Regional		Assessment Batterv at
35		fluorodeoxyglucose		bedside. Neurology
36		metabolism and		55·1621-1626
37		instrumental activities of	24	Nelson HF (1976) A
20 20		daily living across the	21.	modified card sorting
40		Alzhoimor's discoso		tost sonsitivo to frontal
41		Alzheimer S ulsease		lebe defecte Cortex
42		Spectrum. J Alzheimers		10 212 224
43	10	DIS. 42:291-300	25	12:313-324
44	19.	Munoz-Neira C,	25.	Reitan R (1958) Validity
45 46		Henriquez F, Ihnen J,		of the Trail Making Test
47		Sánchez-Cea M, Flores P,		as an indication of
48		Slachevsky A (2012)		organic brain damage.
49		Propiedades		Percept Mot Skills 8:271-
50		Psicométricas y Utilidad		276
51 52		Diagnóstica del	26.	Arango-Lasprilla JC,
53		Addenbrooke's Cognitive		Rivera D, Aguayo A,
54		Examination - Revised		Rodriguez W, Garza M,
55		(ACE-R) en una muestra		Saracho C. Rodriguez-
56		de ancianos chilenos. Rev		Agudelo Y. Aliaga A
57		Med Chil 140.1006-1013		Weiler G Luna M
58 59	20	Muñoz-Neira C. I. Lónez		Longoni M Ocampo-
60	20.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Barba N Calarza-dal
61		$\mathbf{O}, \mathbf{M} \in \mathbf{O} \mathbf{N}, \mathbf{M} \in \mathbf{O}^{-1}$		Dai Da 14, Gaiai Za-UEI-
62				17
63				1,

1				
3				
4 5		Angel J, Panyavin I,		Niazy RK, Saunders J,
5 6		Guerra A, Esenarro L,		Vickers J, Zhang Y, De
7		Garcia de la Cadena P,		Stefano N, Brady JM,
8		Martinez C, Perrin P		Matthews PM (2004)
9		(2015) Trail Making		Advances in functional
10		Test: Normative data for		and structural MR image
12		the Latin American		analysis and
13		Spanish speaking adult		implementation as FSL.
14		population.		Neuroimage 23 Suppl
15		NeuroRehabilitation		1:S208-219
⊥6 17		37:639 - 661	32.	Zhang Y, Brady M, Smith
18	27.	Johnson N. Barion A.		S (2001) Segmentation of
19		Rademaker A,		brain MR images through
20		Rehkemper G, Weintraub		a hidden Markov random
21		S (2004) The Activities of		field model and the
23		Daily Living		expectation-
24		Questionnaire: a		maximization algorithm.
25		validation study in		IEEE Trans Med Imaging
26		patients with dementia.		20:45-57
28		Álzheimer Dis Assoc	33.	Andersson JLR,
29		Disord 18:223-230		Jenkinson M, Smith S
30	28.	Cohen JD (1988)		(2007) Non-linear
31		Statistical Power		optimisation. FMRIB
33		Analysis for the		technical report In:
34		Behavioral Sciences		FMRIB Analysis Group
35		Mahwah, New Jersey,		Technical Reports.
36 37		United States		FMRIB technical report
38	29.	Ashburner J, Friston KJ	34.	Rueckert D, Sonoda LI,
39		(2000) Voxel-based		Hayes C, Hill DLG, Leach
40		morphometry-The		MO, Hawkes DJ (1999)
41		Methods. Neuroimage		Non-rigid registration
43		11:805-821		using free-form
44	30.	Good CD, Johnsrude IS,		deformations:
45		Ashburner J, Henson RN,		Application to breast MR
46		Friston KJ, Frackowiak		images IEEE Trans Med
48		RS (2001) A voxel-based		Imaging 18:712-721
49		morphometric study of	35.	Nichols TE, Holmes AP
50		ageing in 465 normal		(2002) Nonparametric
51		adult human brains.		permutation tests for
52 53		Neuroimage 14:21-36		functional neuroimaging:
54	31.	Smith SM, Jenkinson M,		a primer with examples.
55		Woolrich MW, Beckmann		Hum Brain Mapp 15:1-25
56		CF, Behrens TE,	36.	Irish M, Piguet Ö, Hodges
57 58		Johansen-Berg H,		JR, Hornberger M (2014)
59		Bannister PR, De Luca M,		Common and unique
60		Drobnjak I, Flitney DE,		gray matter correlates of
61 62		· · · · · ·		
o∠ 63				18
64				
65				

