Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli
Jervis, Adrian J. and Carbonell, Pablo and Vinaixa, Maria and Dunstan, Mark S. and Hollywood, Katherine A. and Robinson, Christopher J. and Rattray, Nicholas J.W. and Yan, Cunyu and Swainston, Neil and Currin, Andrew and Sung, Rehana and Toogood, Helen and Taylor, Sandra and Faulon, Jean Loup and Breitling, Rainer and Takano, Eriko and Scrutton, Nigel S. (2019) Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli. ACS Synthetic Biology, 8 (1). pp. 127-136. (https://doi.org/10.1021/acssynbio.8b00398)
Preview |
Text.
Filename: Jervis_etal_ACS_SB_2019_Machine_learning_of_designed_translational_control_allows_predictive_pathway_optimization.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
The field of synthetic biology aims to make the design of biological systems predictable, shrinking the huge design space to practical numbers for testing. When designing microbial cell factories, most optimization efforts have focused on enzyme and strain selection/engineering, pathway regulation, and process development. In silico tools for the predictive design of bacterial ribosome binding sites (RBSs) and RBS libraries now allow translational tuning of biochemical pathways; however, methods for predicting optimal RBS combinations in multigene pathways are desirable. Here we present the implementation of machine learning algorithms to model the RBS sequence-phenotype relationship from representative subsets of large combinatorial RBS libraries allowing the accurate prediction of optimal high-producers. Applied to a recombinant monoterpenoid production pathway in Escherichia coli, our approach was able to boost production titers by over 60% when screening under 3% of a library. To facilitate library screening, a multiwell plate fermentation procedure was developed, allowing increased screening throughput with sufficient resolution to discriminate between high and low producers. High producers from one library did not translate during scale-up, but the reduced screening requirements allowed rapid rescreening at the larger scale. This methodology is potentially compatible with any biochemical pathway and provides a powerful tool toward predictive design of bacterial production chassis.
-
-
Item type: Article ID code: 67156 Dates: DateEvent18 January 2019Published18 December 2018Published Online18 December 2018AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 05 Mar 2019 15:31 Last modified: 31 Jul 2024 14:24 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/67156