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ABSTRACT

Condition based maintenance is being adopted into the deci-
sion making process of wind farms, in order to reduce oper-
ation costs. SCADA systems are integrated in wind turbines,
providing low frequency operational data and are increas-
ingly being used in condition monitoring. The aim of this
paper is to explore how can wind turbine gearbox components
be monitored using SCADA data. The case study presented
utilises 10-minute averaged SCADA data from three operat-
ing wind turbines that have a double planetary stage gearbox.
Historic data is collected for more than a year at sparse time
periods before the occurrence of a bearing failure on a planet
of the first planetary stage. Data pre-processing is applied
using a clustering filter in order to improve prediction confi-
dence. An insight into the data is given which indicates the
potential importance of generator speed estimation for planet
bearing faults. Normal behaviour models are thus proposed
to predict this type of fault. A classification model is also
presented, which uses different time periods before the com-
ponent failure are used for wind turbine health state determi-
nation. A successful prediction of the bearing health state can
be performed through the suggested models and some insight
is given into into the optimal SCADA sensors utilization for
this type of failure mode.

1. INTRODUCTION

Wind energy is one of the most rapidly developing renew-
able energy source for electrical power generation worldwide.
With a total net installed capacity of more than 160 GW, wind
energy remains the second largest form of power generation
capacity in Europe, closely approaching gas installations. As
the fleet of turbines is constantly increasing, the need to op-
timise maintenance actions becomes vital. Therefore, the in-
dustry has now moved to a maintenance regime that is more
predictive and proactive. Utility scale wind turbines have a
Supervisory Control and Data Acquisition (SCADA) system
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which was originally installed for performance monitoring.
SCADA systems provide numerous data at usually 10-minute
resolution and are a low cost solution for condition monitor-
ing, requiring no additional sensors like the vibration or oil
sensors usually found in traditional condition monitoring sys-
tems.

A wide range of approaches that use SCADA for early failure
detection has been developed over the past years. A recent
comprehensive review of how SCADA data are used for con-
dition monitoring of wind turbines is given by (Tautz-Weinert
& Watson, 2016). The main categories of approaches taken
using SCADA data for fault detection are trending, clustering
and normal behaviour modelling. A trending technique using
correlations among relevant SCADA data is investigated in
(Yang, Jiang, et al., 2013). The first law of thermodynamics
is used to derive the relationship between temperature, effi-
ciency and power output in (Feng, Qiu, Crabtree, Long, &
Tavner, 2013), (Feng, Qiu, Crabtree, Long, & Tavner, 2011)
and it shows the temperature trend rises, while the efficiency
decreases a few months before a planetary gear failure. Clus-
tering can be applied in the form of self organising maps,
which have the ability to represent the shape of datasets with
complex relations between variables and to visualise of high
dimensional datasets. Some work on SCADA data using this
method has been performed by (Catmull, 2011) and (Kim et
al., 2011). Trending and clustering have both shown limita-
tions for online monitoring due to challenges in interpreting
the results and changes and setting thresholds.

Normal behaviour models are used in a wide range of condi-
tion monitoring applications including transformers and gas
turbines so that anomalies are detected from normal operation
(Tarassenko, Nairac, Townsend, Buxton, & Cowley, 2000),
(McArthur, Catterson, & McDonald, 2005). A model of the
measured parameter is trained based on various operating ex-
amples and the residual of the measured minus the modelled
signal acts as an indicator of a possible fault. These mod-
els have been introduced in SCADA data analysis using ei-
ther linear and polynomial approaches or artificial neural net-
works (ANNs). A linear model that can detect generator bear-
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ing failures based on the bearing temperature can be found in
(Garlick, Dixon, & Watson, 2009). A higher order polyno-
mial full signal reconstruction method for monitoring drive
train temperatures is shown in (Wilkinson, Darnell, van Delft,
& Harman, 2014) and is tested successfully on real wind
turbine gearbox and main bearing failures. ANNs have the
ability to determine non-linear relationships between obser-
vations, which makes them suitable for SCADA data. Gear-
box bearing and cooling oil temperatures have been modelled
in (Garcia, Sanz-Bobi, & del Pico, 2006), (Zaher, McArthur,
Infield, & Patel, 2009) using ANNs. The advantages of ar-
tificial neural networks over linear models are presented in
(Schlechtingen & Santos, 2011) and demonstrated on a bear-
ing damage events of offshore wind turbines.