1				
2 3				
4		episodic memory		Predicting functional
5		dysfunction in		outcome after stroke: the
6 7		frontotemporal dementia		influence of neglect on
8		and Alzheimer's disease.		hasic activities in daily
9		Hum Brain Mann		living Front Hum
10		35.1422-1435		Neurosci 7:182
11	37	Henon H Pasquier F	42	Mercier I. Audet T
12 13	57.	Durieu I Pruvo IP Levs D	12.	Héhert B Rochette A
14		(1998) Medial temporal		Dubois MF (2001)
15		lobe atrophy in stroke		Impact of Motor
16		notients: relation to pre-		Cognitive and Percentual
17		existing demontio		Disorders on Ability to
19		Neurol Neurosurg		Perform Activities of
20		Develotry 65.641-647		Daily Living After Stroke
21	20	Voshida D Shimada H		Stroke 22,2602 2608
22	50.	Malzizako H. Doi T. Ito K	12	Cialanella R. Santoro P
23 24		Kato T Shimokata H	45.	Forbucci $C = (2012)$
25		Washimi V Endo H		Prodicting outcome after
26		Sugulti T (2012) The		stroke, the role of basic
27		suzuki i (2012) ille		sciulting of daily living
28		atrophy of the medial		activities of daily living
30		townord area and daily		attralia Eur I Dhua
31		temporal area and daily		Stroke. Eur J Phys
32		activities in older adults	4.4	Renabli Med 49:629-637
33		with mild cognitive	44.	Scarmeas N,
34 35		Impairment. Aging Lin		Hadjigeorgolol GM,
36	20	Exp Res 24:423-429		Papadimitriou A, Dubois
37	39.	Aminoff EM, Kveraga K,		B, Sarazin M, Brandt J,
38		Bar M (2013) The role of		Albert M, Marder K, Bell
39 40		the paranippocampai		K, Honig LS, Wegesin D,
41		cortex in cognition.		Stern Y (2004) Motor
42		Irends in Logn Sci		signs during the course
43	10	17:379-390		of Alzheimer disease.
44 45	40.	Echavarri C, Aalten P,	45	Neurology 63:975-982
46		Uylings HB, Jacobs HI,	45.	Vidoni ED, Honea RA,
47		Visser PJ, Gronenschild		Burns JM (2010) Neural
48		EH, Verhey FR,		Correlates of Impaired
49		Burgmans S (2011)		Functional Independence
50 51		Atrophy in the		in Early Alzheimer's
52		parahippocampal gyrus		Disease. J Alzheimers Dis
53		as an early biomarker of		517 - 527
54		Alzheimer's disease.	46.	Baune BT, Schmidt WP,
55 56		Brain Struct Funct		Roesler A, Berger K
57		215:265-271		(2009) Functional
58	41.	Nijboer T, van de Port I,		consequences of
59		Schepers V, Post M,		subcortical white matter
60 61		Visser-Meily A (2013)		lesions and MRI-defined
62				10
63				19
64				

