
* Corresponding author: bahman.hassanati@strath.ac.uk 

Size effects on free vibration of heterogeneous beams 

Bahman Hassanati1,*, Marcus Wheel1  
1Mechanical & Aerospace Engineering Department, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, Scotland, UK 
 

Abstract. In this paper the influence of microstructure on the free vibration of geometrically similar 
heterogeneous beams with free-free boundary conditions was numerically investigated by detailed finite 
element analysis (FEA) to identify and quantify any effect of beam size on transverse modal frequencies 
when the microstructural scale is comparable to the overall size. ANSYS Mechanical APDL was used to 
generate specific unit cells at the microstructural scale comprised of two isotropic materials with different 
material properties.  Unit cell variants containing voids and inclusions were considered. At the macroscopic 
scale, four beam sizes consisting of one, two, three or four layers of defined unit cells were represented by 
repeatedly regenerating the unit cell as necessary. In all four beam sizes the aspect ratio was kept constant. 
Changes to the volume fractions of each material were introduced while keeping the homogenized 
properties of the beam fixed. The influence of the beam surface morphology on the results was also 
investigated. The ANSYS results were compared with the analytical results from solution to Timoshenko 
beam and nonlocal Timoshenko beam as well as numerical results for a Micropolar beam. In nonlocal 
Timoshenko beams the Eringen’s small length scale coefficients were estimated for some of the studied 
models. Numerical analyses based on Micropolar theory were carried out to study the modal frequencies 
and a method was suggested to estimate characteristic length in bending and coupling number via transverse 
vibration which verifies the use of Micropolar elasticity theory in dynamic analysis. 

1 Introduction 
In recent years the progress in technologies such as 
aerospace, biomedical, nanotechnology etc. have 
demanded the need for the application of small scale 
structures and that has created a whole new era for 
researchers to investigate the dynamic behaviour of 
structures where the classical theories of elasticity 
become increasingly invalid to use in cases such as small 
scale heterogeneous beams. Heterogeneity in general is 
known as a discontinuity of physical properties of 
material in either a specific direction or 
multidirectionally. In the literature generally the 
homogenisation methods are sought to represent the 
properties of materials with a selected unit cell. Rabboh 
et al used the rule of mixture to calculate the elastic 
constants and Poisson’s ratio for functionally graded 
material sandwich beam and investigated the effect of 
functionally graded material (FGM) on the beam’s 
dynamic performance[1]. Della and Shu used Eshelby’s 
equivalent inclusion method to investigate the vibration 
of piezoelectric beams and their analytically obtained 
results also indicate that the size effect due to the size of 
piezoelectric inclusions, their location in the beam and 
their volume fraction influence their dynamic 
behaviour[2].  

Homogenisation methods become severely 
problematic where the size of constituent materials such 
as inclusions and/or voids becomes comparable to the 