The aforementioned research shows that SCADA data can
be successfully used for prediction of incipient wind turbine
faults. However, gearbox component failures and their sig-
natures on SCADA data has not be thoroughly researched.
It is indeed challenging to correlate faults to specific com-
ponents in the gearbox and for that reason other sources of
data -such as vibration- have been more successfully utilised.
There are, nevertheless, cases where diagnosis using vibra-
tion signals can be more challenging, or cases where there
are no vibration signals available at all. Planet bearing faults
in wind turbines is one example that has been proven diffi-
cult to diagnose though vibrations, since they are located on
the low speed stage and their characteristic frequencies can
often be masked by other more dominant components in the
gearbox. It should also be noted that the size of the planetary
stage determines its overall weight, so in order to control the
gearbox weight, the components must be sized close to the
margins of calculated design life.

This paper aims to examine which SCADA sensors are more
useful to monitor for planetary stage fault detection. Nor-
mal behaviour models are built in order to predict speeds
across the gearbox and a classification methodology is pre-
sented in order to perform wind turbine gearbox prognos-
tics. A case study using historical data from three operating
wind turbines, leading up to a planet bearing failure is used
to demonstrate the proposed models.

The rest of the paper is organised as follows: the case study of
the planet bearing failure is presented along with a SCADA
data pre-processing methodology in Section 2. Some data in-
sight at different time periods before the component failure is
also given. Based on this insight, a normal behaviour model is
developed and validated in Section 3. A classification model
that predicts the different times before the component failure
is given in Section 4. Finally, conclusions are given in Section
5.

2. DATA INSIGHT

This section gives an overview of the SCADA data used for
this case study. A data pre-processing methodology is pre-
sented in order to remove outliers. Some insight into the vari-
ables is given at different time steps before the wind turbine
gearbox component failure.

2.1. Wind Turbine SCADA Data

SCADA systems initially provided measurements for a wind
turbine’s energy production and to confirm that the turbine
was operational through 5-10 minute averaged values trans-
mitted to a central database. However, SCADA systems can
also provide warning of impending malfunctions.

Usually the data available through SCADA systems include
various operational parameters and temperatures inside the
turbine. The most common are active power output, anemome-
ter measured wind speed, rotor speed and generator speed.
Regarding temperature sensors, ambient, nacelle, gearbox oil,
gearbox bearing and generator wind temperatures are usually
considered, but that can differ depending on the commercially
available system installed. Often parameters that do not have
any obvious relationship with environmental conditions are
measured, such as yaw angle error and pitch angle error, but
these are out of the scope of this paper.

The three wind turbines considered in this study are offshore
wind turbines located in two different wind farms. The tur-
bines are from the same make models, rated between 2.5 and
3.5 MW 1 There are in total almost 4000 samples from each
turbine of 10 minute averaged measurements throughout the
course of 34 months. The data collected at the start of the
period are considered to be from a healthy turbine system,
according to the maintenance logs of the operator. A failure
on the planetary stage occurred at the end of the 34th month.

The gearbox examined has a structure commonly found in
offshore wind turbines, where high step-up ratios and com-
pactness are required. It consists of two planetary stages and
one parallel stage. The main shaft is connected to the planet
carrier of the first planetary stage and the high speed stage of
the gearbox is coupled to the generator. The ring gears of the
planetary stages are fixed. The failure mode studied occurred
on a first planetary stage planet bearing. It started on the inner
race way with debris eventually effecting the outer raceway.
The failure mode is the same for all three wind turbines.

The SCADA sensors used in this case study mainly consider
the power output, the speed at different stages of the wind
turbine and various temperatures inside the gearbox. These
are given in Table 1.