1 2				
3				
4 5		brain infarct in an elderly		treatment. CNS Drugs
6		general population. J	50	18:853-875
7		Geriatr Psychiatry	52.	Maguire EA, Burgess N,
8 9	17	Neurol 22:266-273		Donnett JG, Frackowlak
10	47.	Baco E Cabrieli S O'Shea		(1008) Knowing where
11		I Knierim K Stehhins C		and getting there: a
12 13		Gabrieli I (2005) Memory		human navigation
14		enconding in Alzheimer's		network. Science
15		disease: an fMRI study of		280:921-924
16 17		explicit and implicit	53.	Aguirre GK, Detre JA,
18		memory. Brain 773 - 787		Alsop DC, D'Esposito M
19	48.	Braak H, Braak E (1997)		(1996) The
20		Diagnostic Criteria for		Parahippocampus
21		Neuropathologic		Subserves Topographical
23		Assessment of		Learning in Man. Cereb
24 25		Alzheimer's Disease.		Cortex 6:823 - 829
25		Neurobiol Aging 18: S85	54.	Mellet E, Briscogne S,
27	40	- \$88		Tzourio-Mazoyer N,
28	49.	Almkvist 0 (1996)		Ghaem O, Petit L, Zago L,
30		footures of oarly		Etard U, Berthoz A, Magayar P Danis Mt
31		Alzhoimor's diseases		(2000) Noural Correlatos
32		nreclinical and clinical		of Tonographic Mental
33 34		stages Acta Neurologica		Exploration: The Impact
35		Scandinavica: 63 - 71		of Route versus Survey
36	50.	Crosson B, Sadek IR,		Perspective Learning.
37		Bobholz JA, Gokcay D,		NeuroImage:588 - 600
39		Mohr CM, Leonard CM,	55.	Wenderoth N, Debaere F,
40		Maron L, Auerbach EJ,		Sunaert S, Swinnen SP
4⊥ 42		Browd SR, Freeman AJ,		(2005) The role of
43		Briggs RW (1999)		anterior cingulate cortex
44		Activity in the		and precuneus in the
45 46		paracingulate and		coordination of motor
47		cingulate sulci during		behaviour. Eur J Neurosci
48		Word generation: an	E C	ZZ:Z35-Z46 Karas C. Scholtong D.
49 50		IMRI Study of Tunctional	50.	Raras G, Scheltens P,
51		0.207_216		Schiindol P Kloin M
52	51	Desai AK Grossberg GT		Jones B van der Flier W
53 54	51.	Sheth DN (2004)		Vrenken H. Barkhof F
55		Activities of daily living		(2007) Precuneus
56		in patients with		atrophy in early-onset
57 58		dementia: clinical		Alzheimer's disease: a
59		relevance, methods of		morphometric structural
60		assessment and effects of		MRI study.
₀⊥ 62				20
63				20
64 65				
0.0				

1				
2				
3				
5		Neuroradiology 49:967-		Telecomunicaciones de
6		976		Chile (2018) IX Encuesta
7	57.	Cavanna AE, Trimble MR		de Acceso y Usos de
8		(2006) The precuneus: a		Internet - Informe Final.
9		review of its functional		In:Subsecretaría de
10 11		anatomy and behavioural		Telecomunicaciones,
12		correlates. Brain		Subtel, Samtiago, Chile
13		129:564-583	63.	Neves BB, Amaro F
14	58.	Small GW. Moody TD.		(2012) Too old for
15		Siddarth P. Bookheimer		technology? How the
16		SY (2009) Your brain on		elderly of Lisbon use and
10 10		Google: natterns of		nerceive ICT I Commu
19		corebral activation		Informatics
20		during internet	61	Dolgado C Vorgara P
21		uuring internet	04.	Martinez M. Muse
22		searching. Am J Gerlatr		Martinez M, Musa G,
23	-	Psychiatry 17:116-126		Henriquez F, Slachevsky
24 25	59.	Sagari A, Iso N, Moriuchi		A (2019)
26		T, Ogahara K, Kitajima E,		Neuropsychiatric
27		Tanaka K, Tabira T,		Symptoms in Alzheimer's
28		Higashi T (2015)		Disease Are the Main
29		Changes in Cerebral		Determinants of
30		Hemodynamics during		Functional Impairment
3⊥ 30		Complex Motor Learning		in Advanced Everyday
33		by Character Entry into		Activities. J Alzheimers
34		Touch-Screen Terminals.		Dis. In press
35		PLoS One 10	65.	Fillenbaum GG. Chandra
36		(10):e0140552	001	V Ganguli M Panday R
37	60	Counts SE Ikonomovic		Cilby IF Seeberg FC
30 30	00.	MD Morcado N Voga IE		Bollo S Balzor C
40		Mufcon EI (2017)		Echomont DA Noth IM
41		Muison Ej (2017)		(1000) Development of
42		Biomarkers for the Early		(1999) Development of
43		Detection and		an activities of daily
44		Progression of		living scale to screen for
45 46		Alzheimer's Disease.		dementia in an illiterate
47		Neurotherapeutics		rural older population in
48		14:35-53		India. Age and ageing
49	61.	Subsecretaría de		28:161-168
50		Telecomunicaciones del	66.	Forman SD, Cohen JD,
51		Gobierno de Chile (2017)		Fitzgerald M, Eddy WF,
52 53		Estudio Octava Encuesta		Mintun MA. Noll DC
54		sobre Acceso. Usos v		(1995) Improved
55		Usuarios de Internet en		assessment of significant
56		Chile. In Subsecretaria de		activation in functional
57		Telecomunicaciones		magnetic resonance
58 50		(Subtel) Santiago Chilo		imaging (fMRD), use of a
60	67	Subcorretaría		clustor size threshold
61	02.	Subsectetatia de		ciuster-size un esholu.
62				21
63				21
64				
65				