overall size of the specimen. Modifications to classical 
elasticity theories are only useful as long as the internal 
length scale parameters are considered very small. The 
size dependent characteristics and behaviour of materials 
have been reported by many researches such as in the 
work by Groh & Weaver[3], Gherlone[4], and Schulze et 
al in laminated beams[5]. Alghamdi and Dasgupta’s 
results in modelling active damping of adaptive 
structures mostly shows how the beam’s time to decay 
changes by changing the device aspect ratio, inclusion 
shape, location, and volume fraction, and also how 
changes in host stiffness results in changes in time to 
decay and electrical field[6]. Timoshenko beam theory is 
widely used by researches as it is able to include rotary 
inertia and shear deformation and therefore it is 
considered nonlocal if Eringen’s small scale effect is 
incorporated in the governing equations[7]. C M Wang 
et al used finite segments method to calibrate Eringen’s 
small length scale coefficient for initially stressed 
vibrating nonlocal beams and stated that ‘e0 does not 
depend on buckling or vibration modes’  [8] . In our FE 
results, however, we observed that in such cases that α= 
(e0a) is not size independent and therefore it cannot be 
accepted as a unique property of the material.  Available 
results on the influence of size effect on the behaviour of 
heterogeneous materials reported by researches show 
deviation from elastic theories in static loading cases 
when the beam or plate L/h ratio reduces [9]–[15]. 
Nakamura and Lakes used a two dimensional FE method 
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and studied the localised end loads on a strip sample and 
concluded that as the characteristic length increases, the 
rate of decay of stress and strain energy reduces. 
Micropolar theory, however, takes into account couple 
stresses and thus requires a characteristic length 
constitutive parameter and an additional degree of 
freedom, a micro rotation. Micropolar theory by nature 
incorporates the size effect in the material. A 2D 
Micropolar strip loaded at one end was investigated by 
Nakamura & Lake [16] and the influences of elastic 
constants especially coupling number and characteristic 
length are investigated. They concluded that for a very 
small characteristic length (in comparison with the 
strip’s width), the rate of stress/or strain energy 
decreases as the characteristic length increases. In the 
dynamic case this may be shown by wave dispersion. 
Their work predominantly includes studying the models 
for various characteristic length and coupling number, N, 
and provides no method to determine them. However in 
another work by Lakes, a comprehensive comparison has 
been made between various theories such as Eringen’s 
nonlocal theory and Micropolar theory[17]. This 
indicates that the elastic constants can be determined via 
a dynamic wave propagation method. Nevertheless, in 
any method such as a size effect based method, field 
method and/or wave method, there are limitations with 
regard to the smallest characteristic length. Also, special 
attention must be given to the coupling number, N, near 
the limits of zero and one while performing numerical 
analysis otherwise numerical errors in computation may 
result.  

Wheel et al studied size effects in heterogeneous 
beams in static cases when loaded in 3 point bending 
[16]. They investigated size effects in beams with voids 
and showed that sample stiffness relates to the sample 
size, as measured by the reciprocal of its depth squared, 
in a linear manner. They also reported that there are both 
negative and positive effects of beam size depending on 
the beam boundary morphology [15]. Waseem et al also 
investigated the influence of void size on the constitutive 
properties of a perforated ring model and by relating the 
diametrical loads, displacement and strain energy 
derived the final equation relating the stiffness to the 
specimen size[14]. In the case of smooth specimen 
surface (rings circumference), the stiffness changes 
linearly with sample size measure. McGregor provides 
the same conclusions[18]. Beveridge et al investigated 
the Micropolar behaviour of perforated beams in 3 point 
bending and by using a control volume finite element 
method and iteration to model static 3 point bending test 
results determined the coupling number for the 
models[10].  

2 Finite Element Analyses 

2.1. FE modelling  

Three types of 2D beams were modelled: perforated 
beams (beams with voids), beams with compliant 
inclusions and beams with a compliant matrix. Modal 

analysis was carried out using ANSYS APDL version 
16.2. Unit cell variants containing voids and inclusions 
were considered. The height and length of unit cells are 
0.866 and 1mm. Parametric APDL codes were written to 
regenerate models for various voids/inclusions volume 
fractions.  

                    
Figure 1: Unit cell consisting of two isotropic materials r=0.2 
mm, cell on the right is for when inclusions intercept the beams 
surface. 

At the macroscopic scale, unit cells were repeatedly 
regenerated to produce four beam sizes consisting of 
one, two, three or four layers of cells while keeping the 
aspect ratio constant at 10.4:1. Changes to the volume 
fraction of each material were introduced while keeping 
the homogenized properties of the beam fixed. This 
method is meant to account for studying the size effect 
of free vibration for various volume fractions and beam 
sizes while keeping the mass of the unit cell and beams 
overall properties constant. The aim is to study 
frequency changes for various beam sizes and void/or 
inclusions volume fractions for lateral vibration modes.  

2.2. Size effect  

In figure 2, the normalised non-dimensional frequencies 
for the first 10 transverse modes based on the reciprocal 
measure of 4 beam sizes are shown. The blue lines 
(dotted lines with squared markers) represent the 
homogeneous case and the results show that in this case 
the modal frequency λ is size independent. The size 
effect is greatest for beams which are smaller.  It is also 
evident that the size effect is mode dependent as there is 
a shift in the nature of size effect, after mode 3 changes 
in void radius causes a decrease rather than an increase 
in normalised frequencies. In figure 3, it is shown that 
beams with compliant inclusions show similar 
behaviour. 