The dataset is quite sparse since there are not available mea-
surements for every 10 minutes within the 34 months. A

1Ranges are provided for confidentiality purposes.
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SCADA Sensors
Gearbox Oil Temperature Bottom
Gearbox Oil Temperature Higher Level
Bearing Temperature High Speed Rotor End
Bearing Temperature High Speed Generator End
Bearing Temperature Intermediate Stage
Bearing Temperature Shaft Low Speed Stage
Bearing Temperature Shaft Generator Stage
Nacelle Temperature
Ambient Temperature
Generator Speed
Rotor Speed
Wind Speed
Electrical Power

Table 1. List of gearbox SCADA sensors.

grouping of the dataset that leads to 4 main time periods of
balanced amount of data is performed as follows:

• Healthy
• 1 Year before failure
• 6 months before failure
• 1 month before failure

2.2. Data Pre-Processing

SCADA systems can experience sensor errors and mainte-
nance actions can lead to missing data. The process fol-
lowed for preprocessing the training data is similar to the
one described in (Bangalore, Letzgus, Karlsson, & Patriks-
son, 2017).

Firstly, samples with missing values or no power production
are filtered out. Moreover, the aim of this paper is to under-
stand and model normal behaviour, so curtailment should not
be considered, even though it is set manually. Only a few
samples of curtailment examples are usually present, which
is not sufficient to be used in the training process. Data points
where maximum wind speed has reached more than 25 m/s
are also filtered out because beyond this wind speed the tur-
bine is stopped. These points will not fit any pattern, thus
cannot be taught to the model. In addition, data sampling
during frequent startup or stop in the low-wind-speed period
may have a different variation. Thus, a lower limit of output
power is set at 0 kW for data sample selection.

The cluster filter is applied on the training data and aims to
remove outliers depending on the operating conditions of the
wind turbine. A simple threshold does not take into account
the nonlinear operational characteristics of the system. A
multivariate outlier detection approach based on Mahalanobis
distance is used in (Kusiak & Verma, 2013). A similar ap-
proach is extended and used in (Bangalore et al., 2017), by
dividing the data based on operating power and temperatures
ranges. This paper utilizes agglomerative hierarchical clus-
tering (Rokach & Maimon, 2005). Essentially, the distance
between every pair of objects in a data set is computed. This

information is then used in the linkage function which deter-
mines how the objects in the data set should be grouped into
clusters that form a binary hierarchical cluster tree. The dis-
tance in this paper is calculated in the Euclidean space and the
inner squared distance is computed using Ward’s algorithm.

The distance is calculated for each data vector in the train-
ing data set from its cluster centre. The Mahalanobis distance
values can be estimated by a loglogistic distribution as elab-
orated in (Bangalore et al., 2017) and data below the prob-
ability threshold of 2.5% are filtered out. The distribution
of the Mahalanobis distance values of the training data set
for the wind turbine case study is shown in Figure 1. It can
be observed that the values can be estimated by a loglogistic
probability distribution function.

A probability threshold of 2.5% is chosen. The cluster filter is
used only on the training data set, and therefore false alarms
due to curtailment could occur in the implementation stage. It
is suggested that the condition monitoring process is blocked
during power curtailment, which is available in most modern
SCADA system logs. This information was not available in
this case study though.

Figure 1. The histogram and probability density function fit
for Mahalanobis distance values of data vectors from its clus-
ter centre.
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Figure 2. Power curve of wind turbine 1 before and after data
pre-processing.
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The power curve before and after pre-processing is shown in
Figure 2.

2.3. Variable Exploration

This Section gives an insight into the SCADA variables for
the different time period groups before the bearing failure, as
explained in Section 2. The results presented are for wind
turbine 3.

The relationship between the rotor and generator speed is de-
picted in Figure 3. The relationship is linear in the period that
is considered healthy- as expected. However, the relationship
between the two variables seems to change within 1 month
before the component failure. It also seems that the genera-
tor speed exceeds its maximum expected value based on the
input rotor speed and the gearbox ratio.
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Figure 3. Generator speed as a function of rotor speed. The
relationship should be linear, but changes within 1 month be-
fore the component failure.
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Figure 4. Power curve of wind turbine at different stages be-
fore failure. No significant changes are noticed between the
different time periods before failure.
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Figure 5. Power curve of wind turbine 1 before and after data
pre-processing. No significant changes are noticed between
the different time periods before failure.