	Magn Reson Med 33:636- 647
67.	Jack CR, Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors (2018) NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease.
	Alzheimers Dement
68.	14:535-562. Farias ST, Mungas D, Reed B, Haan MN, Jagust WJ (2004) Everyday functioning in relation to cognitive functioning and neuroimaging in community-dwelling Hispanic and non- Hispanic older adults. J Int Neuropsychol Soc 10:342-354.

Figure 1: VBM showing significant gray matter intensity decrease in AD in contrast HC uncorrected by scanner.

VBM analysis showing brain areas of decreased gray matter intensity in AD patients in comparison with Controls (MNI coordinates X = -38; Y = -36; Z = -8). Colored voxel show regions that were significant in the analysis with P < 0.05 corrected for multiple comparisons (family-wise error), with a cluster threshold of 100 contiguous voxels. Clusters are overlaid on the MNI standard brain.

Figure 2.

VBM correlation with T-ADLQ subscores in AD in comparison with HC uncorrected by scanner.

VBM analysis showing brain areas in which gray matter intensity correlates significantly with T-ADLQ subscores (**A**) BADL (MNI coordinates X = 32; Y = 6; Z = 44), (**B**) IADL (MNI coordinates X = -4; Y = -70; Z = -16) and (**C**) a-ADL subscores (MNI coordinates X = 30; Y = -62; Z = 46) in AD in comparison with Controls. Colored voxel show regions that were significant in the analysis with P < 0.001 uncorrected. For all analysis, a cluster threshold of 100 contiguous voxels was used. Clusters are overlaid on the MNI standard brain.

Figure 3.

VBM overlap and exclusive mask analysis for IADL and a-ADL in AD compared with HC.

VBM analysis showing overlap brain regions between T-ADLQ IADL and a-ADL domain sub-scores (green), and regions that correlate exclusively with IADL (red) and a-ADL (blue) in AD in comparison with Controls (MNI coordinates X = 30; Y = -62; Z = 40). Colored voxel show regions that were significant in the analysis with P < 0.001uncorrected. For all analysis, a cluster threshold of 100 contiguous voxels was used. Clusters are overlaid on the MNI standard brain.

Table 1

Division of the three domains of the Technology - Activities of daily living questionnaire

*.

Basic ADL	Instrumental ADL	Advanced ADL
Eating	Taking pills or medicine	Employment
Dressing	Handling cash	Recreation
Bathing	Managing finances	Organization
Elimination	Public transportation	Travel
Interest in personal appearance	Driving	Internet access
	Mobility around the neighborhood	Email Access
	Traveling outside familiar environment	Computer use
	Preparing meals, cooking	
	Setting the table	
	Housekeeping	
	Home maintenance	
	Home repair	
	Laundry	
	Food shopping	
	Using the telephone	
	Talking	
	Understanding	
	Reading	

Writing	
Cell phone use	
ATM use	

* The T-ADLQ scale is presented in supplementary files

Table 2

Demographic, global cognitive, and functional characteristics of AD and HC.