 

Figure 2: Normalised flexural modal frequencies of the first 10 
modes, four beam sizes for beams with voids and smooth 
morphology 
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Figure 3: Normalised flexural modal frequencies of the first 10 
modes, four beam sizes for smooth surfaced beams with 
compliant inclusions 

From the results we can see that the nature of the size 
effect changes and NN-λ (Normalised non-dimensional 
frequency parameter) decreases rather than increases. It 
has been observed that after some cut-off frequency the 
FE results increasingly become even more nonlinear and 
need more research which is beyond the scope of this 
paper. The results for specimens with stiff inclusions 
show a different dynamic behaviour, figure 4, and that it 
displays a totally different size effect which indicates 
that increasing volume fraction causes a decrease in NN-
λ and this rate of change decreases at higher mode 
numbers. However, for beams with voids and compliant 
inclusions for which the voids and/or inclusions intercept 
the surfaces, this rate of change increases although the 
resulting NN-λ remains below the homogenised case.  

 

Figure 4: Normalised flexural modal frequencies of the first 10 
modes, four beam sizes for smooth surfaced beams with 
compliant Matrix 

3 Nonlocal Timoshenko Beam 
The nonlocal Timoshenko governing equations can be 
obtained by applying Hamilton’s principle and 
incorporated the Eringen’s small scale coefficient α=e0a 
into the Timoshenko beam model[7]: 

 
𝐸𝐸𝐸𝐸 𝑑𝑑2𝜙𝜙

𝑑𝑑𝑑𝑑2 − 𝜅𝜅𝜅𝜅𝜅𝜅 (𝜙𝜙 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ) + 𝜌𝜌𝐸𝐸𝜔𝜔2𝜙𝜙 − (𝑒𝑒0𝑎𝑎)2 (𝜌𝜌𝜅𝜅𝜔𝜔2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +
𝜌𝜌𝐸𝐸𝜔𝜔2 𝑑𝑑2𝜙𝜙

𝑑𝑑𝑑𝑑2 ) = 0                                                              (1) 

 
𝜅𝜅𝜅𝜅𝜅𝜅 (𝑑𝑑𝜙𝜙

𝑑𝑑𝑑𝑑 + 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2 ) + 𝜌𝜌𝜅𝜅𝜔𝜔2𝑤𝑤 = 0      (2) 

 

where ϕ is the rotation, w is the transverse displacement 
and ω is the circular frequency. After decoupling 
equations (1) and (2) and applying free-free boundary 
conditions, the following equation may be derived:  

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 + ([(𝐻𝐻2𝐻𝐻3)2−(𝐻𝐻1𝐻𝐻4)2]
2𝐻𝐻1𝐻𝐻2𝐻𝐻3𝐻𝐻4

) 𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛽𝛽𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽 = 1        
(3) 
where: 

𝐻𝐻1 = 𝛼𝛼2𝜆𝜆2 + (𝛼𝛼2𝜆𝜆2

𝜉𝜉2 − 1) 𝛽𝛽𝛹𝛹𝛽𝛽 , 𝐻𝐻2 = 𝛼𝛼2𝜆𝜆2 +

(𝛼𝛼2𝜆𝜆2

𝜉𝜉2 − 1) 𝛽𝛽𝛹𝛹𝛾𝛾  

𝐻𝐻3 = 𝛹𝛹𝛽𝛽 + 𝛽𝛽  , 𝐻𝐻4 = 𝛹𝛹𝛾𝛾 + 𝛽𝛽   

𝑎𝑎 = (1 − 𝛼𝛼2𝜆𝜆2

𝜉𝜉2 ) , 𝑏𝑏 = 𝜆𝜆2 (𝛺𝛺 + − 1−𝛺𝛺𝛼𝛼2𝜆𝜆2

𝜉𝜉2 + 𝛼𝛼2)  

𝑐𝑐 = 𝜆𝜆2 (𝜆𝜆2𝛺𝛺
𝜉𝜉2 − 1)  

(𝛽𝛽
𝛽𝛽) = (±𝑏𝑏 + √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎 )
1/2

 