The wind power curve and the relationship between the ambi-
ent and oil temperature are shown in Figures 4, 5. No signif-
icant changes are shown between healthy gearbox state and
before failure state

3. ANOMALY DETECTION USING ROTOR AND GENER-
ATOR SPEED

3.1. Choosing input parameters

The aim of the methodology is to develop a model that pre-
dicts key gearbox variable values and detects an anomaly,
based on the error between the actual and the estimated value.
The selection of the appropriate model parameters is vital in
this process. The gearbox related input parameters can be se-
lected using domain knowledge, as demonstrated in (Garcia
et al., 2006), (Zaher et al., 2009).

The gearbox steps up the speed from the rotor to the gener-
ator. The speed of the generator Fgen is linearly proportional
to the speed of the rotor Frot, as shown in Eq. 1, where ngb is
the gearbox ratio.

Fgen = ngbFrot (1)

The generator speed reading is calculated based on the fre-
quency output of the generator. It was shown in Section 2
that there is a large deviation of the generator-rotor speed
relationship from its expected linear behaviour, within one
month before the planet bearing occurrence. A theory to ex-
plain this is that the fault can potentially affect the way that
the generator speed is estimated, so there is some error in-
troduced to generator speed measurement when the gearbox
is unhealthy. The generator speed is calculated based on the
electrical frequency of the converter, which is turned into slip
and into generator rotational speed. This involves a frequency
domain transformation, with the slip frequency changing as
the machine changes speed. The explanation given by the
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Output Input
Generator Speed(t) Rotor Speed(t)

Table 2. Prediction model parameters.

authors is that as the gearbox fault gets worse, the rotor fre-
quency/slip/speed algorithm is incorrectly picking up a faulty
harmonic, rather than the slip frequency. Further work is re-
quired to confirm this theory and to determine the cause of
the generator rpm measurement error. Another less likely ex-
planation is that there are some transmission errors, unbal-
anced load sharing at the planetary stage, or distorted fric-
tional forces due to the fault, that lead to irregular transmis-
sions between the planet and sun gears.

The inputs and outputs of the simple normal behaviour model
are given in Table 2.

3.2. Regression Normal Behaviour Model

The correlation analysis between the generator and rotor speed
indicates a linear relationship between them. Robust linear
regression is performed, using the generator speed as depen-
dent and the rotor speed as independent variable.

The training phase involves data that are considered to be in
a healthy operating condition (34 months before the compo-
nent failure). The testing dataset includes data that are in all
available time periods before the component failure.

The rotor-generator speed relationship for the three turbines
of the case study is shown in Figure 6.

Results are shown in Figure 7. The generator speed is pre-
dicted fairly accurately (straight line between actual values
and predictions) both in the validation phase and the test-
ing phase up to approximately 6 months before the bearing
failure. Within 1 month before failure the speed is underpre-
dicted for the three turbines. The R2 of the regression models
is shown in Table 3 The mean daily absolute error for Turbine
1 is shown in 8 and it seems that in October, just a few weeks
before the component failure, the error increases significantly.

3.3. Fault Detection

The performance of the normal behaviour model is assessed
using the distribution of errors, which in a healthy operation
should have a mean around zero. If an abnormality occurs,
the behaviour prediction model should yield higher errors and
therefore the mean will be shifted.

The two-sample t-test (Snedecor & William, 1989) is used to
determine if two population means are equal. The variances
of the two samples are assumed to be unequal.

An 8 hour window with a 2 hour time step is used to calculate
the mean errors. The t-test is defined as:
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Figure 6. The relationship between generator speed and rotor
speed is linear, as expected in normal operation. As the gear-
box comes closer to failure the relationship becomes nonlin-
ear.
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(a) Turbine 1

(b) Turbine 2

(c) Turbine 3

Figure 7. Actual and Predicted Generator Speed. Within 1
month before failure the speed is underpredicted for the three
turbines.