	AD	Control	t-test/χ ²	Effect Size ¹	95% CI
				(<i>d</i>)	
					Lower Upper
N	33	29			
Sex (m:f)	13:20	9:20	0.492		
Age (years)	73.09 ±	72.03 ±	0.636	0.163	-2.265 4.378
	6.96	5.99			
Education	12.21 ±	12.59 ±	-0.356	-0.092	-2.476 1.728
(years)	4.45	3.73			
MMSE	20.79 ±	28.07 ±	-7.648**	-1.996	-9.185 -5.377
	4.88 (30)	1.67 (30)			
ACE-R	62.24 ±	92.55 ±	-9.887**	-2.580	-36.441 -24.177
	15.64 (100)	5.60 (100)			
CDR	$1.66~\pm~0.65$	0 ± 00	13.648**	3.611	1.413 1.899
	(3)	(3)			
CDR-SB	$5.84~\pm~2.82$	0 ± 00	11.157**	2.928	4.796 6.892
	(18)	(18)			
CDR-AlG	1.13 ± 0.83	0 ± 00	7.269**	1.925	0.815 1.435
	(3)	(3)			
T-ADLQ (%)	38.00 ±	8.41 ± 8.90	8.425**	2.184	22.562 36.611
Total	16.96 (100)	(100)			

BADL ⁱ	5.70 ±	0.93 ± 2.94	2.158*	0.565	0.347	9.184
domain	11.56 (100)	(100)				
subscore of						
the T-ADLQ						
(%)						
IADL domain	43.73 ±	7.79 ±	8.939**	2.318	27.893	43.975
subscore of	19.39 (100)	10.23 (100)				
the T-ADLQ						
(%)						
a-ADL	52.33 ±	19.76 ±	6.087**	1.554	21.869	43.280
domain of the	22.00 (100)	19.85 (100)				
T-ADLQ (%)						

Abbreviations: AD: Alzheimer's diseases; CDR: Clinical Dementia Rating. CDR-SB: Clinical Dementia Rating – Sum of Box. CDR-AlG: Clinical Dementia Rating – Algorithm; MMSE: Mini-Mental State Examination; ACE-R: Addenbrooke's Cognitive Examination Revised; MoCA: Montreal Cognitive Assessment; T-ADLQ: Technology of Daily Living Questionnaire. i. BADL: Basic Activities of daily life. ii. IADL: Instrumental ADL. iv a-ADL Advanced Activities of daily life.

Data are presented in mean \pm standard deviation (Total score).

p*<0.05, *p*<0.001.

Table 3.

VBM showing significant gray matter intensity decrease in AD in contrast HC uncorrected by scanner.

		MNI c	oordinates		
Regions	Hemisphere	x	у	Z	Number of voxel
Hippocampus	Left	-24	-34	-10	1513
Hippocampus	Right	24	-36	-8	1155
Precentralgyrus	Left	-38	0	28	122
Precuneous cortex	Right	16	-64	32	119
Inferior frontal gyrus, par opercularis / precentralgyrus	Right	36	8	26	117
Inferior Temporal gyrus / Temporal Fusiform cortex, posterior division	Right	44	-14	-30	111

All results corrected for multiple comparisons (family-wise error) at P< 0.05; only cluster with at least 100 contiguous voxels included. MNI = Montreal Neurological Institute.