𝛹𝛹𝛽𝛽 = − 𝛽𝛽2+𝜆𝜆2𝛺𝛺
𝛽𝛽    ,    𝛹𝛹𝛾𝛾 = 𝛾𝛾2+𝜆𝜆2𝛺𝛺

𝛾𝛾  

𝑥𝑥 = 𝑑𝑑
𝐿𝐿  , 𝑤𝑤 = 𝑑𝑑

𝐿𝐿  ,  𝜆𝜆2 = 𝜔𝜔2 𝜌𝜌𝜌𝜌𝐿𝐿4

𝐸𝐸𝐸𝐸   ,  

 
in which λ=ω1/2(ρAL4/EI)1/4 is the frequency parameter, 
Ω=EI/(KsGAL2) the shear deformation parameter, 
α=e0a/L a scaling effect parameter and finally 
ξ=L(A/I)1/2  is the slenderness ratio.  

Equation (3) has been solved by the bisection method 
and the normalised transverse modal frequencies for the 
first 38 modes of a beam with aspect ratio L/d=10.4 are 
provided in figure 5. By comparing these results and the 
modal frequencies obtained in FE analysis using ANSYS 
APDL it is possible to obtain Eringen’s scale parameter 
for our heterogeneous models. A direct comparison 
between the results in figure 5 and the FE results in 
section 2.2, confirms that it is not always possible to 
easily determine α for cases similar to our models. 
However, by applying a constant (𝝀𝝀/𝝀𝝀𝟎𝟎)𝟐𝟐 = (𝝀𝝀/𝝀𝝀𝟎𝟎)𝟏𝟏 −
[𝑪𝑪𝟏𝟏 × (𝟏𝟏 − (𝝀𝝀/𝝀𝝀𝟎𝟎)𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴_𝟏𝟏)] and shifting the results below the 
homogeneous line, it is possible to obtain α for beams 
with voids and inclusions. 

 
Figure 5: Nonlocal Timoshenko Frequency Parameters for 
Various α's, F-F BC 
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The values for α via this curve fitting method show 
‘α’ is not size independent as illustrated in figure 6 
therefore it cannot be regarded as a unique property of 
the material. When voids and inclusions intercept the 
surfaces, there is no need to consider any constant but 
the small scale coefficient still showed size dependency.  

Figure 6: Smooth surfaced perforated beam. Scale 
Coefficient 'α' (Alpha), Obtained by curve fitting FE 
results with NLTB 

4 Micropolar Beam 

4.1 2D Micropolar elastic materials 

 
The stress-strain relations in classical elasticity may be 
stated as 𝝉𝝉𝒊𝒊𝒊𝒊=𝝀𝝀𝝀𝝀𝒌𝒌𝒌𝒌 𝜹𝜹𝒊𝒊𝒊𝒊+𝟐𝟐𝟐𝟐𝝀𝝀𝒊𝒊𝒊𝒊 where λ and μ are the Lamé 
constants but in Micropolar elasticity there are four extra 
elastic constants. In linear, three dimensional, micropolar 
elasticity the force stresses, τij, and couple stresses, mij, 
are related to the deformations by [17]: 

𝝉𝝉𝒊𝒊𝒊𝒊=𝝀𝝀𝝀𝝀𝒌𝒌𝒌𝒌 𝜹𝜹𝒊𝒊𝒊𝒊+ (𝟐𝟐𝟐𝟐∗+𝜿𝜿) 𝝀𝝀𝒊𝒊𝒊𝒊+𝜿𝜿𝜿𝜿𝒊𝒊𝒊𝒊𝒌𝒌 (𝜽𝜽𝒌𝒌−∅𝒌𝒌)                (4) 

𝒎𝒎𝒊𝒊𝒊𝒊=𝜶𝜶∅𝒌𝒌, 𝜹𝜹𝒊𝒊𝒊𝒊+𝜷𝜷∅𝒊𝒊, +𝜸𝜸∅𝒊𝒊,                                 (5) 

where τ is the force stress tensor, ∅ is the micro rotation, 
θ is the macro rotation and m is a length scale dependent 
couple stress. The strain components, ε, are given in 
terms of the displacements, u, and micro rotations, ∅, by:  