Validation
(Healthy)

Test
(Healthy)

Test
(Close to Failure)

Turbine 1 0.994 0.993 0.25
Turbine 2 0.992 0.99 0.31
Turbine 3 0.992 0.991 0.28

Table 3. R2 of the regression models.

• H0 if the data tested come from independent random
samples from normal distributions with equal means.

• Halternative otherwise

The result h is 1 if the test rejects the null hypothesis and 0 if
it accepts it. The significance level chosen is 1%.

The hypothesis test results are shown in Figure 9. The null
hypothesis is rejected during the last month of the bearing
operation since the regression error means of the training and
testing sets differ by a large amount.
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.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
y

p
o

th
e

s
is

 T
e

s
t 

D
e

c
is

io
n

27-Oct-2008 30-Oct-2008 02-Nov-2008
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30-Apr-2009 03-May-2009 06-May-2009

Date

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

06-Oct-2009 09-Oct-2009 12-Oct-2009

Figure 9. Hypothesis test results.

6



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

4. CLASSIFICATION USING ALL VARIABLES

This Section aims to apply supervised learning in order to
classify the data into health states, according to the time be-
fore the failure. The SCADA data from all the three turbines
are combined for this analysis.

4.1. Support Vector Machines

Support Vector Machines (SVMs) aim to create a hyperplane
that separates input data in two classes. This can either be
done linearly or through a non-linear kernel function. The
mathematical formulation of SVMs can be found in (Vapnik,
2013). SVMs can also be used for multi-class classification
(Weston, Watkins, et al., 1999).

In this paper a radial basis function kernel is used and one-vs-
all for multi-class classification.

4.2. Classification Results

The inputs to the classifier are the SCADA measurements, as
shown in Table 1. Multi-class classification is first applied
according to the time window before the component failure,
as explained in Section 2.1. A training/test ratio of 70%/30%
is used. The results are shown in the confusion matrix in
Figure 10.
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Figure 10. Multi-class classification confusion matrix.

Binary classification is also performed. According to Section
2.3, the behaviour of the generator speed starts to become ab-
normal within 1 month before the bearing failure.The group-
ing of the classes is shown in Table 4 and the results are pre-
sented in Figure 11.

Two Class Model

Class 1
34 Months
1 Year
6 Months

Class 2 1 Month

Table 4. Binary model and class allocation.
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Figure 11. Confusion matrix for binary classifier.

The results indicate that a multi-class classification for the
three wind turbines can be achieved and the time before the
component failure can be predicted. This shows that the fault
developed similarly in the three wind turbines. It also indi-
cates that apart from the generator-rotor speed relationship
which only changes within 1 month before the bearing failure,
the relationship between all the SCADA variables changes
gradually within the course of the 34 months leading up to
failure.

A binary classification can indicate if a wind turbine is healthy
or faulty, based again on the time before the bearing failure.
The binary classification results show that during 1 month be-
fore failure the relationship between the SCADA variables is
different than the rest of the operating time periods. Even
though the samples collected for 1 month are much less than
the other class, as depicted in Figure 11, a large percentage of
the points within 1 month of the incipient fault are classified
correctly. Some collective performance results are shown in
Table 5.

Precision Recall
Multi-class 0.95 0.94
Two-class 0.98 0.97

Table 5. Performance Metrics of Classifiers
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5. CONCLUSION

This paper investigated the use of SCADA data for wind tur-
bine gearbox planet bearing fault prediction. The case study
concerned historical data from three operating wind turbines
leading up to the same planet bearing failure mode. An in-
sight into the dataset was given for different time steps prior
to the component failure. The generator speed and two gear-
box temperatures were modelled in normal operating con-
dition. Abnormalities can be detected through the error be-
tween the predicted and the actual variables. The results in-
dicate that the relationship between the generator and rotor
speed changes in the time period close to the fault. This
could be related to measurement procedure of the generator
speed. A classifier using all the measured variables is also
presented and it indicates that the relationship between the
SCADA variables changes within one month before the bear-
ing catastrophic failure, as shown by the normal behaviour
model. It is furthermore presented that potential prognosis of
the fault can be achieved using enough run-to-failure exam-
ples.
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