		MNI coord	inates		
Regions	Hemisphere	X	У	Z	Numberof voxel
		BADL	IADL	a-	
				ADL	
BADL ⁱ domain					
subscore					
Supplementary	Left	-14	6	50	274
Motor Cortex					
Frontal orbital	Right	32	28	0	260
cortex					
Superior frontal	Right	24	26	44	139
gyrus / Middle					
frontal gyrus					
IADL ⁱⁱ domain					
subscore					
Para cingulate	Left	-4	34	26	3363
gyrus					
Temporal	Right	32	-2	-40	1936
fusiform cortex,					
anterior division					
Temporal	Left	-28	-10	-38	1418

Table 4: VBM correlation with T-ADLQ subscores in AD in comparison with HCuncorrected by scanner.

fusiform cortex /					
Parahippocampal					
gyrus, anterior					
division					
Intracalcarine	Right	8	-66	12	836
cortex					
Frontal	Right	42	10	10	512
operculumcortex					
/ Central					
opercular córtex					
Parahippocampal	Left	-32	-34	-16	379
gyrus, posterior					
division /					
Temporal					
fusiform cortex,					
posterior division					
Intracalcarine	Left	-12	-70	10	191
cortex					
Precentral gyrus	Left	-38	0	22	185
Lateral occipital	Right	34	-78	10	146
cortex, inferior					
division					
Lingual gyrus /	Right	20	-74	-6	107

L

Occipital					
fusiform gyrus					
Superior parietal	Right	32	-50	42	101
lobule / Angular					
gyrus					
a-ADL ⁱⁱⁱ domain					
subscore					
Lingual gyrus /	Left	-14	-62	4	1379
Intracalcarine					
cortex					
Parahippocampal	Left	-24	-10	-38	1169
gyrus, anterior					
division					
Parahippocampal	Right	30	-14	-28	732
gyrus, anterior					
division					
Paracingulate	Left	-12	28	32	324
gyrus					
Superior frontal	Right	12	10	58	175
gyrus					
Superior frontal	Left	-18	8	46	131
gyrus					
Paracingulate	Right	12	30	40	107

gyrus / Superior	r					
frontal gyrus						
Paracingulate	Right	4	26	40	106	
gyrus						

. i. BADL: Basic ADL. ii. IADL : Instrumental ADL. iii: a-ADL Advanced ADL

All results uncorrected at P < 0.001. Only cluster with at least 100 contiguous voxels included. MNI = Montreal Neurological Institute.

		MNIco	ordinates		
					Number
Regions	Hemisphe	х	у	Z	of voxel
	re				
Regions of overlap					
Parahippocampal	Right	30	-14	-28	471
gyrus, anterior					
division					
Precuneous cortex	Right	14	-56	12	463
Parahippocampal	Left	-28	-12	-36	373
gyrus, anterior					
division					
Parahippocampal	Left	-28	-36	-14	232
gyrus, posterior					
division					
Paracingulate	Left	-10	28	36	191
gyrus					
Intracalcarine	Left	-12	-68	10	108
cortex		1 0 1	1	. 1 .	100

Table 5. VBM overlap between IADL and a-ADL subscores in AD compared with HC uncorrected by scanner.

All results uncorrected at P < 0.001. Only cluster with at least 100 contiguous voxels included. MNI = Montreal Neurological Institute.

Table 6.

VBM exclusive regions that correlate with IADL and a-ADL subscores in AD compared with HC.

		MNI coordinates					
Regions	Hemisphere	X	У	Z	Number of voxel		
IADL ⁱ domain							
subscores							
Paracingulate	Left	-8	36	22	1930		
gyrus / Cingulate							
gyrus, anterior							
division							
Temporal	Right	30	-2	-42	1258		
fusiform cortex,							
anterior division							
Temporal	Left	-30	0	-40	862		
fusiform cortex,							
anterior division							
Middle frontal	Right	26	26	40	731		
gyrus							
Central	Right	42	8	10	482		
operculum cortex							
Precuneous	Right	18	-58	20	242		
cortex							

Central	Left	-36	0	20	185
operculum cortex					
Lateral occipital	Right	36	-82	8	146
cortex, inferior					
division					
Occipital	Right	26	-66	-8	107
fusiform gyrus					
a-ADL ⁱⁱ domain					
subscores					
Lingual gyrus	Left	-16	-62	2	646
Parahippocampal	Left	-20	-10	-40	340
gyrus, anterior					
division					

ii IADL : Instrumental ADL. ii: a-ADL: Advanced ADL

All results uncorrected at P < 0.001. Only cluster with at least 100 contiguous voxels included. MNI = Montreal Neurological Institute.