𝜀𝜀𝑖𝑖𝑖𝑖=𝑢𝑢𝑖𝑖,𝑖𝑖+𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 ∅𝑗𝑗                         

Macro rotation and strain tensors are: 

 𝜃𝜃𝑗𝑗= (𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗,j )/2   ,  𝜀𝜀𝑖𝑖𝑖𝑖=(𝑢𝑢𝑖𝑖,𝑖𝑖+𝑢𝑢𝑖𝑖,𝑖𝑖)/2 

where i,j,k=1,2,3,  δ is the Kronecker delta and is equal 
to 1 if i=j otherwise it is zero, eijk the permutation tensor. 
For even permutation of of ijk, eijk=+1, for odd 
permutation of ijk, eijk=−1and otherwise zero. 

There are four additional elastic constants α, β, γ and 
κ. However, in 2D Micropolar elasticity the number of 
constants reduces to 4 independent engineering 
constants: 

 𝐸𝐸𝑚𝑚 = (2𝜇𝜇∗+𝜅𝜅)(3𝜆𝜆+2𝜇𝜇∗+𝜅𝜅)
(2𝜆𝜆+2𝜇𝜇∗+𝜅𝜅)   ,        𝜈𝜈𝑚𝑚 = 𝜆𝜆

(2𝜆𝜆+2𝜇𝜇∗+𝜅𝜅) 

  𝑙𝑙𝑏𝑏
2 = 𝛾𝛾

2(2𝜇𝜇∗+𝜅𝜅)                  ,        𝑁𝑁
2 = 𝜅𝜅

2(𝜇𝜇∗+𝜅𝜅)  

Em is Micropolar modulus 𝜈𝜈𝑚𝑚is Micropolar Poisson ratio  
𝑙𝑙𝑏𝑏 is a length scale parameter and it should reflect the 
microstructural scale. N is the coupling number and 
characterises the shear stress asymmetry. In the dynamic 
case micro inertia also needs to be included. In 2D finite 
element methods a mass matrix needed to be introduced 
in to the equations. The asymmetric components of the 
shear stress: 

𝐺𝐺11 = 𝜇𝜇∗ + 𝜅𝜅   ,    𝐺𝐺12 = 𝜇𝜇∗  ,   G11=G22   and   G12=G21 

𝐺𝐺𝑠𝑠𝑠𝑠 = (𝐺𝐺11 + 𝐺𝐺12) = 2𝜇𝜇∗ + 𝜅𝜅 , 𝐺𝐺𝑎𝑎𝑠𝑠𝑠𝑠 = 𝐺𝐺11 − 𝐺𝐺12 =  𝜅𝜅 

are controlled by N as noted which can therefore be 
identified at higher order modes involving increased 
shear deformation using an iteration method that will be 
described. 

4.2 Micropolar elastic constants 

4.2.1 Characteristic length in bending, lb 

Efm and 𝝂𝝂m can be determined from static tensile tests. 𝒍𝒍𝒃𝒃 
can be obtained from mode 1 behaviour and equation 1 
for 𝝀𝝀 𝒎𝒎𝒎𝒎𝒎𝒎𝜿𝜿=1. In a slender beam where 𝑑𝑑/𝐿𝐿 ≪ 1  
𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀 ∅𝑧𝑧 ≅ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀 𝜃𝜃𝑧𝑧   
Moment, M, is driven by internal force stress,𝜏𝜏𝑥𝑥𝑥𝑥, and 
couple stress,𝑚𝑚𝑥𝑥𝑧𝑧, Thus:  

𝑀𝑀 = ∫ (𝑦𝑦𝜏𝜏𝑥𝑥𝑥𝑥 + 𝑚𝑚𝑥𝑥𝑧𝑧)𝑑𝑑𝑑𝑑 
𝐴𝐴                         (6) 

1
𝑅𝑅 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥 = 𝑑𝑑∅𝑧𝑧
𝑑𝑑𝑥𝑥 = − 𝑑𝑑2𝑊𝑊

𝑑𝑑𝑥𝑥2  and: 𝑚𝑚𝑥𝑥𝑧𝑧 =  𝛾𝛾 𝑑𝑑∅𝑧𝑧
𝑑𝑑𝑥𝑥   ,  𝜏𝜏𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑓𝑓𝑓𝑓𝑠𝑠

𝑅𝑅               

𝐼𝐼𝐼𝐼 ∅𝑧𝑧 ≅  𝜃𝜃𝑧𝑧 → 𝑚𝑚𝑥𝑥𝑧𝑧 =  𝛾𝛾
𝑅𝑅  , 𝐼𝐼 = ∫ 𝑦𝑦2𝑑𝑑𝑑𝑑 

𝐴𝐴   ,  𝑑𝑑 = ∫ 𝑑𝑑𝑑𝑑 
𝐴𝐴                                                                               

Substituting for 1
R = − d2W

dx2  in the moment curvature 
relationship:  

𝑑𝑑2𝑊𝑊
𝑑𝑑𝑥𝑥2 = − 𝑀𝑀

𝐸𝐸𝑓𝑓𝑓𝑓𝐼𝐼+𝛾𝛾𝐴𝐴 = − 𝑀𝑀
𝐷𝐷𝑓𝑓𝑓𝑓

                                            (7) 

where Dmf = EmfI + γA =Micropolar flexural rigidity              
(8) 

From an unloaded Euler-Bernoulli beam in the dynamic 
case: 

𝐷𝐷𝑚𝑚𝑚𝑚
𝑑𝑑4𝑊𝑊
𝑑𝑑𝑥𝑥4 − 𝜇𝜇𝜔𝜔2𝑊𝑊 = 0  , 𝜇𝜇 = 𝜌𝜌𝑑𝑑                                 (9) 

𝜔𝜔 = 𝜆𝜆2√𝐷𝐷𝑓𝑓𝑓𝑓
𝜌𝜌𝐴𝐴𝐿𝐿4   −→ 𝜔𝜔 = 𝜆𝜆2√𝐸𝐸𝑓𝑓𝑓𝑓𝐼𝐼+𝛾𝛾𝐴𝐴

𝜌𝜌𝐴𝐴𝐿𝐿4                           (10) 

𝐼𝐼 = 𝑏𝑏𝑑𝑑3

12  , 𝑑𝑑 = 𝑏𝑏𝑑𝑑 , 𝛾𝛾 = 𝑬𝑬𝒎𝒎𝒎𝒎𝑙𝑙𝑏𝑏
2

12  

𝜔𝜔2 = 𝐸𝐸𝑓𝑓𝑓𝑓𝜆𝜆4

12𝜌𝜌𝐿𝐿4 (𝑑𝑑2 + 𝑙𝑙𝑏𝑏
2)                                                 (11) 

𝐷𝐷 = 𝐸𝐸𝐼𝐼 In absence of couple stress 

𝑚𝑚. 𝜔𝜔2 = 𝐸𝐸𝑓𝑓𝑓𝑓𝜆𝜆4𝑏𝑏
12 (𝑑𝑑

𝐿𝐿)
3

(1 + (𝑙𝑙𝑏𝑏
𝑑𝑑 )

2
)          Kg

s2                  (12) 
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Equation (12) can provide valuable information. It 
relates characteristic length, lb, non-dimensional 
frequency, λ, flexural Micropolar modulus, Efm, on the 
right hand side to the beam’s mass multiplied by squared 
frequency on the left hand side. In fact, if the mass times 
frequency squared can be calculated for beams with 
various sizes and plotted against reciprocal size measure, 
(1/d2), then it is possible to obtain the Efm or λ from the 
line intercept and the characteristic length from the line 
slope. As equation (12) is obtained based on the 
assumptions of slender beam, therefore, the equation is 
valid for a slender beam and hence mode one only. 

4.2.2 Coupling number, N 

If α, β, γ and κ = 0, then the solid should behave in a 
classical manner while if N=1 and therefore, 
microrotation and macrorotation are exactly equal which 
means they are not kinematically distinct, ϕz≅θz.  

Having obtained the characteristic length in bending 
and based on the results from ANSYS FE analysis and 
iteration process the coupling number, N, may be 
estimated. The iteration is based on linear regression[10] 
and fits the curves in the graphs for 𝑚𝑚. 𝜔𝜔2 vs mode 
numbers (or wavelength). In the iteration process the 
first three transverse modes were used to iterate for 
coupling number, N; the reason is to obtain a coupling 
number which can satisfy all modal frequencies and 
model depths.  It was found that N changes with void 
and/or inclusions radius linearly. But this change is not 
significant for our specimens 0.1mm < Vr or 0.1155 < 
Vr/Sy. 

A control volume finite element method (CVFEM) 
Matlab code has been developed by us which 
incorporates Micropolar theory and is able to model, 
mesh and perform both static and modal analysis. A 
second code is also developed which automatically 
estimates N. 

5 Results 

Using the CVFEM code and linear regression as 
described in section 4.2.2, a unique value for N was 
identified as N=0.0528 for beams with compliant 
inclusions and N=0.0538 for beams with voids. 
Characteristic length does not vary with beam size and 
only depends on volume fraction. See table 1 below: 

Table 1. Characteristic length changes with volume fraction 

Void or 
Inclusions radius' 
volume fraction 

lc for 
beams with 
Voids, mm 

lc for beams with 
compliant 

inclusions, mm 

4% 0.2717 0.2555 

8% 0.4139 0.3612 

15% 0.5432 0.4681 

23% 0.6522 0.5621 

33% 0.7334 0.6367 

In figures 7 and 8, the finite element results from 
ANSYS and Micropolar CVFEM codes for mode 1 and 
2 are compared after convergence of the iteration 
process; mω2 is obtained within two limits of N=0 and 
N=0.9 (N value at higher bound must not equal 1 due to 
numerical errors it causes.) 

 
Figure 7: Beams with compliant inclusions, mode 1 

 
Figure 8: Beams with compliant inclusions, mode 2 

In figure 9 the size effect shown in a smooth surfaced 
beam with voids which is represented by the Micropolar 
CVFEM code. Beams specifications are:  
Model: Beam with voids (Smooth surface), Size: 2, 
AR=10.4, d=2*0.866mm, DOF=1107, ANSYS DOF 
=257596, BC=FF, N=0.05, lc=0.652 mm, Void 
radius=0.25mm 

 
Figure 9: Normalised flexural modal frequencies produced by 
ANSYS squared markers and CVFEM code shown in dotted 
line and triangular markers. 𝑙𝑙𝑙𝑙 = 0.6522 𝑚𝑚𝑚𝑚 , 𝑁𝑁 = 0.0538 

Micropolar CVFEM code models homogeneous 
beams with 6 node triangular elements and characterises 
the heterogeneity through incorporating the 
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characteristic length and coupling number. Comparing 
the total degrees of freedom, it is clear that CVFEM 
code uses significantly less DOF’s and therefore less 
computation is needed. Figure 9 also illustrates the 
sensitivity of frequencies with changes in N e.g. N is 
more sensitive at higher modes, see N=0.5. 

5 Conclusions 

A Micropolar CVFEM code for modal analysis was 
developed which is able to model, mesh and perform 
both static and modal analysis using Micropolar theory 
to account for micro rotation and couple stress. In 
Micropolar beam vibration, characteristic length in 
bending is obtained through dynamic analysis.  Obtained 
coupling numbers and Characteristic lengths for models 
with various void or inclusions volume fraction used in 
Modal Analysis are fairly accurate and may be used to 
predict modal frequencies in free vibration with the 
exceptions of compliant inclusions and/or Voids 
intersect the beam surface and beams with compliant 
matrices. The dynamic behaviour of the heterogeneous 
beams strongly depends to the beam’s aspect ratio, mode 
numbers for which frequencies are obtained, material 
discontinuity across the height and length of the structure 
as well as surface morphology. Although Eringen’s 
Nonlocal Timoshenko beam (NTB) could explain the 
dynamic behaviour of our models to some extent the FE 
results for our specific models showed that even NTB 
has shortcomings and is not constant for all model sizes 
with the same aspect ratio e.g.  multiplying the number 
of constitutive layers require new scaling effect 
parameter as the layers add up for the models with the 
same aspect ratios.  
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